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We sequenced the 5'-coding region of the human c-src gene, exons 2 through 5, corresponding to one-third
of the human c-src protein consisting of 536 amino acids. Sequence analysis of the src type of protein kinases
revealed that the amino-terminal region encoded by exon 2 contains sequences specific for the src proteins and
raised the possibility that this region is involved in the recognition of a src-specific substrate(s) or receptor(s).

The src proteins encoded by both a proto-oncogene c-src
(43) and the v-src gene of Rous sarcoma virus (18, 49) have
molecular masses of about 60 kilodaltons and possess
tyrosyl-specific protein kinase activity (3, 7, 10-12, 20, 50).
The v-src protein induces cell transformation, whereas the
c-src protein does not under usual conditions (21, 22, 32, 40,
47). The human c-src gene (c-src-l), localized on chromo-
some 20, contains 11 coding exons spanning a distance of
19.5 kilobases, more than three times that of the chicken
c-src coding regions (6 kilobases) (1, 16, 31, 45). The DNA
sequence of exons 6 to 12, corresponding to the 3' two-thirds
of the human c-src coding region, was determined previously
(1). This region encodes the putative regulatory domain at
the carboxy terminus of the c-src protein and the protein
kinase domain (33, 47, 51). Here, we report the DNA
sequence of the 5' region (exons 2 through 5) encoding the
amino-terminal one-third of the human c-src protein. This
region appears to contain two domains, the membrane-
binding domain and the putative recognition domain (13, 33,
34), and also part of the putative modulatory domain, as will
be discussed later.

Previously, we studied the exon-intron structure of the
human c-src gene by hybridization to v-src DNA probes and
also by comparison with that of the chicken c-src gene (1,
16). For exon 3, however, its tentative localization was
ambiguous (16). To localize exon 3 more precisely, we used
the calf thymus DNA random primer method (35) to obtain a
human c-src cDNA probe prepared from 70S virion RNA of
a retrovirus (WO CVS virus) whose genome contains a
chimeric, intronless form of human c-src sequence (47). This
approach, together with DNA sequencing and previous
mapping data, allowed us to complete our analyses of
exon-intron structure of the human genomic c-src-1 coding
region spanning 19.5 kilobases.
The DNA sequence, obtained as depicted in Fig. 1, and

the deduced amino acid sequence of the 5' human c-src gene
were compared with the corresponding chicken c-src region
(45) (Fig. 2; Table 1). The average amino acid sequence
homology of the region encoded by exons 3 to 5 is 98%,
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which is comparable to that of the region encoded by exons
6 to 12 (98%) (1). Thus, the human and chicken c-src protein
sequences are highly conserved not only in the carboxy-
terminal two-thirds region (1), but also in the region corre-
sponding to exons 3 to 5, which is outside the kinase domain
(13, 15, 24, 33). However, the region encoded by human
exon 2 exhibits unusual features when compared with the
chicken c-src. The amino acid sequence homology is 71%,
which is significantly low when compared with the average
homology of exons 3 through 12 (98%) (Table 1), and human
exon 2 encodes three additional amino acids which are not
present in the chicken c-src protein (Fig. 2). Thus, the
human c-src gene encodes 536 amino acids (1), whereas the
chicken c-src gene encodes 533 amino acids (45). However,
it should be pointed out that the profile of hydrophilicity
plots of the region encoded by human c-src exon 2 is very
similar to that of the chicken c-src exon 2 (data not shown).
The following observations about exon-intron structures

were made by comparison of the human and chicken c-src
regions from the 3' end of exon 2 to exon 12 (1) (Tables 2 and
3): the total nucleotide number as well as the total number of
amino acid residues encoded in corresponding exons are the
same; the boundaries between exons and introns are identi-
cal; the noncoding regions are not conserved; intron size is

TABLE 1. Nucleotide and amino acid sequence homologies in
corresponding exons of human and chicken c-src genes'

Nucleotide Amino acid
Exon homology homology

(%) (%)

2 190/250 (76.0) 59/83 (71.0)
3 82/100 (82.0) 34/34 (100.0)
4 85/99 (85.8) 32/33 (97.0)
5 80/104 (76.9) 34/35 (97.1)

6-12b 937/1,055 (88.8) 346/351 (98.5)
3-12 1,184/1,358 (87.1) 446/453 (98.3)
2-12 1,374/1,608 (85.4) 505/536 (94.2)

a Homology was determined by the number of identical chicken c-src
nucleotides or amino acid residues (45) within each exon of the human c-src
gene.
bThe average homologies from exons 6 through 12 were obtained from

results previously published (1). The nucleotides in noncoding regions of exon
2 and exon 12 are not included in the calculations; only the nucleotides within
the coding region are included.

