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Abstract
Alzheimer's disease (AD) is a neurodegenerative disease concomitant with grey and white matter
damages. However, the interrelationship of volumetric changes between grey and white matter
remains poorly understood in AD. Using joint independent component analysis, this study
identified joint grey and white matter volume reductions based on structural magnetic resonance
imaging data to construct the covariant networks in twelve AD patients and fourteen normal
controls (NC). We found that three networks showed significant volume reductions in joint grey–
white matter sources in AD patients, including (1) frontal/parietal/temporal-superior longitudinal
fasciculus/corpus callosum, (2) temporal/parietal/occipital-frontal/occipital, and (3) temporal-
precentral/postcentral. The corresponding expression scores distinguished AD patients from NC
with 85.7%, 100% and 85.7% sensitivity for joint sources 1, 2 and 3, respectively; 75.0%, 66.7%
and 75.0% specificity for joint sources 1, 2 and 3, respectively. Furthermore, the combined source
of three significant joint sources best predicted the AD/NC group membership with 92.9%
sensitivity and 83.3% specificity. Our findings revealed joint grey and white matter loss in AD
patients, and these results can help elucidate the mechanism of grey and white matter reductions in
the development of AD.

Keywords
Alzheimer's disease; Joint source; Joint independent component analysis; Structural MRI; Voxel-
based morphometry

1. Introduction
Alzheimer's disease (AD) is a well-known neurodegenerative disease. Numerous structural
magnetic resonance imaging (sMRI) studies reported widespread grey matter (GM)
reductions; more specifically, the medial temporal structures are involved primarily at the
initial phase of the disease, and the parietal and frontal lobes are affected as the disease
advances [13,20,21,28]. The pathological processes in AD also include white matter (WM)
alterations [8,10,11,24]. A recent study reported AD-associated volume reductions in many
gyral WM, including the parahippocampal, inferior parietal and middle frontal regions [24].
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WM volume changes are most likely related to GM atrophy that produces cognitive
impairment in AD patients [7,26]. However, many sMRI studies investigated GM or WM
separately [6,17]. As a result, the interrelationship of volumetric changes between GM and
WM remains poorly understood in AD. Thus, it is imperative to document the joint
contributions of both GM and WM using sMRI.

Voxel-based morphometry (VBM) is an objective technique [3–5] and has been widely
utilized to detect differences in brain tissue in various populations [7,17,21]. However, most
reported VBM findings are based on a univariate approach. The univariate VBM can detect
brain abnormalities related to AD [7,13,21], but it is unable to identify the anatomical
interrelationships in those brain areas. Multivariate methods consider multiple voxels
simultaneously based on the view that the overall brain structure is interconnected and
covaried as a network [2,9,18,19,30]. Moreover, multivariate methods emphasize on the
covariance information of imaging data and generate interrelated morphological features and
a network pattern representation. Again, multivariate approaches may capture the subtle
changes and have greater sensitivity in examining the regional differences [2,9]. Recently,
Xu et al. proposed a multivariate method referred to as joint source based morphometry
(jSBM). Unlike VBM, jSBM using joint independent component analysis (jICA) grounds
the statistical outcome of “source” by including a set of regions which carry similar
covariance information and exhibit inter-subject and group differences [30]. Xu et al.
applied jICA to detect differences in GM and WM in schizophrenia, suggesting that jICA is
a potentially efficient approach to examine brain anatomical changes due to a specific
disease [30].

Using multivariate jICA, this study identified joint GM and WM volume reductions in sMRI
data to construct the covariant networks in AD patients and normal controls (NC). In
addition, a multiple linear regression model was performed with the components that
significantly discriminated AD patients from NC to attain the integrated network. We expect
that combining multiple sources will best predict the AD/NC group membership.

2. Materials and methods
2.1. Participants

Twelve AD patients (mean age: 71.8 ± 6.7 [rang 58–81], 5 males) with a mean Mini-Mental
State Examination (MMSE) score of 18.3 ± 11.7 [range 12–23], and 14 NC (mean age: 70.4
± 3.5 [range 61–82], 6 males) with a mean MMSE of 28.5 ± 0.6 [27–29], were recruited
from the memory clinic at Xuanwu Hospital of Capital Medical University in Beijing,
China. Written informed consent was obtained from each participant. This study was
approved by the Medical Research Ethics Committee of Xuanwu Hospital. The diagnosis of
probable AD was made according to the NINCDS-ADRDA criteria. NC had no cognitive
complaints and did not have neurological or psychiatric disorders. The AD group did not

significantly differ from the NC in sex ratio  or age (t(24) = 0.57,
p = 0.573), but had significantly lower MMSE scores (t(24) = −10.93, p = 4.23E − 11).

