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Abstract
Purpose—When using claims data, dichotomous covariates (C) are often assumed to be absent
unless a claim for the condition is observed. When available historical data differs among subjects,
investigators must chose between using all available historical data versus data from a fixed
window to assess C. Our purpose was to compare estimation under these two approaches.

Methods—We simulated cohorts of 20000 subjects with dichotomous variables representing
exposure (E), outcome (D) and a single time-invariant C, as well as varying availability of
historical data. C was operationally defined under each paradigm and used to estimate the adjusted
risk ratio of E on D via Mantel-Haenszel methods.

Results—In the base case scenario, less bias and lower MSE were observed using all available
information compared with a fixed window; differences were magnified at higher modeled
confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach
remained less biased in most circumstances and better approximated estimation that was adjusted
for the actual (modeled) value of the confounder in all instances.

Conclusions—In most instances considered, operationally defining time-invariant dichotomous
C based on all available historical data, rather than on data observed over a commonly shared
fixed historical window, results in less biased estimates.
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The validity of epidemiologic findings depends on the completeness and accuracy with
which covariates are measured and taken into account. For some variables such as comorbid
conditions or concurrent therapies, it is often not possible to distinguish between missing
data and absence of the condition. Operationally, missing information for such variables is
usually assumed to indicate that the condition is not present.1 In cohort studies conducted
within healthcare utilization databases, the sensitivity with which such variables are detected
depends in large part on the duration of time over which each subject had been observed
before follow-up began.2 Because subjects will vary in terms of the duration of available
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baseline information, the investigator is faced with a choice: 1) utilize covariate information
based on all available baseline data for each subject, 2) utilize covariate information based
on a fixed baseline window of time that is shared by all subjects (often chosen as 6 months
or 1 year). We term these options the “all-available” and “fixed window” approaches.

It can be assumed that under the all-available paradigm, confounders will be identified with
equal or greater sensitivity than under a fixed window approach, which should serve to
reduce residual confounding.3-4 On the other hand, the duration of available baseline data
may be associated with subject covariates, subsequent exposure and outcome (each either
directly or mediated through other unmeasured confounders), so that the all-available
approach could introduce bias through differential confounder ascertainment.

Consider the following motivating example. Investigators are interested in estimating the
comparative effectiveness of new use of anti-platelet agent A versus a standard anti-platelet
agent B on 30-day stroke risk following a transient ischemic attack among Medicaid
beneficiaries in secondary claims data. Diabetes is an important potential confounder. The
source cohort comprises patients who have a claim involving a diagnosis code for transient
ischemic attack, and who subsequently filled a prescription for anti-platelet medication A or
B (index fill). Potential subjects are excluded if they demonstrate claims for anti-platelet
agents before the index fill, or if they do not have 6 months of available data before the
index fill over which to document no prior exposure. Some patients meeting entry criteria
may have the minimum requisite 6 months of baseline data, whereas others may have many
years of baseline data. The duration of available data likely relates to observable
characteristics (eg, socioeconomic status, disability) as well as unobservable ones (eg,
frailty) that themselves are associated with diabetic status, choice of anti-platelet agent and
risk of subsequent stroke. To define diabetes, the investigator must determine whether to
identify claims suggesting diabetes using all available data for each patient, or to restrict to
data from the collectively shared 6-month baseline period. The latter approach results in
uniform observation periods for study participants, but that comes at the cost of ignoring
some data available for some patients.

We sought to explore the tradeoffs inherent in this choice through a simulation study that
compared bias reduction under these two approaches, and to determine the conditions under
which one approach may be preferable to the other. Specifically, we considered the
following circumstance: 1) the effect of interest was that of a dichotomous exposure on a
dichotomous outcome; 2) the observed exposure—outcome association was confounded by
a single observed dichotomous covariate; 3) all study subjects included in the analysis had
available data for at least the 6-month period preceding exposure, and variable amounts of
lead-up time before that period. We then compared the two approaches in the presence of an
additional unmeasured covariate that was associated with exposure, outcome, duration of
historical follow up and frequency of medical contact. Of note, we have considered
confounding based on a chronic disease (or analogous) conception; results do not pertain to
covariates that confound on a temporary or transient basis (eg, acute conditions).

MATERIALS AND METHODS
Base case simulation

Figure 1a shows the directed acyclic graph used to generate data in the base case. In each
replicate we simulated a cohort of 20,000 subjects with three dichotomous variables
representing exposure (E), outcome (D) and a single time-invariant confounder (C) based on
Bernoulli distributions. Values of C were simulated based on the marginal probability (C=1,
termed pc). E was simulated based on the probabilistic model:
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where pe0 is the probability of being exposed if C=0, and rrec is the risk ratio of C on E. D
was simulated based on the probabilistic model:

where pd0 is the probability of having the outcome if C=0 and E=0, rrdc is the risk ratio of
C on D, and rrde is the risk ratio of E on D. Therefore, rrde is the effect estimate of interest.
The effects of C and E on D were modeled to be strictly multiplicative without interaction.
For simplicity, we assumed complete follow up between assessment of exposure and
outcome, i.e. no censoring.