1978



NOTES 1979

A EcoR ;2 3

I

B
2

Smo Sma
Nco

BglBl

Sma

XhoI

EcoRI

8mHI I

3

Pst
Hind

BglI

Nco I

Smol _ _
_-

HOOm -_
Sou3A

Hind 11

Pst I

Rso!I t Rso! 4

FIG. 1. Location of exons and DNA-sequencing strategy. (A) Location of exons 2 through 5. The number shows the exon number. The
size of each exon is not drawn to scale. (B) DNA-sequencing strategy. All exons were sequenced by the dideoxy chain termination method
(1, 29) (shown by solid lines). Exon 2 was also sequenced by the Maxam-Gilbert method (28) (shown by broken lines). DNA fragments
containing exon 2 were derived from clones S11H (16) and RA-1 which contains an insert different from that of S11H (R. R. Arthur and
D. J. Fujita unpublished data). Exons 3 through 5 were from A S3H (16). All A clones originated from the same library (16). Arrows indicate
the orientations of DNA sequencing. bp, Base pairs.

not conserved. However, the intron-exon boundary at the 5'
end of human exon 2 and the total number of nucleotides or

amino acid residues in exon 2 are different from those of
chicken exon 2 (Table 2). The noncoding region of human
exon 2 is 4 base pairs long, whereas that of chicken exon 2 is
9 base pairs long (45) (Table 2). The presence of the
consensus sequence for the initiator (purine)-C-C-ATG-G
(25) surrounding the ATG at residue 1 (Table 2; Fig. 2)
strengthens the belief that this ATG codon is the authentic
initiation site for c-src protein synthesis.
The amino-terminal region presented in this paper con-

tains the 18-kilodalton peptide generated by proteolytic
digestion of the src protein with Staphylococcus aureus V-8
protease (10, 44) (Fig. 2). At least four possible serine
phosphorylation sites are present within the 18-kilodalton
peptide of the chicken c-src or the v-src protein (6, 17, 44),
and there is another phosphorylation on a tyrosine residue(s)
(4, 5, 10, 52) which appears to be present between v-src

residues 81 and 149 (13). All the corresponding serine
phosphorylation sites are present in the 18-kilodalton region
of the human c-src protein (Fig. 2). As for the tyrosine
phosphorylation, all the tyrosine residues are conserved in
the corresponding human c-src region (residues 84 to 152)
(Fig. 3).
The src protein is myristylated at residue 2 (Gly) after

residue 1 (Met) is removed (15, 21, 34, 36, 39). We compared
amino-terminal regions of src-related proteins (2, 9, 41, 42,
45) and other myristylated proteins (19, 30) (Fig. 3). There
was no single consensus sequence observed among them,
although the human, chicken, and Xenopus laevis c-src

proteins have the consensus of Gly-X-X-Lys-Ser-Lys-Pro-
Lys(Arg)-Asp(Glu) since Arg and Glu are conservative al-
terations for Lys and Asp, respectively (37). There are two
possible explanations for this. One is that conformation of
the amino-terminal region, rather than a specific amino acid
sequence, may play a key role in the myristylation pro-

TABLE 2. Splice donor and splice acceptor sequences of the human c-src genea

Exon Intron Exon size Intron
no. (splice acceptor) (bp)h (splice donor)

2
H CTGCCAG -GACCATG..254..CCCGCTGGCG GTCAGTGCGC
C C CCCACC ..250..GG A T T G

3
H CTCTCTGCAG GTGGAGTGAC.100..TCAACAACAC GTGAGTGC
C GTGT C C C T

4
H CCTGCTCAG AGAGAGGGAG ........99..AGGCTGAGGA GTTAG
C TCTTG G AG T C A A T

5
H CCCCCAG GTGGTATT'TT ......... 10 ACCACGAAAG GTAC
C A C G A GA
a DNA sequences at intron-exon boundaries of the human c-src gene (H) are compared with the corresponding regions of the chicken c-src gene (C) (45).
b Exon size is shown by the number of base pairs in each exon. Only nuleotide differences are shown for the corresponding chicken c-src sequence. In exon

2, a dash (-) indicates no corresponding DNA sequence in human c-src. ATG, Initiation site for src protein synthesis.
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llet Gly Ser Ann Iys Ser Lys Pro
ATG GGT AGC AAC AAG AGC AAG CCC