2.2. Structural MRI scanning
For each participant, 3D sMRI data were acquired using a MPRAGE sequence at 3.0 T (TR
= 1900 ms, TE = 2.2 ms, TI = 900 ms, FA = 9°, FOV = 224 mm × 256 mm, matrix size =
448 × 512 and voxel size = 0.5 mm × 0.5 mm × 1 mm).
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2.3. Preprocessing of structural MRI Data
The preprocessing of sMRI data was performed using the VBM8 Toolbox (http://
dbm.neuro.uni-jena.de/vbm8) implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The
two main outcomes of the VBM8 procedure are segmentation and normalization. The
segmentation approach applied adaptive Maximum a posterior [23] and partial volume
estimation [29] to segment the native space images into a rigid-body aligned GM and WM
images in the Montreal Neurological Institute (MNI) space. Subsequently, two denoising
methods, including a spatially adaptive nonlocal means denoising filter [22] and a classical
Markov random field approach, were utilized to improve the segmentation [23]. We
employed a diffeomorphic anatomical registration using exponential Lie algebra (DARTEL)
protocol for normalization [4]. DARTEL utilizes the large deformation parameterized by a
single constant velocity field to generate diffeomorphic and invertible deformations. The
template creation and image registration were iteratively implemented, and the brain tissue
maps for each subject were warped to new templates at each iteration. The initial registration
worked on the average templates from the rigidly aligned images of all subjects, separately
for GM and WM. The flow field encoding the warping information was generated for each
subject, and finally GM and WM tissue maps were deformed to their own increasingly crisp
average templates and further normalized to MNI space. Afterwards, the registered GM and
WM partitions were separately multiplied by the Jacobian determinants from the
deformations to preserve the total amount of tissue. Lastly, the grey and white maps were
smoothed separately with a 12 mm Gaussian kernel.

2.4. Joint ICA and statistical analysis
The jICA was implemented using the Fusion ICA toolbox (http://icatb.sourceforge.net).
Akaike's information criterion (AIC) was used to determine the number of joint sources [1].
The SPM default brain mask was used to exclude the non-brain voxels separately for the
registered and smoothed GM and WM partitions. The initial data matrix was formed by
combining horizontally GM and WM data (a row vector) for each subject. Spatial ICA using
an infomax algorithm decomposed the initial data matrix (subjects by voxels; the number of
voxels was the sum of the dimension of GM and WM maps) into a mixing matrix (subjects
by sources) and a source matrix (sources by voxels) [30]. Each column of the mixing matrix
(ICA weights) indicates the degree to which each subject expresses the joint source
differences between two groups. The source matrix comprises of a GM source matrix and a
WM one. Each row of the source matrix represents a joint source that includes both GM and
WM maps that share the same covariance patterns. Such joint sources are maximally
independent spatial components.

The jICA used the mixing coefficients for statistical inferences. A two sample t-test was
performed on each column of the mixing matrix to detect AD/NC group differences at a
statistical threshold of p ≤ 0.05. The rows of the source matrix corresponding to the
significant set of mixing coefficients were converted to Z-scores with unit standard
deviation. The significant joint sources were reshaped into two 3D maps that individually
depicted GM and WM with a threshold of Z ≥ 3.0 to reflect the related brain regions
involved in the joint source networks. Such statistical tests are free of multiple comparison
correction for multivariate jICA. Furthermore, the significant mixing coefficients were
entered into a multiple linear regression model. Based on the multiple-regression results, the
AD-related integrated network pattern was created as a linear combination of the
corresponding components.
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3. Results
Six joint sources were extracted according to AIC. Among those six sources, three of them
expressed significant differences in the AD/NC group relationship. The positive weighted
coefficient in the joint source maps illustrated decreases in GM and WM volumes in AD
patients (Fig. 1).

For joint source 1, GM volume reductions were detected mainly in the middle/inferior/
superior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, hippocampus and
parahippocampal gyrus, whereas WM volume reductions in the superior longitudinal
fasciculus (SLF), corpus callosum (CC) and corona radiata in AD patients (Fig. 1A). Table 1
shows the specific localization information for three sources.

For joint source 2, AD patients showed reduced GM volumes mainly in the inferior/middle/
superior temporal gyrus, supramarginal gyrus, inferior parietal lobule (IPL), precuneus and
inferior/middle occipital gyrus as well as reduced WM volumes in the superior/middle/
inferior frontal gyrus, inferior occipital gyrus and IPL (Fig. 1B).

