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Abstract
Chemical shifts provide not only peak identities for analyzing NMR data, but also an important
source of conformational information for studying protein structures. Current structural studies
requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα

chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments,
mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2)
Previous chemical shift prediction approaches either require homologous models with high
sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates.
When neither sequence homologues nor structural coordinates are available, we must resort to
other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other
obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms
in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural
studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby
backbone atoms, we propose a novel machine learning algorithm, called HASH, to predict Hα

chemical shifts. HASH combines a new fragment-based chemical shift search approach with a non-
parametric regression model, called the generalized additive model, to effectively solve the
prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a
reliable source of information for predicting accurate Hα chemical shifts. Our testing results on
different possible combinations of input data indicate that HASH has a wide rage of potential NMR
applications in structural and biological studies of proteins.
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1 Introduction
Chemical shifts play a crucial role in determining protein structures and studying protein
dynamics via nuclear magnetic resonance (NMR). They provide peak identities for NMR
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data analysis (Donald and Martin, 2009; Zeng et al., 2008, 2009, 2011a). In addition,
chemical shifts offer an important source of conformational information for studying protein
structures (Shen et al., 2008; Wishart et al., 2008; Mulder and Filatov, 2010; Wishart, 2011).
In particular, Hα chemical shifts provide important “anchors” for initializing the nuclear
Overhauser effect (NOE) assignments, serve as a reliable indicator of secondary structure,
and contain rich structural information (e.g., dihedral angles). Despite these important
properties of Hα chemical shifts, current studies of protein structures requiring Hα chemical
shifts still suffer from the following three problems:

First, the Hα chemical shifts of large proteins can be difficult to assign using conventional
NMR triple-resonance experiments on uniformly 15N- and 13C-labelled samples, primarily
due to the fast transverse relaxation rate of Cα nuclei in the large systems. Although recent
progress (Shen et al., 2008;Wishart et al., 2008; Raman et al., 2010; Rosato et al., 2012;
Thompson et al., 2012; Lange et al., 2012) has shown that the atomic or medium resolution
structures of some proteins up to 40 kDa can be calculated using molecular modelling and
sparse data (e.g., chemical shifts), it is still of interest to assign the dense NOE data that can
be collected for large proteins, and use their assignments to calculate high-resolution
structure from the data. This is difficult without Hα and side-chain resonance assignments.
In (Zeng et al., 2011b), we developed a novel algorithm, called NASCA, to assign both side-
chain resonances and NOE distance restraints from NOESY spectra. NASCA takes as input
NOESY spectra, backbone chemical shifts, and RDCs, but does not require any TOCSY-
type experiments. The current version of NASCA relies on having Hα assignments and
geometric data such as NOEs and RDCs that involve Hα nuclei. Therefore it is valuable to
develop an algorithm that could predict Hα chemical shifts given neighboring resonances,
and backbone structural information determined by RDCs on spatially proximate backbone
bond vectors.

For large proteins, two NMR samples are often prepared for determining their solution
structures. In the first sample, proteins are deuterated (hence, the NMR signals of Hα are
muted) and used in NMR triple-resonance experiments to obtain the resonance assignments
of backbone atoms HN, Cα, Cβ and C′ and N. In these experiments, the Hα resonances
cannot be assigned. In the second sample, proteins are protonated, and used in NOESY
experiments to obtain NOE assignments. Although the NOESY spectra resulting from the
second NMR sample contain a substantial number of NOE cross peaks involving Hα that are
important for high-quality structure determination, the unassigned Hα resonances make it
difficult to assign these Hα-related NOEs. Predicting accurate Hα chemical shifts can
alleviate the NOE assignment ambiguity resulting from the corresponding missing
resonance assignments, and thus facilitate NOE assignment and enable high-resolution
structure determination for large proteins.

Second, most previous chemical shift prediction approaches (Neal et al., 2003; Shen and
Bax, 2007; Kohlhoff et al., 2009; Shen and Bax, 2010) require either (a) homologous
models with high sequence similarity, or (b) accurate backbone and side-chain structural
coordinates. Experimentally, it can be difficult to obtain complete and accurate structural
coordinates before assignment, since this requires having an X-ray or NMR structure
already. Furthermore, it can be especially difficult to determine the structures of the flexible
or disordered loop regions and side-chain conformations at the protein surface. When
structural coordinates are absent or of low resolution, we must resort to other information to
predict Hα chemical shifts. Resonances of neighboring backbone atoms, including HN, Cα,
Cβ and C′ and N, which can be measured relatively easily from NMR experiments using a
deuterated sample, provide an alternative source of information for inferring Hα chemical
shifts.
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In this paper, we develop a novel machine learning algorithm, called HASH, to predict Hα