G G
Ser

Lya Iap Ala 2er
MAG GAT GCC AGC

c c
Pro

Gln Arg Arg Arg Ser
CAG CGG CGC CGC AGC

C G

Eu c-arc Ala Glu Asn Val
GCC GAG AAC GTG

Ck c-arc C C G ACC
Pro hAp Ser Thr

Hu c-arc Pro Ala Ser Ala
CCA GCC TCG GCC

Ck c-arc A AG C C
Thr Ala Pro

HiEGaY Ala Gly Gly Glyr Alal Phe
CAC GGC GCT GGC GGG GGC T TTC

- - HEs -
5O (s)

Asp Gly HEs Arg Gly Pro Ser Ala
GAC GGC CAC CGC GGC CCC AGC GCG

ACG
Thr

AC
Thr

CGC
Arg

Pro Ala Ser Gln
CCC GCC TCG CAG

A

Ala Phe Ala Pro
GCC TTC GCC CCC
T T GG A
Ser Gly Thr

Thr Pro Ser La 40
ACC CCC AGC AAG (120)

A
Asn

Ala Ala Ala Glu 60
GCG GCC GCC GAG (180)
T A

Val Thr

Eu c-arc Pro Lys Leu Phe Gly Gly Phe
CCC AAG CTG TTC GGA GGC TTC

Ck c-src C G

Hu c-arc Pro Leu Ala
CCG CTG GCc

Ck c-arc G A T
Ala

Hu c-src Thr Asp Leu
ACA GAC CTG

Ck c-arc G T

2 [3
Gly
GGT

C

Ann Ser Ser Asp Thr
AAC TCC TCG GAC ACC

A T T
Thr

50*

GTC ACC TCC
T G G

Gly Val Thr Thr Phe Val Ala Leu Tyr hAp Tyr
GGA GTG ACC ACC TTT GTG GCC CTC TAT GAC TAT

C C T C T C C

Ser Phe Lys Lya
TCC TTC AAG AAA

;00 *
Hu c-arc Trp Trp Leu Ala His Ser Leu

TGG TGG CTG GCC CAC TCG CTC
Ck c-arc T T C

Hu c-arc

Ck c-src

Ala Pro Ser

GCG CCC TCC
A

(E) V-8
Eu c-arc Ser Glu Arg

TCA GAO CGG
Ck c-arc C

hAp Ser Ile Gin

GAG TCC ATO GAG

Leu Leu Leu Asn
TTA CTG CTC AAT
C G C

V-8 516
Hu c-arc GluIThr Thr s, GlY

GAG ACC ACG AMA GT
G A

Gly Glu Arg Leu Gln
GGC GAG CGG CTC CAG

A A C G

Ser Thr Gly Gln Thr
AGC ACA GGA CAG ACA
CT G

Thr
5S5

Ala Glu u Trp Tyr
GCT GAG GAG TGG TAT

A C

Ala Glu Asn Pro Arg
GCA GAG MC CCG AGA
C C A C C G
Pro

Ile Val An
ATT GTC AAC

Pro Gln Arg Ala Gly 80
CCG CAG AGG GCG GGC (240)

C T C G

100
Glu Ser Arg Thr Giu 1o0
GAG TCT AGG ACG GAG (300)

CC T A

314 0

Asn Thr Glu Gly Asp 120
AAC ACA GAG GGA GAC (360)

G A T

Gly Tyr Ile Pro Ser An Tyr Val 140
GGC TAC ATC CCC AGC AAC TAC GTG (420)

T T C

Phe Gly Lys Ile Thr Arg
TTT GGC AAG ATC ACC AGA

G T C T
150*

Arg Giu 160
COGG GAG (480)

Gly Thr Phe Leu Val Arg Glu Ser 180
GGG ACC TTC CTC GTG CGA GAA AGT (540)
A T G C G G C

185
(555)

FIG. 2. DNA sequence of exons 2 to 5 and the deduced amino acid sequence. The DNA sequence of the human (Hu) c-src gene from exons
2 to 5 and the deduced amino acid sequence are compared with the corresponding chicken (Ck) c-src sequences. For the chicken c-src
sequence, only nucleotides or amino acid residues which differ from those of human c-src are shown. Boxed regions show the sequence
observed only in the human c-src gene. A dash (-) indicates the absence of the corresponding amino acid in the chicken c-src sequence. A
vertical bar with two numbers shows a boundary between the numbered exons.®, Possible site for phosphorylation (17, 44); V-8, Possible
cutting site by proteolytic digestion with S. aureus V-8 protease (44); *, amino acid residues of the chicken c-src protein (45).

cesses, i.e., the steps to remove residue 1 (Met) and to
myristylate residue 2 (Gly). Another explanation is that there
are several types of the myristylation processes, one of
which is specific for the src consensus sequence.
When the amino acid sequences of exon 2-encoded re-

TABLE 3. Size comparison of corresponding human and
chicken c-src intronsa

Intron size (bp)
Intron no.