For joint source 3, less GM was found in the inferior/superior/middle temporal gyrus,
hippocampus and parahippocampal gyrus, whereas less WM was found mainly in the
precentral/postcentral gyrus in AD patients (Fig. 1C).

The expression of covariance patterns was significantly lower in AD patients than NC for
joint source 1 (t(24) = −3.64, p = 6.48E − 4) (Fig. 2A1), joint source 2 (t(24) = −3.09, p =
0.0025) (Fig. 2B1) and joint source 3 (t(24) = −2.60, p = 0.0079) (Fig. 2C1). The receiver
operating curve (ROC) analysis determined discrimination with 85.7% sensitivity and
75.0% specificity (area under curve = 0.857, SE = 0.074, p = 0.002) for joint source 1 (Fig.
2A2), 100% sensitivity and 66.7% specificity (area under curve = 0.786, SE = 0.099, p =
0.014) for joint source 2 (Fig. 2B2), and 85.7% sensitivity and 75.0% specificity (area under
curve = 0.768, SE = 0.100, p = 0.021) for joint source 3 (Fig. 2C2).

For the combined source from significant joint sources 1–3, the brain regions with decreased
volumes in AD broadly involved these three sources but mainly involved sources 1 and 2,
such as GM in the middle frontal gyrus, putamen, thalamus, hippocampus and
parahippocampal gyrus, and WM in the SLF, corona radiata, CC and the superior/middle/
inferior frontal gyrus. Analysis of the combined source and joint sources 1–3 showed that
the overlapping regions ratios were 38.3%, 34.1% and 17.7% for GM and 57.2%, 36.9% and
10.7% for WM. The expression of covariance patterns was significantly lower in AD
patients compared with NC (t(24) = −4.89, p = 2.73E − 5) (Fig. 3). ROC analysis
demonstrated the discrimination with 92.9% sensitivity and 83.3% specificity (area under
curve = 0.917, SE = 0.057, p = 3.18E − 4) (Fig. 3).

4. Discussion
This study performed jICA analysis of sMRI data to capture AD-related network patterns.
AD patients showed volume reductions in both GM and WM in three significant joint
sources, and they had lower expression scores of covariance patterns compared with NC. In
addition, ROC analysis determined the discrimination with high sensitivity and specificity.
Furthermore, the combined source constructed from three sources best predicted AD/NC
group membership.

For joint source 1, the expression of covariance patterns was the most significant among
three sources, with the maximum discriminability between AD patients and NC (Fig. 2A1
and A2). Joint source 1 revealed GM reductions mainly in the frontal, parietal and temporal
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areas (Fig. 1A), similar to previous studies [6,17,21,28]. Interestingly, AD patients exhibited
regions of GM atrophy in joint source 1, including the middle/superior frontal gyrus,
cingulate gyrus, supramarginal gyrus, hippocampus and parahippocampal gyrus from the
default mode network (DMN) investigated in resting-state studies [14]. Greicius et al. found
that DMN activity distinguished AD from healthy ageing and confirmed that resting-state
functional connectivity reflected structural connectivity [15,16]. In addition, Seely et al.
found concordance between AD-affected atrophy patterns and intrinsic connectivity
networks corresponding to the DMN [25]. He et al. also reported correlated variations
among several “default” regions in AD [19]. The GM alterations in joint source 1 indicate
that these regions possibly may be in the same structural network embodying episodic
memory and executive function impairment in AD.

The majority of WM alterations in joint source 1 involved the bilateral SLF and CC (Fig.
1A), in accordance with sMRI and diffusion tensor imaging studies [8,11,17,27]. The SLF is
an anterior–posterior longitudinal fibre that connects the frontal, parietal, temporal and
occipital cortices. A reduction in this tract suggests that the connection of the frontal,
parietal and temporal GM in joint source 1 was interrupted [27]. Volume or fractional
anisotropy reductions in CC were associated with neuronal loss in AD; for example, the
splenium of CC was found to be responsible for neuronal loss involving parieto-temporal
neocortical regions and the anterior callosal portions of the prefrontal regions [8,11].

For joint source 2, the expression of covariance patterns showed a higher discriminability,
and ROC analysis had a sensitivity of 100% (Fig. 2B1 and B2). Joint source 2 showed GM
loss in the temporal, parietal and occipital lobes (Fig. 1B), congruent with previous reports
[17,20,21,28]. GM atrophy patterns could explain the differential involvement of the parietal
regions in the development of AD [20]; furthermore, our results support the idea that the IPL
and precuneus are likely the first regions to show atrophy within the parietal lobe [20].
Correspondingly, WM loss occurred in the IPL within joint source 2.