chemical shifts by specifically exploiting the experimentally-assigned resonances of
neighboring backbone atoms (i.e., adjacent backbone atoms in the sequence). HASH applies a
combination of a new fragment-based chemical shift search approach and a non-parametric
regression model, called the generalized additive model, to effectively solve the chemical
shift prediction problem. Using only the assigned resonances of nearby backbone atoms,
HASH can still predict accurate Hα chemical shifts for a benchmark set of NMR data extracted
from the Biological Magnetic Resonance Bank (BMRB), with RMSD 0.333 ppm and
Pearson correlation 0.807. This highly accurate prediction result indicates that the chemical
shifts of nearby backbone atoms can provide reliable information for predicting Hα chemical
shifts. By combining experimentally-measured chemical shifts of nearby backbone atoms
with sequence homology modeling and structural information, HASH achieves excellent
prediction accuracy, with RMSD 0.113 ppm and Pearson correlation 0.977. In an application
scenario in which only the chemical shifts of nearby backbone atoms plus backbone
structural coordinates are available (e.g., when they can be determined from residual dipolar
coupling data), HASH outperforms previous structure-based chemical shift prediction
approaches and achieves prediction accuracy with RMSD < 0.31 ppm.

The Hα chemical shifts predicted by our approach can be useful for assigning the Hα-related
NOEs from NOESY experiments on protonated proteins samples, and thus ensure high-
resolution structure determination for large proteins. In summary, the following
contributions are made in this paper:

1. The first approach to explicitly use the dependencies between chemical shifts of
nearby backbone atoms to predict Hα chemical shifts in NMR structural studies;

2. A novel machine learning algorithm for Hα chemical shift prediction that can use
different combinations of obtainable input data, such as primary sequence,
backbone structural coordinates determined from residual dipolar couplings
(RDCs), and the chemical shifts of nearby backbone atoms;

3. A combination of a new fragment-based search approach and a statistical
regression model to effectively solve the chemical shift prediction problem, and a
novel application of a non-parametric learning approach (i.e., generalized additive
model) into chemical shift prediction and NMR structural biology;

4. Filling the gap in NMR structural studies caused by the missing Hα chemical shifts,
which cannot be easily assigned experimentally in large proteins, and the absence
of sequence homologues and structural coordinates;

5. Testing and promising results on both a benchmark set of NMR data extracted from
the BMRB and a set of NMR data with RDC-defined backbone structures.

1.1 Related Work
Previous chemical shift prediction approaches may be classified into two principal
categories: sequence homology search methods (Wishart et al., 1997) and structure-based
approaches (Iwadate et al., 1999; Xu and Case, 2001;Moon and Case, 2007; Vila et al.,
2009;Meiler, 2003; Neal et al., 2003; Shen and Bax, 2007;Kohlhoff et al., 2009; Shen and
Bax, 2010; Han et al., 2011). The sequence homology search methods predict the chemical
shifts of the target protein based on sequence homologous models found from the sequence/
chemical shift database. These methods require at least 35% sequence identity between the
target protein and existing models in the training database (Wishart et al., 1997; Wishart,
2011). On the other hand, two proteins with high sequence identity can still have different
global folds, and result in significantly different chemical shifts. For example, although two
proteins GA88 and GB88 have 88% sequence identity, they have distinct fold topologies and
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show significantly different chemical shifts (He et al., 2008). Even proteins with almost
identical sequences can display different conformations in different states (such as native or
denatured states) or different chemical environments (e.g., with different buffer pH)
(Morrone et al., 2011). These facts indicate that, in order to robustly predict accurate
chemical shifts, other information in addition to protein sequence information must be
incorporated.

Most structure-based chemical shift prediction approaches rely heavily on complete and
accurate structural coordinates to derive chemical shifts of a protein. Quantum mechanical
(QM) methods, one of the early attempts in structure-based chemical shift prediction,
calculate nuclear shielding to predict chemical shifts using density functional theory (DFT)
(Mulder and Filatov, 2010; Wishart, 2011). Although QM methods can calculate the
chemical shifts of nuclei with relatively good accuracy, they are computationally expensive
and cannot capture the environmental and dynamic effects (Wishart, 2011). Chemical shifts
are related to multiple structure-based factors, such as backbone dihedral angles, hydrogen
bonding and ring current (Iwadate et al., 1999; Xu and Case, 2001; Moon and Case, 2007;
Vila et al., 2009; Meiler, 2003; Neal et al., 2003; Shen and Bax, 2007; Kohlhoff et al., 2009;
Shen and Bax, 2010; Han et al., 2011; Arun and Langmead, 2006; Wishart, 2011). These
factors are sometimes called structural factors or structural impact factors on chemical
shifts. The large number of high-resolution protein structures in the Protein Data Bank
(PDB) and their corresponding assigned resonances deposited in the Biological Magnetic
Resonance Bank (BMRB) (Ulrich et al., 2007) have provided rich statistical (i.e., frequency)
information for deriving the empirical relationships between various structural factors and
chemical shifts. The empirically-derived dependencies between chemical shifts and various
structural parameters have been combined with semi-classical methods, which derive
simplified or empirical equations from classical physics (Wishart, 2011), to predict chemical
shifts from structural coordinates. These approaches, called hybrid approaches, are probably
the most popular prediction tools to date, and can efficiently predict chemical shifts to a
good accuracy (Xu and Case, 2001; Moon and Case, 2007; Neal et al., 2003; Meiler, 2003;
Shen and Bax, 2007; Vila et al., 2009; Kohlhoff et al., 2009; Shen and Bax, 2010; Mulder
and Filatov, 2010; Han et al., 2011; Arun and Langmead, 2006; Wishart, 2011).
Unfortunately, all these approaches demand accurate and complete (i.e., both backbone and
side-chain) structural coordinates. They do not work without prior structural information. In
contrast, our approach specifically exploits the chemical shifts of nearby backbone atoms,
and can predict accurate Hα chemical shifts in the absence of structural information.