Human Chicken

2 2,000 50
3 8,000 2,040
4 350 390
5 1,750 1,010

a Each intron is numbered with the number of the exon located at the
immediate 5' end of the intron. Sizes of the human c-src introns were
determined from restriction mapping nd DNA sequencing information. Sizes
of the chicken c-src introns were obtained from reference 45.

gions of the human and chicken c-src proteins were com-
pared, their divergence was mainly localized to two smaller
subregions (cx and in Fig. 4B; also see Fig. 2). In contrast,
relatively high homology was observed in the rest of the
exon 2-encoded region (subregions I, II, III, and IV in Fig.
4B). Subregion I has been shown to be essential for
myristylation or membrane binding (34). Thus, it is possible
that some or all of the other conserved subregions play
important roles common to c-src proteins since some of the
conserved regions (II, III, and IV in Fig. 4B) appear to be
specific for the src protein, as will be discussed below.

Figure 4B also illustrates the extremely low degree of
homology observed in the region corresponding to exon 2
between the human c-src protein and the v-yes protein,
which shares 80% amino acid homology to the rest of the src
protein (23). We presume that the region of the v-yes gene
corresponding to c-src exon 2 (Fig. 4B) had been derived
from the c-yes gene and that the c-yes gene belongs to the src
type of tyrosyl protein kinase oncogenes whose products do

Hu c-src

Ck c-arc

Leu Glu Pro
CTG GAG CCC

A

20
(60)
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FIG. 3. Comparison of amino-terminal regions of myristylated proteins. The amino-terminal 21 amino acid residues are compared among
the human (Hu), chicken (Ck) (45), Xenopus (Xe) (42), and Drosophila (Dr) (41) c-src proteins and the bovine cyclic AMP-dependent protein
kinase (PKase) (9). Two other proteins, NADH cytochrome b5 (Cyt.b5) (30) and Moloney murine leukemia virus gag protein (MLVpl5) (19)
are not related to the src protein but are myristylated. The boxes enclose common amino acid residues; Arg and Iys are treated as conserved
residues, as are Glu and Asp.

not have transmembrane and extracellular domains (3, 50),
because there are limited areas of significant nucleotide and
amino acid sequence homologies observed between the
corresponding v-yes and c-src regions and because there is a

sequence related to myristylation or membrane association
in the yes protein (Fig. 4A and B). Similarly, when the
human c-src protein sequence is compared with other src-

type protein kinases, such as the murine IskTltck protein (27,
48) and the Drosophila c-src protein (41), the greatest
divergence is observed within the amino-terminal region.
These results, taken together, suggest that the region en-

coded by c-src exon 2 contains sequences that are important
for c-src-specific functions, such as recognition of a c-src-
specific substrate(s) or receptor(s). Similarly, it is possible
that the corresponding regions of other src-type kinase
proteins, such as yes, lskTltck, and D-src, play similar
specific roles.

If the recognition domain is present within the region
encoded by exon 2, then another functional domain appears
to be present in a region between the putative recognition
domain and the kinase domain (human c-src residues 84 to
240). The v-src protein forms complexes with p50 and p90
proteins (8, 26), whose possible binding sites on the v-src

protein have been placed at both its carboxy-terminal end
(38) within or near the putative regulatory region (33, 47) and

A
v-yes

ck c-arc

-20 exon 112

1200

the region near or at the v-src amino acid residues 155 to 160
(15, 46). Mutations of the v-src gene within the region
corresponding to human c-src residues 84 to 240. do not
abolish either transforming ability or protein kinase activity,
but result in generation of various partial transforming
mutants, such as fusiform mutants (13, 14, 24; S. K.
Anderson and D. J. Fujita, J. Virol., in press) and tempera-
ture-sensitive mutants for cell transformation (33). Phos-
phorylation of a certain tyrosine residue(s) within this region
appears to activate v-src protein kinase activity (10, 15). It is
thus possible that this region participates in functions mod-
ulating expression of the protein kinase activity.
As discussed above, it is very possible that the recognition

domain is encoded by exon 2. However, at present we
cannot rule out the possibility that diverged regions ob-
served among the src type of protein kinases are not in-
volved in specific functional roles since our discussion is
based solely on amino acid sequence homologies. Further
experimental data are required to resolve fully this issue.

We are grateful to David Denhardt for a generous supply of
Klenow DNA polymerase, Janet Radul for providing oligonucleo-
tide primers prepared from calf thymus DNA, and Beth Orphan,
Dale Marsh, and Linda Bonis for preparation of figures and typing of
the manuscript.
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corresponding Y73 v-yes sequence (23). ATG, Initiation codon for the c-src protein; -, no corresponding nucleotide. (B) Comparison of
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