Previous neuroimaging research indicated that WM integrity damage due to normal ageing
and AD started mainly in the late myelinating regions such as the frontal lobes [24,27]. Salat
et al. found that the inferior parietal and rostral middle frontal WM regions showed the
largest AD-associated volume reductions [24]. Similar to Salat et al. study, joint source 2
demonstrated apparent degeneration in the bilateral superior/inferior/middle frontal gyri
WM, possibly contributing to the deterioration of the executive functional network in AD. In
addition, our data showed reductions in both GM and WM in the inferior/middle occipital
gyri. These results, however, are in contrast to the early sMRI studies that reported relatively
spared changes in the occipital lobe [21,28].

For joint source 3, the significance level of the covariance patterns expression was the
lowest; however, joint source 3 did have a significant discriminability with reliable
sensitivity and specificity (Fig. 2C1 and C2). GM atrophy of the temporal lobe and its
medial regions (Fig. 1C), is one of the most concurrent AD-associated findings in sMRI
studies [6,13,17,21,26]. Volume decreases in the hippocampus and parahippocampal gyrus
are considered to be the most valuable sMRI biomarker of AD pathology for prediction and
early diagnosis [12].

Stoub et al. found significant WM volume decreases in the parahippocampal gyrus in
individuals at risk for AD [26]. In contrast, we detected WM reductions in the inferior
longitudinal fasciculi in our recent report using univariate VBM [17], and we report now a
lack of related WM changes in the temporal lobe and its medial structures in joint source 3.
A possible explanation is that the myelin breakdown of WM had already occurred in our AD
patients; subsequently, there may have been timing differences relative to the adjacent GM
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reductions in the temporal lobe. Joint source 3 consisted of WM changes mainly in the
precentral/postcentral gyrus in AD patients. These findings seem to be discrepant with the
literature [7,27]. Our findings should be further investigated in longitudinal sMRI studies.

The combined source represented three joint sources but mainly consisted of sources 1 and
2. As we expected, the combined source had the highest statistical power of distinguishing
AD patients from NC and had the optimal degree of sensitivity and specificity compared
with each joint source (Fig. 3). It is worth noting that there are some overlapping regions
among the various joint sources. For example, the hippocampus and parahippocampal gyrus
are in both joint sources 1 and 3, and the supramarginal gyrus and genu of CC are in both
joint sources 1 and 2. These three joint sources are spatially independent, but this does not
mean that they cannot overlap [30]. The overlapping brain regions may indicate their
distinctive relevance to specific functional networks.

Multivariate techniques have been increasingly utilized to elucidate neural networks in
different populations [2,9,18,19,25,30]. In contrast to univariate approaches such as VBM,
multivariate jICA integrates the joint information and simultaneously identifies GM and
WM changes across the whole brain while the univariate approaches can only examine
differences in peak voxels; moreover, the jICA mixing coefficients need no multiple
comparison correction while the statistics based on univariate approaches do.

Using jICA, we have shown a comprehensive network pattern of GM and WM reductions in
AD patients. These network-based findings contribute to the understanding of the
mechanism behind brain tissue changes in the development of AD. Although the sample size
was relatively small in our study, the results suggest that jICA can detect group differences
with reliable statistical power. It should be mentioned that jICA brings out the covariation
patterns of GM and WM, but it could not tell us what the specific relationship among
various brain regions was. It is necessary to further explore the linear or nonlinear
associations among core AD-affected brain regions using other multivariate methods, such
as Bayesian network.
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Highlights

▶ We performed joint independent component analysis (jICA) to structural
MRI data.

▶ Three joint grey-white matter sources showed significant volume reductions
in AD.

▶ The combined source best predicted the AD/NC group membership.
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Fig. 1.
Significance maps illustrating covariant decreases in grey (left) and white matter volumes
(right) in AD patients compared with NC for joint sources 1 (A), 2 (B) and 3 (C). Left of the
plane is the left of brain. The colour bar represents Z-scores.
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Fig. 2.
The effects of discrimination from ICA weights in AD patients and NC for joint sources 1–
3. The above panel shows the scatterplot of ICA weights for joint sources 1 (A1), 2 (B1) and
3 (C1). The below panel shows the ROC of the discriminability for joint sources 1 (A2), 2
(B2) and 3 (C2).
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Fig. 3.
The effects of discrimination from ICA weights in AD patients and NC for the combined
source. The left panel shows the scatterplot of ICA weights. The right panel shows the ROC
of the discriminability.
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Table 1

Locations of joint grey and white matter volume reductions in AD patients compared with NC for joint
sources 1–3.