In (Vila et al., 2010), the sequential nearest-neighbor effects on quantum-chemical
calculation of 13Cα have been investigated. The correlations (i.e., dependencies) between
chemical shifts of different backbone atoms have been used in NMR data analysis (Marin et
al., 2004; Wang et al., 2005; Wang and Markley, 2009). For example, in (Marin et al.,
2004), the patterns of correlations between different backbone atoms have been exploited to
predict amino acid types from the NMR-measured chemical shifts. This method has been
applied to backbone resonance assignment (Bailey-Kellogg et al., 2000; Langmead and
Donald, 2004; Langmead et al., 2004; Xiong et al., 2008; Apaydin et al., 2008, 2010; Jang et
al., 2011). In (Wang et al., 2005; Wang and Markley, 2009), a linear analysis of chemical
shifts (LACS) has been applied to detect and correct the errors in chemical shift
assignments. Despite these applications, to our knowledge, little work has been designed to
predict Hα chemical shifts by explicitly using the dependencies between chemical shifts of
Hα and nearby backbone atoms.
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2 Methods
2.1 Overview

A flow chart of the HASH algorithm is shown in Fig. 1. HASH takes as input the chemical shifts
of nearby backbone atoms (i.e., HN, Cα, Cβ and C′ and N). Protein structural coordinates are
optional input data, and can be fed into the program when available. HASH first performs a
fragment-based chemical shift search (Section 2.2) over a chemical shift database extracted
from the BMRB, and checks whether there exists a chemical shift fragment (i.e., a short
sequence segment with known backbone chemical shifts) such that the chemical shifts of
nearby backbone atoms in this fragment match those of each fragment in the target protein.
If such a matched chemical shift fragment is found, the corresponding Hα chemical shifts
are used as the predicted values. Otherwise, the chemical shifts of nearby backbone atoms,
together with the obtainable structural impact factors computed from the optional input
structural coordinates, are fed into a non-parametric regression model, called the generalized
additive model, to predict Hα chemical shifts (Section 2.3).

Our algorithm HASH differs from previous chemical shift prediction approaches (Wishart et
al., 1997; Iwadate et al., 1999; Xu and Case, 2001; Moon and Case, 2007; Vila et al., 2009;
Meiler, 2003; Neal et al., 2003; Shen and Bax, 2007; Kohlhoff et al., 2009; Shen and Bax,
2010; Han et al., 2011) in the following aspects. First, unlike previous chemical shift
prediction approaches, which can only use sequence homologues and structural coordinates
as input, HASH also exploits the assigned resonances of nearby backbone atoms to predict Hα

chemical shifts. In other words, previous approaches heavily depend on sequence
homologues or accurate structural coordinates to predict chemical shifts, while in our
algorithm, the problem caused by the lack of sequence homologues and accurate structural
coordinates can be overcome by introducing the chemical shifts of nearby backbone atoms
as effective local chemical environmental indicators to infer accurate Hα chemical shifts.
Second, unlike most structure-based chemical shift prediction approaches (Iwadate et al.,
1999; Xu and Case, 2001; Moon and Case, 2007; Vila et al., 2009; Meiler, 2003; Neal et al.,
2003; Shen and Bax, 2007; Kohlhoff et al., 2009; Shen and Bax, 2010; Han et al., 2011),
which mainly rely on specific empirical functions in a parametric fashion to compute the
influences on chemical shifts from different structural factors, such as dihedral angles and
ring current effect, HASH applies a non-parametric model (see Section 2.3) to calibrate the
relationships between different structural factors and chemical shifts. Such a non-parametric
approach will allow us to derive a more accurate regression function for Hα chemical shift
prediction.

2.2 Fragment-Based Chemical Shift Search
Chemical shift provides a reliable indicator of the local chemical environment for each atom
in the protein. Two atoms should have similar chemical shifts if they have similar local
chemical environments. Thus, two fragments (i.e., short sequence segments) are likely to
share similar Hα chemical shifts if their chemical shifts of nearby atoms are pairwise similar.
Based on this observation, we propose a new fragment-based search approach to predict Hα

chemical shifts by systematically searching over the available chemical shift database
BMRB based on the chemical shifts of nearby backbone atoms.