For each subject, lead-up time (eg, enrollment in an insurance program) was simulated as
follows: 1) in lead-up month -1 (ie, the month preceding E), the random Bernoulli variable
Unenrolled (=0 if the subject was represented in the data; =1 if the subject was not
represented in the data) was generated based on the (unconditional) probability
(Unenrolled=1; termed punenrolled0); 2) for subjects represented in the data in month -1,
Unenrolled was simulated for lead-up month -2 using an analogous approach (for subjects
not represented in the data in month -1, month -2 was not considered, thus imposing a
requirement of a continuous period of available data); 3) this process was repeated to a
maximum of 120 potential lead-up months. In each observed lead-up month, the variable
Seen, representing whether or not the subject had contact with the medical system during
which C might be observed, took on a Bernoulli distribution based on the marginal
probability (Seen=1; termed pseen0). In the base case, Unenrolled and Seen were
independent of each other and of all other modeled variables.

Parameter values for the base case are given in Table 1. In base case sensitivity analyses,
parameter values for pc, pe0, pd0, punenrolled0, pseen0, rrec, rrdc and rrde were varied
within clinically plausible ranges.

Operational definitions of C*
Analytical values of C (C*) were defined under two different paradigms based on C,
Unenrolled and Seen. Under the all-available paradigm, C* was defined as =C if in any
baseline month Seen=1 and Unenrolled=0 (representing that the subject had contact with the
medical system during a time period for which he/she had available data), and =0 otherwise.
Under the fixed window paradigm, C* was defined as =C if, during any of lead-up months
-1 through -6, Seen=1 and Unenrolled=0 (representing that the subject had contact with the
medical system during a time period for which all subjects had available data), and =0
otherwise. We made the simplifying assumption that C* was measured correctly whenever
conditions were met such that it was defined =C.

Expanded model
In reality, having health insurance is not a random phenomenon, but depends on health
status, as well as other factors (such as socioeconomic status) that might influence the
likelihood of exposure and of outcome.5 Contact with the medical system may be dependent
on these factors and on insurance provider.5 In the expanded model, we allowed for such
associations (Figure 1b). We included an unmeasured dichotomous confounder F
(representing frailty), which was simulated based on the probabilistic model:
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where pf0 is the probability of having F if C=0 and rrfc is the risk ratio of C on F. E was
simulated based on the probabilistic model:

where pe0 represents the probability of being exposed if C=0 and F=0, and rref is the risk
ratio of F on E. D was simulated based on the probabilistic model:

where pd0 represents the probability of having the outcome if E, C and F all =0 and rrdf is
the risk ratio of F on D. In addition, we considered effects of F on Unenrolled and Seen as
well as effects of Unenrolled on Seen according to the probabilistic models:

where punenrolled0 represents the per-month probability of being unenrolled if F=0, pseen0
represents the probability of having had medical contact if F=0 and Unenrolled=0, rruf is the
risk ratio of F on Unenrolled, rrsf is the risk ratio of F on Seen, and rrsu is the risk ratio of
Unenrolled on Seen.

Estimation
Each simulated study population involved 20,000 subjects minus subjects excluded because
their lead-up period was <6 months. In each replicate, we estimated the RR of E on D. The
crude RR (RRcrude) was estimated for the collapsed data, and then the RRs using the all-
available (RRavailable) and fixed window (RRfixed) paradigms were estimated after
stratifying on the corresponding values of C*, by calculating the Mantel-Haenszel estimator
of RR. The distribution of RR estimates was summarized for each scenario (scenarios
defined as unique combinations of simulation parameter values) and compared across
scenarios. For each scenario, mean square error (MSE) was calculated as the mean across
replicates of the quantity [ln(RR)-ln(rrde)]^2. All analyses were performed using STATA
9.0SE and 10.0SE (StataCorp, College Station, TX).

RESULTS
Base case

Lead-up time in the source population for one sample iteration was as follows: minimum,
5th, 25th, 50th, 75th, 95th percentiles, maximum: 0, 1, 7, 17, 33, 73, 120 months; after
excluding subjects with lead-up time <6 months, these were 6, 7, 13, 23, 40, 79, 120 months,
respectively, in the study cohort. The base case was run to 1000 replicates. Across
replicates, mean size of the study cohort was 15654 (95% CI: 15528, 15771). The mean
number of subjects differentially classified on C* under the all-available and fixed window
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paradigms (ie, C*available=1, C*fixed=0) was 1090 (95% CI: 1032, 1150). As compared with
the fixed window approach, sensitivity of C* was higher, RR estimate was nearer the
modeled parameter, and MSE was lower for the all-available approach (Table 2). RRavailable
was nearer to the modeled effect than RRfixed in 87.9% of replicates.