Brain regions Peak coordinates (X, Y, Z) Z Cluster size (mm3)

Joint source 1, grey matter

L middle frontal gyrus −36 49 −2 5.18 9494

R middle frontal gyrus 40 26 19 6.34 9812

L inferior frontal gyrus −39 21 20 5.75 4182

R inferior frontal gyrus 42 21 20 7.53 6686

L superior frontal gyrus −33 51 −3 5.04 3304

R superior frontal gyrus 21 33 44 4.96 5920

L thalamus/putamen −6 −20 8 10.20 7989

R thalamus/putamen 6 −19 8 9.59 10,223

L supramarginal gyrus −58 −22 22 6.06 2774

R supramarginal gyrus 58 −16 24 5.89 2015

L anterior cingulate gyrus −3 26 19 4.49 1603

R anterior cingulate gyrus 7 34 15 3.98 1991

L hippocampus/parahippocampal gyrus −21 −11 −17 6.29 5947

R hippocampus/parahippocampal gyrus 22 −10 −17 6.75 3287

Joint source 1, white matter

L superior longitudinal fasciculus −31 −39 28 12.85 45,914

R superior longitudinal fasciculus 30 −42 30 7.01 40,352

Splenium of corpus callosum −18 −36 29 10.63 7945

Body of corpus callosum −18 −28 30 9.07 3959

Genu of corpus callosum 21 20 21 5.67 405

L posterior corona radiata −27 −38 28 13.41 3581

R posterior corona radiata 22 −44 30 8.38 3210

L superior corona radiata −24 −25 34 8.75 6669

R superior corona radiata 25 14 26 6.71 4961

L anterior corona radiata −24 39 −2 6.20 4023

R anterior corona radiata 25 19 25 7.21 4145

Joint source 2, grey matter

L inferior temporal gyrus −46 −67 −2 8.04 9349

R inferior temporal gyrus 46 −68 1 8.15 15,174

L middle temporal gyrus −48 −67 3 8.33 4796

R middle temporal gyrus 46 −68 8 9.61 9474

L superior temporal gyrus −45 −36 17 6.70 3564

R superior temporal gyrus 45 −25 16 7.46 2720

L angular gyrus −34 −49 36 9.43 2589

R angular/supramarginal gyrus 42 −58 36 6.46 6652

L inferior parietal lobule −36 −49 36 9.32 1829

L cuneus −15 −63 21 6.55 4820
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Brain regions Peak coordinates (X, Y, Z) Z Cluster size (mm3)

R cuneus/precuneus 19 −60 21 6.71 6706

L inferior/middle occipital gyrus −45 −67 2 8.87 16,835

R inferior/middle occipital gyrus 46 −70 8 9.61 7702

Joint source 2, white matter

L superior frontal gyrus −18 58 3 4.99 19,295

R superior frontal gyrus 18 31 37 3.83 14,475

L middle frontal gyrus −30 41 12 4.48 7044

R middle frontal gyrus 36 20 43 5.81 17,456

L inferior frontal gyrus −42 35 −2 5.57 14,084

R inferior frontal gyrus 42 24 10 5.15 11,573

L inferior/middle occipital gyrus −15 −93 −2 9.43 7121

L inferior parietal lobule −27 −58 40 5.89 5812

Joint source 3, grey matter

L inferior temporal gyrus −36 3 −35 10.45 14,438

R inferior temporal gyrus 39 6 −36 7.34 9484

L superior temporal gyrus −52 4 −12 5.63 13,784

R superior temporal gyrus 59 −12 −7 4.87 10,287

L middle temporal gyrus −34 1 −37 10.15 5306

R middle temporal gyrus 39 13 −31 7.47 6929

L hippocampus/parahippocampal gyrus −22 −7 −19 8.53 6311

R hippocampus/parahippocampal gyrus 24 −5 −19 7.05 7276

L amygdala −22 −5 −19 8.55 1502

R amygdala 24 −4 −19 6.90 1164

Joint source 3, white matter

L precentral gyrus −18 −16 49 5.57 5414

R precentral/postcentral gyrus 30 −42 53 10.58 18,771

L middle cerebellar peduncle −22 −58 −32 9.24 4847

L middle frontal gyrus −28 23 32 4.35 4138

L, left; R, right; coordinates in Talairach space.
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