Our fragment-based chemical shift search approach is described as follows. Let a be the
target Hα proton whose chemical shift need to be predicted, w be the length of a chemical
shift fragment, and t be the threshold to check whether two chemical shifts are similar.
Given a target Hα proton a, we check whether the following criterion is satisfied for each Hα

proton b in the chemical shift database: If chemical shifts of all nearby backbone atoms
within the residue number window of w/2 from b are within threshold t from those of the
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corresponding backbone atoms around a, we then output the chemical shift of b as the
predicted Hα chemical shift for proton a. We use RefDB (Zhang et al., 2003) as the
chemical shift database, which contains the re-referenced chemical shifts of 2372 proteins
that were extracted from the BMRB (Ulrich et al., 2007). We choose w = 6 as the length of
each chemical shift fragment, and 0.06 ppm for HN and 0.6 ppm for heavy atoms 15N
and 13C as the thresholds to determine whether two chemical shifts are similar to each other
during the search.

In the NMR structural biology literature, fragment-based search approaches have been
widely applied in NMR data analysis and structural studies. Our fragment-based search
approach is different from previous fragment-based search methods in that (1) the flow of
information is different; (2) our approach searches for chemical shift fragments rather than
structural fragments (Fig. 2). Previous fragment-based search approaches can be classified
into two categories. The first category is mainly in the application of NMR structure
determination, which uses chemical shifts (or RDCs) to search over the structure/chemical
shift database and find the structural fragments for structure generation (Delaglio et al.,
2000; Shen et al., 2008, 2009). We call these methods chemical shift-to-structure search, in
which information flows from chemical shifts to structures (Fig. 2A). The second category is
mainly in structure-based chemical shift prediction, which uses structural features (e.g.,
dihedral angles) to search over the structure/chemical shift database and find the structural
fragments to infer the unknown chemical shifts. We call these methods structure-to-
chemical shift search, in which information flows from structures to chemical shifts (Fig.
2B). Our fragment-based search is different from all above approaches. As shown in Fig.
2C, our approach uses the chemical shifts of nearby backbone atoms to search over the
chemical shift database and find the chemical shift fragments for Hα chemical shift
prediction. Our fragment-based search approach can be regarded as chemical shift-to-
chemical shift search, in which information flows from the chemical shifts of nearby
backbone atoms to Hα chemical shifts.

2.3 The Regression Model
In most structure-based chemical shift prediction approaches, the predicted chemical shifts
are often formulated as an additive model of contributions from different structural factors
on chemical shifts, as shown in the following equation:

(1)

where δp represents the predicted chemical shift, δ0 represents the random coil shift, and Xi
represents the contributions on chemical shifts from different structural impact factors, such
as hydrogen bonding, ring current effect, and dihedral angles. In the above additive model
(Eq. 1), contributions Xi from different structural impact factors are usually calculated using
specific empirical functions (i.e., parametric models). In reality, it is difficult to derive a
precise empirical function or model to compute contributions Xi on chemical shifts from
different structural impact factors. To relieve this problem, we improve the original additive
model in Eq. 1 by introducing a non-parametric regression model, called the generalized
additive model (GAM) (Hastie and Tibshirani, 1990), into Hα chemical shift prediction. To
describe the generalized additive model, we first introduce an additive linear model of the
following form:

(2)

or
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(3)

where Y is called the response variable, Xi is called the predictor variable, and βi is the
corresponding coefficient for each predictor variable. The generalized additive model is an
extension of the above additive linear model, and has the following form:

(4)

where fi(Xi) are called the smooth functions, which are non-parametric functions of predictor
variables Xi. These non-parametric functions fi(Xi) can be estimated using current smoothing
techniques, such as cubic smoothing spline, LOWESS (locally weighted scatterplot
smoothing) (Cleveland and Devlin, 1988), and kernel smoother (Wand and Jones, 1995). In
general, a specific distribution, such as Gaussian distribution or Poisson distribution, is used
to relate the expected value of the distribution to a set of predictor variables, namely,

(5)

where g is also called the link function. The generalized additive model can be solved using
the backfitting algorithm (Hastie and Tibshirani, 1990), which is similar to the numerical
Gauss-Seidel algorithm for solving a certain linear system of equations.

In the context of Hα chemical shift prediction, the response variable Y is the unknown Hα

chemical shift to be predicted, and the predictor variables Xi include the chemical shifts of
nearby backbone atoms, and contributions on chemical shifts from different structural
impact factors, such as ring current effect and backbone dihedral angles, computed based on
input structural coordinates. We apply the cubic smoothing spline method to estimate the
non-parametric functions fi(Xi). We use Gaussian distribution as the link function g in our
generalized additive model. This means that our model can compute a probability density
distribution by reporting both mean (i.e., expected chemical shift) and standard deviation of
a Gaussian distribution for each predicted Hα chemical shift.

To our knowledge, our work is the first application of the generalized additive model in
chemical shift prediction and NMR structural biology. Compared to the additive linear
model (Eq. 1) used in previous chemical shift prediction approaches, our framework

replaces the linear form  by a sum of smooth functions . Our new
statistical model (Eq. 5) is non-parametric and hence less dependent on the assumptions or
subjective models employed to describe the influences on chemical shifts from different
structural factors. Thus, our algorithm can derive a more accurate regression function from
training data to predict Hα chemical shifts.