Base case sensitivity analysis
In the base case sensitivity analysis, simulation parameters were permuted to examine
robustness of findings. In general, for scenarios in which there was little confounding (ie,
bias RRcrude was low), the all-available and fixed window approaches performed similarly;
for scenarios in which there was more confounding, MSE was lower for the all-available
versus fixed window approach. Differences were more pronounced in scenarios in which
pseen0 was lower (ie, in which C*available and C*fixed were discrepant [0.78 vs 0.39,
respectively]), than in scenarios in which pseen0 was higher (ie, in which C*available and
C*fixed were less discrepant [0.99 vs 0.90, respectively]) (Figure 2).

Expanded model
In the expanded model, we considered scenarios wherein subjects may differ in terms of an
unmeasured confounder, which itself may be associated with C, and which may influence
exposure status, coverage status, likelihood of medical contact and outcome (run to 4000
replicates). We evaluated bias according to permuted values of rref and rrdf and observed
that when F did not confound the association between E and D (ie, rref=1 or rrdf=1) or
when F confounded in the same direction as C (ie, rref and rrdf both >1, or both <1; because
C confounds upwards), RRavailable was consistently less biased than RRfixed (Figure 3).
When F confounded in the opposite direction as C (ie, rref>1 and rrdf<1, or vice versa),
RRfixed was less biased. In all instances, RRavailable better approximated RR estimates that
were adjusted for the true value of C; when F confounded in the direction opposite to C,
RRfixed was less biased than RRavailable because there was greater residual (upward)
confounding by C left to offset (downward) bias by F. As a result, MSE was lower for the
all-available approach when F did not confound or when it confounded in the same direction
as C, and was lower for the fixed window approach when F confounded in the opposite
direction as C (Figure 4).

We examined whether differential sensitivity of C*available and C*fixed among exposed and
unexposed subjects affected estimation. In general results were similar to those above:
RRavailable outperformed RRfixed except in cases where F confounded in a direction opposite
to C. This pattern was more accentuated when the sensitivity of C*fixed was lower among
exposed than unexposed subjects and when the sensitivity of C*available was similar between
exposed and unexposed subjects (Figure 5).

To further explore the issue of differential sensitivity of C*, we manipulated simulation
parameters such that C*available was much more sensitive among exposed versus unexposed
subjects, but the sensitivity of C*fixed was similar across exposure groups. Among exposed
subjects, median lead up time was 27.8 months, sensitivity C*fixed was 0.39 and sensitivity
of C*available was 0.84; among unexposed subjects, median lead up time was 12.1 months,
sensitivity of C*fixed was 0.39 and sensitivity of C*available was 0.62. Even in this
circumstance, the pattern of association observed was similar to that seen in the expanded
model (Table 3).

DISCUSSION
In clinical medicine, the abbreviation WNL is used to designate a finding of “within normal
limits” for a subject characteristic that might be assumed not to contribute to the clinical
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condition. If, however, the WNL abbreviation were taken to mean “we never looked,” then
the measurement would be missing, potentially leading to an incorrect diagnosis. This
concept could be applied to our designation of a binary confounder that is assumed not to be
present unless a claim indicates it is. The occurrence of the claim is not only dependent on
the presence of the condition for which it is a marker, but also on interaction with the
healthcare system and coverage by the data capturing system. This uncertainty of covariate
ascertainment even in the presence of disease suggests that improving sensitivity through
extending baseline history, even if unequal across cohort members, has the potential to
improve covariate capture and thereby confounder control.

Historical ascertainment is one aspect of misclassification. Specifically at issue is whether,
in the setting of (possibly differential) misclassification inherent to the source data,
deliberately inducing further misclassification (ie, through ignoring some of the available
data) can lessen resultant bias. There is a robust literature regarding the impact of exposure
(and outcome) misclassification on estimation. Non-differential exposure misclassification
typically biases estimates toward the null.4, 6 Ergo in case—control studies, investigators
often adhere to principle of comparable accuracy in assessing exposure to reduce the
likelihood of observing spurious positive associations.7 Even toward this end, ensuring
comparable accuracy is not a panacea, as the direction of bias becomes unpredictable when
exposure misclassification is non-differential with respect to outcome,6, 8 or when exposure
error is not independent of errors in other variables.9-10 The situation becomes yet more
complex when considering covariates, wherein even non-differential misclassification can
bias unpredictably.4, 11-12 For these reasons, it cannot be assumed that comparable accuracy
considerations logically extend to covariate ascertainment.