2.4 Program Description
HASH is implemented in Java and R. HASH calls the library GAM (Hastie, 2011) in the R
package to implement the generalized additive model and perform the regression process.
HASH runs in a minute for a typical medium-size protein. For example, it takes HASH about 30
seconds to predict Hα chemical shfits for a 197-residue protein on a desktop PC computer
with Intel Core 2 Duo processors and 8 GB of physical memory. The source code of HASH

can be freely downloaded from our server after publication of this paper, and can be
redistributed and modified under the terms of the GNU Lesser General Public License (Gnu,
2002).
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3 Results and Discussion
3.1 Training the Regression Model

To evaluate the performance of a chemical shift prediction algorithm, data must be separated
into a training data set and a testing data set. Typically, most of the data is used for training
the regression model, and a smaller set of the data is used for testing. We used the
combination of the TALOS database (Cornilescu et al., 1999) and the SHIFTX2 database (Han et al.,
2011) to train our generalized additive model (Eq. 5). The TALOS database contains high-
resolution (≤ 2.4 Å) X-ray crystal coordinates and corresponding backbone chemical shifts
of 186 proteins, extracted from the PDB and the BMRB, respectively. The SHIFTX2 database
contains high-resolution (≤ 2.1 Å) structural coordinates and corresponding chemical shifts
of 174 proteins, most of which are monomeric and free of bound DNA, RNA or other
cofactors. For Gly residues, the mean chemical shifts of the two alpha hydrogens were
calculated as their Hα chemical shifts. The chemical shifts of the first and last residues in the
proteins, and those residues with missing backbone resonance assignments were excluded.
In total 12116 residues with available backbone chemical shifts were used as training data.
Each residue was considered as a training data point. For all training data points, their
secondary chemical shifts were calculated using the reference random coil shift table from
(Kohlhoff et al., 2009). The corrections for the effects of different amino acids (Kohlhoff et
al., 2009) from the proceeding residues were added to the secondary chemical shifts of
nitrogen atoms in the current residues. For each training data point, the influences of
hydrogen bonding, ring current and backbone dihedral angles on chemical shifts were
computed, using the same methods described in (Pople, 1956; Neal et al., 2003; Kohlhoff et
al., 2009). In addition to the backbone dihedral angles of current residue i, we also computed
the torsion angles in its neighboring residues, namely residues i − 1 and i + 1. By doing this,
we also considered the effects from the nearest neighbors of the current residues.

The set of chemical shifts extracted from the TALOS database and the SHIFTX2 database, and the
computed influences on chemical shifts from different structural factors were then used to
train our generalized additive model. The fit between predicted and experimental chemical
shifts of Hα on training data is shown in Fig. 3. We measured both RMSD and Pearson
correlation between predicted and experimental chemical shifts. The RMSD between
predicted and experimental chemical shifts was computed using the equation,

 , where m is the total number of data points, ei is the
experimental chemical shift, and pi is the corresponding predicted chemical shift. Pearson
correlation, denoted by r, measures the strength of linear dependency between two variables.
Fig. 3A shows the scatter plot of predicted vs. experimental chemical shifts of Hα for all
training data points. The RMSD between predicted and experimental chemical shifts is 0.23
ppm with Pearson correlation r = 0.91. To minimize the impact on parameter estimation
from possible chemical shift outliers or mis-assignments in training data, we classified those
data points with more than three standard deviations from the predicted values as outliers,
and removed them from training data. In total, 226 outliers were removed from the original
training data. The scatter plot for the remaining training data points (i.e., after removing
outliers) is shown in Fig. 3B. The new RMSD and Pearson correlation between predicted vs.
experimental chemical shifts of Hα were improved to 0.20 ppm and r = 0.93, respectively.

Compared to SPARTA (Shen and Bax, 2007), which was trained on a similar database and had
RMSD 0.27 ppm and Pearson correlation r = 0.85 between predicted and experimental
chemical shifts of Hα, our approach achieved better prediction accuracy. Most likely this is
because our generalized additive model is less dependent on the assumptions made in the
empirical functions to compute the contributions on chemical shifts from different structural
impact factors. In addition, our model incorporates the chemical shifts of nearby backbone
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atoms (e.g., HN, Cα, Cβ, C′ and N). To investigate the relationships between chemical shifts
of Hα and nearby backbone atoms, we checked the correlations (i.e., linear dependencies)
between them. Fig. 4 shows the scatter plots and Pearson correlations between chemical
shifts of Hα and nearby backbone atoms. A certain level of linear dependency has been
observed between chemical shifts of Hα vs. Cα, and Hα vs. Cβ (Figs. 4A and 4B). In
particular, the Pearson correlation (r = −0.72) between the chemical shifts of Hα and Cα

(Fig. 4A) indicates that there exists a strong linear dependency between them. These linear
dependencies between chemical shifts of Hα and nearby backbone atoms, which is
indicative of local geometry (e.g., secondary structure), can provide a reliable source of
information for predicting accurate Hα chemical shifts.

3.2 Performance Evaluation
To evaluate the performance of our algorithm, we designed the computational experiments
according to different possible combinations of input data (Table 1), which reflect different
application scenarios. In all tests, HASH used the chemical shifts of nearby backbone atoms as
input. We say that two proteins are sequence homologues if they have > 40 % sequence
identity. The same sequence identity cutoff was used in SHIFTY + (Han et al., 2011) to identify
the sequence homologues. The first three tests represent the main applications scenarios of
HASH, in which only partial or no structural information is available. Two additional tests
representing the application scenarios, in which complete structural information is available,
are also presented. In Test 1, we assume the existence of sequence homologues but no
structural information in chemical shift prediction. Test 2 models the situation in which
neither sequence homologues nor structural coordinates are available, but the chemical shifts
of nearby backbone atoms can be assigned through conventional NMR triple-resonance
experiments. In Test 3, we model the situation in which backbone structural coordinates can
be obtained through the RDC-based structure determination approaches (Wang and Donald,
2004;Wang et al., 2006; Zeng et al., 2009; Tripathy et al., 2012; Donald and Martin, 2009)
or other methods such as protein threading (Xu et al., 1998), but side-chain conformations
are not available.

For each test, we compared HASH with other programs in the literature that can take the same
input data of sequence and structural information. For example, in Additional Test 1, we
compared HASH to the only program in the literature that can take both sequence homologues
and structural coordinates as input. In Additional Test 2, we compared our program to
several state-of-the-art structure-based chemical shift prediction programs in the literature.
In Test 1, we compared our program to the latest version of the only program in the
literature that can take only sequence homologues as input.

In Tests 1–2 and Additional Tests 1–2, we used a benchmark data set from (Han et al., 2011)
as testing data, which contains structural coordinates and corresponding chemical shifts of
61 proteins extracted from the PDB and the BMRB, respectively. These 61 proteins were
not included in training data for fitting the regression model in Section 3.1. Among these 61
proteins in the testing data set, 35 proteins have sequence homologues in the chemical shift
database RefDB (Zhang et al., 2003). In Test 3, we tested both the X-ray backbone
structures and the NMR-derived backbone structures, which were determined mainly from
RDCs using the recently-developed techniques in (Wang and Donald, 2004; Wang et al.,
2006; Zeng et al., 2009;Yershova et al., 2011; Tripathy et al., 2012; Donald and Martin,
2009).

3.2.1 Tests with Incomplete or Missing Structural Information—In Test 1, we ran
HASH on the primary sequence and the chemical shifts of nearby backbone atoms. Our test
showed that HASH performed better than SHIFTY+, which is to our knowledge the latest version
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of the only program in the literature that takes only sequence homologues as input. In
particular, HASH predicts accurate Hα chemical shifts with RMSD 0.012 ppm, which is better
than the prediction accuracy of SHIFTY+ (i.e., RMSD 0.085 ppm). Our comparisons indicate
that incorporating the obtainable resonances of nearby backbone atoms in addition to
sequence homologue information can improve the accuracy of Hα chemical shift prediction.
Even a small improvement in chemical shift prediction accuracy is important for NMR
structure determination. For example, a 10% improvement in the predicted chemical shifts
(a mere 0.02 ppm RMSD) has been shown to narrow the molecular fragment replacement
(MFR) search by a factor of 40 (Shen and Bax, 2007). As discussed in the Introduction
section, even with high sequence similarity, two proteins can still display different chemical
shifts in certain regions (e.g., loop regions in the bound and unbound states). On the other
hand, the chemical shifts of nearby backbone atoms can provide accurate local
environmental indicators to identify the accurate Hα chemical shifts from the available
chemical shift database.

In Test 2, we predicted Hα chemical shifts using only the chemical shifts of nearby
backbone atoms. Compared to previous chemical shift prediction programs, including SHIFTX,
SPARTA, SPARTA+, CAMSHIFT and SHIFTX2, which cannot run the chemical shift prediction process in
the absence of sequence homologue and structural information, HASH can still predict
reasonably accurate Hα chemical shifts, with RMSD 0.333 ppm and Pearson correlation
0.807.

In Test 3, we predicted Hα chemical shifts using backbone structural coordinates and the
chemical shifts of nearby backbone atoms. To model different application scenarios, we
tested both the X-ray backbone structures and the NMR-derived backbone structures. In this
test, all the tested proteins were not included in the training data. The X-ray backbone
structures were from the same test data as used in (Shen and Bax, 2007), excluding one
protein that does not contain Hα chemical shifts. The NMR-derived backbone structures
were previously determined from RDCs using the recently-developed techniques (Wang and
Donald, 2004; Wang et al., 2006; Zeng et al., 2009; Tripathy et al., 2012; Donald and
Martin, 2009). As summarized in Tables 2 and 3, on average HASH outperforms all previous
structure-based chemical shift prediction programs, including SHIFTX, SPARTA, SPARTA+, CAMSHIFT

and SHIFTX+, when only backbone structural coordinates are available. In our training data (see
Section 3.1), most of the high-resolution X-ray structures are monomeric and free of bound
DNA, RNA or other cofactors. Here, our test data (Table 3) covers X-ray backbone
structures at different resolutions, including those complexes with different ligands, such as
RNA or other proteins. As shown in Table 3, even for low resolution X-ray backbone
structures, HASH still achieves a decent performance. The bound ligands perturb the local
chemical environment, which makes it difficult to predict accurate chemical shifts. In
general, chemical shift predictors achieve a below-average performance for these low-
resolution structures, when the chemical shifts are perturbed by the bound ligands. On other
hand, HASH’s use of neighboring chemical shifts can remedy this situation and improve the
chemical shift prediction, since both chemical shifts of Hα and neighboring backbone atoms
are correlatively perturbed by the changed local chemical environment caused by the ligand
binding.

In summary, for all three main tests, which model different useful application scenarios in
NMR structural studies, HASH predicts accurate Hα chemical shifts that agree well with
experimental chemical shifts. Previous chemical shift prediction approaches either require
sequence homologues or depend heavily on complete and accurate structural coordinates to
predict chemical shifts. In practice, it can be challenging to experimentally determine
accurate conformations for the flexible or disordered loop regions or surface side-chains. As
demonstrated in Tests 1–3, previous approaches cannot run in the absence of sequence
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homologues and structural coordinates, or perform poorly using only backbone structural
coordinates. Previous structure-based prediction programs generally require accurate side-
chain structural coordinates to calculate the ring current effect from aromatic side-chain
conformations, which plays an important role in chemical shift prediction using structural
information alone (Wishart, 2011). As demonstrated in Tables 2 and 3, most structure-based
prediction programs performed poorly using only backbone structural coordinates. On the
other hand, HASH can remedy this problem by exploiting the chemical shifts of nearby
backbone atoms, and still yield decent prediction accuracy even without using side-chain
structural information. Therefore, the chemical shifts of nearby backbone atoms (including
HN, Cα, Cβ and C′ and N), which can be measured relatively easily from conventional NMR
experiments, provide an alternative and reliable source of information for predicting Hα

chemical shifts.

3.2.2 Tests with Complete Structural Information—In addition to three main tests
(Sec 3.2.1, in which structural information was missing or incomplete), we performed two
additional tests in which complete structural information is available. Both additional tests
model the potential applications in structure-based NMR assignment (Langmead and
Donald, 2004; Lang-mead et al., 2004; Xiong et al., 2008; Apaydin et al., 2008, 2010; Jang
et al., 2011), in which known X-ray or NMR structural templates are used to facilitate NMR
assignment. In the first additional test, which models the ideal situation with both sequence
homologues and structural coordinates available, HASH can predict accurate Hα chemical
shifts with RMSD 0.113 ppm, which is slightly better than the prediction result of SHIFTX2
(RMSD 0.123 ppm, as reported in Table 1 of (Han et al., 2011), which is to our knowledge
the only program in the literature that can take both sequence homologues and structural
coordinates as input.

Table 4 summarizes the results of the second additional test, and the comparisons to five
state-of-the-art structure-based chemical shift prediction approaches, including SHIFTX (Neal et
al., 2003), SPARTA (Shen and Bax, 2007), SPARTA+ (Shen and Bax, 2010), CAMSHIFT (Kohlhoff
et al., 2009) and SHIFTX+ (Han et al., 2011). Using both complete structural coordinates and the
chemical shifts of nearby backbone atoms, HASH achieves RMSD 0.213 ppm with Pearson
correlation 0.923 for the predicted Hα chemical shifts of 61 proteins in the testing data set.
The comparisons show that HASH performs slightly better than SHIFTX+, and outperforms four
other structure-based chemical shift prediction approaches.

In summary, in both of these additional tests, which probe the suitability of our algorithm for
a wide range of applications in structure-based NMR assignment, HASH performs slightly
better than the competing programs. These additional test results show that chemical shifts
of nearby backbone atoms provide additional information that can be used to enhance the
prediction of Hα chemical shifts.

3.3 Application in High-Resolution Structure Determination
To test whether the predicted Hα chemical shifts can contribute to high-resolution protein
structure determination, we combined HASH with a high-resolution structure determination
protocol previously developed in our lab that does not require TOCSY data. The protocol
has been previously described in (Zeng et al., 2011b, 2010; Donald and Martin, 2009;
Donald, 2011), which only utilized backbone chemical shift information of HN, N, Cα, Cβ, C
′ and Hα. In this study, we took out Hα information and utilized HASH to predict Hα chemical
shifts. Then these predicted Hα chemical shifts were used in NASCA (Zeng et al., 2010,2011b)
to prune ambiguous resonance assignments which are more than 0.4 ppm away from the
predicted values. Next, the remaining possible Hα resonance assignments together with
other input data, specifically, the assigned resonances of other backbone atoms, NOE cross
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peaks and the RDC-defined backbone, were fed into NASCA to perform side-chain
resonance and NOE assignments. NASCA does not use any TOCSY data, but assigns side-
chain resonances and NOE distance restraints using the NOESY data. After that, the
computed NOE assignments were fed into XPLOR-NIH (Schwieters et al., 2003) for structure
calculation. We tested this new structure determination protocol on five proteins, including
the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of
Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human
Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain
(hSRI). The numbers of residues in these proteins are 62, 39, 56, 76 and 112 for FF2, pol η
UBZ, GB1, ubiquitin and hSRI, respectively. All NMR data were collected at Duke
University, except the RDC data of ubiquitin and GB1 which were downloaded from the
Protein Data Bank. The testing results of Hα resonance assignments, side-chain resonance
assignments, NOE assignments and final calculated structures are summarized in Table 5.
An Hα resonance assignment is said to be correct if it is within the error window (i.e., 0.04
ppm) from the reference shift which was assigned manually. On average, NASCA assigned
more than 85% correct Hα chemical shifts using the chemical shifts predicted by HASH (Table
5). Compared to our previous tests in (Zeng et al., 2010, 2011b), in which the manually-
assigned Hα chemical shifts were used in the high-resolution structure determination
pipeline, the chemical shifts predicted by HASH still led to decent performance on NMR
assignment and final structure calculation (Table 5).

The benefit of HASH is best appreciated for a large protein scenario, in which Hα chemical
shifts can be difficult to assign, but its NOE cross peaks can be observed in NOESY spectra.
We also performed the tests of the large protein scenario for the aforementioned five
proteins, in which the Hα chemical shifts were removed from the input data. The results of
side-chain resonance assignment, NOE assignment and final structure calculation in these
tests are shown in Table 6.

The benefit of HASH in the large protein scenario is seen by comparing Table 6 to Table 5, in
which HASH was employed. As shown in Tables 5 and 6, with the Hα chemical shifts
predicted by HASH, the completeness of side-chain resonance assignment computed by
NASCA was improved by about 10%. In addition, prediction of the Hα chemical shifts
allowed NASCA to assign more NOEs. The presence of a sufficient number of NOE
distance restraints can improve the high-resolution structure calculation process. For the
structure determination of hSRI using Hα chemical shifts predicted by HASH, the final
computed structures deviated from the reference structure by < 1.9 Å backbone RMSD (see
Table 5). This is much better than in Table 6, and it shows the value of HASH. These test
results indicate that the Hα chemical shifts predicted by HASH play an important role in the
downstream side-chain resonance assignment, NOE assignment and structure calculation
processes.

4 Conclusions
In this paper, we propose a novel machine learning algorithm for Hα chemical shifts
prediction by specifically exploiting the experimentally-assigned resonances of nearby
backbone atoms. Our results show that the chemical shifts of nearby backbone atoms can
provide a reliable source of information for predicting accurate Hα chemical shifts. In
addition, we showed that our chemical shift prediction methodology can contribute to the
side-chain and NOE assignment processes using only NOESY data (Zeng et al., 2010). In
the future, we will generalize our current approach to predict the chemical shifts of any other
backbone atoms that cannot be assigned experimentally from NMR spectra, due to signal
loss or peak overlap.
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Figure 1.
A flow chart of the HASH prediction process. Protein structural coordinates are optional input
data.
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Figure 2.
Comparison of our approach to other fragment-based search methods. (A) Chemical shift-to-
structure search in NMR structure determination (Delaglio et al., 2000; Shen et al., 2008,
2009). (B) Structure-to-chemical shift search in chemical shift prediction (Shen and Bax,
2007). (C) Our chemical shift-to-chemical shift search in chemical shift prediction. In (A)
and (B), the structure/chemical shift database contains high-resolution X-ray structural
coordinates extracted from the PDB and corresponding chemical shifts extracted from the
BMRB. In (C), the chemical shift database contains the chemical shifts extracted from the
BMRB. In (A) and (B), structural fragments are short peptide chains with structural
coordinates and known backbone chemical shifts. In (C), chemical shift fragments are short
sequence segments with known backbone chemical shifts.
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Figure 3.
The scatter plots of predicted vs. experimental chemical shifts of Hα on training data. Panel
A shows the scatter plot of all training data points. Panel B shows the scatter plot after
removing the outliers that deviate more than three standard deviations from the predicted
chemical shifts.

Zeng et al. Page 18

J Biomol NMR. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The scatter plots of chemical shifts of Hα vs. nearby backbone atoms.
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Table 4

Summary of the results of the second additional test, in which the input data includes complete structural
coordinates and the chemical shifts of nearby backbone atoms. The test was performed on a benchmark data
set of 61 proteins from (Han et al., 2011), whose structural coordinates and chemical shifts were extracted
from the PDB and the BMRB, respectively. The prediction results of SHIFTX, SPARTA, SPARTA+, CAMSHIFT, and SHIFTX+
were adapted from Table 1 and Table S9 in (Han et al., 2011).

Program RMSD (ppm) Correlation

SHIFTX 0.253 0.888

SPARTA 0.334 0.801

SPARTA+ 0.312 0.847

CAMSHIFT 0.247 0.893

SHIFTX+ 0.222 0.914

HASH 0.213 0.923
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