Through simulation studies, we tested whether, in situations in which subjects have
differential amounts of lead-up time before exposure, dichotomous variables that are
assumed to take on a value of zero in the absence of evidence to the contrary (eg, comorbid
conditions) are better defined over all available lead-up time or over a fixed lead-up period
common to all subjects. Our results indicate that use of all available lead-up data is less
biased and yields a lower MSE than the fixed window approach in most cases.

In the base case scenario, we considered parameter values typical to what is seen in many
large, claims based studies of patients with chronic medical conditions: moderate effects of
confounder on exposure, confounder on outcome, and exposure on outcome (risk ratios=2);
middling prevalences of exposure (20%) and confounder (25%); a per-month probability of
uncoverage (4%) that corresponds to a mean available data window of 2 years; and a per-
month likelihood of contact with the medical system (16%) that corresponds to a mean 1.8
visits/patient/year. In this case, consideration of confounder status over only the obligatory
6-month period common to all patients led to a parameter estimate that was 41% as biased
as the crude estimate. Use of all available lead-up data led to a parameter estimate that was
only 9% as biased as the crude estimate. When base case parameters were varied (within
plausible ranges), it was observed that the all-available approach afforded better bias
reduction and lower MSE in the setting of greater ambient confounding. Additionally,
greater differences in estimation (favoring the all-available approach) were observed when
the per-month probability of contact with the medical system was lower owing to implied
differences in the sensitivity of C* under the two approaches.

We considered the possibility whereby an unmeasured covariate might influence the
likelihood of exposure, outcome, data availability and contact with the medical system. For
example, factors such as frailty may increase the likelihood of exposure (sicker patients
needing more aggressive therapy) and outcome (sicker patients are sicker), factors such as
exercise may decrease the likelihood of both, and factors such as substance abuse might
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decrease the likelihood of exposure (eg, less access to medical care13) while increasing the
likelihood of outcome (eg, gastrointestinal bleeding14). In most scenarios, the all-available
approach provided better estimation. The principal exception was that the fixed window
approach was favored when an unmeasured covariate confounded the E—D association in
the opposite direction as the measured confounder. In this situation, the benefits of the fixed
window over the all-available approach stemmed from serendipitous counterbalancing of
residual confounding from measured and unmeasured confounders: the net confounding
from both factors was close to zero, so that controlling for one increased bias; because using
all available data controlled for confounding on the basis of C more effectively than the
fixed window approach, it resulted in more net bias. No situations were observed in which
the fixed window (versus all-available) approach yielded estimates nearer the risk ratio
adjusted for the true (modeled) value of C. We conclude that the optimal analytical response
would therefore be to address sources of unmeasured confounding and then adjust
maximally for all relevant confounding using the all-available approach. Beyond this, few
scenarios were observed in which the fixed window approach was favored; even in these
scenarios the fixed window approach was only modestly better than the all-available
approach, whereas in other scenarios, much more substantive benefits of the all-available
approach were observed.

These data cannot directly answer the question: how far back is far enough? However,
inasmuch as the time periods considered here are relative (eg, months could equally be
considered as calendar quarters or years, etc), there is no reason to suspect that there would
be an upper bound on the historical time period that is potentially relevant. Instead, results
indicate that more is typically better, and by extension, that all available data be leveraged
(to the degree this can be feasibly implemented).

Some limitations of the study bear mention. First, the confounder considered here is one that
is assumed to have a value of “normal” or “not present” in the absence of data to the
contrary. Our results may not apply to variables for which missingness can be identified and
corrective action taken (eg, imputation of missing quantitative covariates). Second, we
cannot exclude the possibility that the fixed window approach would be favored under
simulation conditions more extreme than those modeled; however, our simulation conditions
attempted to encompass most situations that would be observed in applied research. Third,
the confounder considered was assumed to be static over the period of study and to have
time-invariant effects on exposure and outcome. Specifically, this assumption was based on
a chronic disease conception, such as diabetes. We do not know whether these findings
pertain to time-varying covariates, or those for which the effect on exposure or outcome has
temporal dependence (eg, myocardial infarction). Fourth, use of longer minimum look-back
periods to define new exposure will result in a smaller relative advantage of the all-available
approach because it will reduce the amount of information to be added, although that
apparent advantage comes at the cost of excluding more subjects who fail to meet the
minimum look-back condition. Fifth, our findings pertain only to instances in which
differential sensitivity of covariate definitions relate to historical lead-up windows.
Specifically, consideration of historical lead-up windows impose two important restraints on
the data that may not pertain to other situations in which comparable accuracy of covariate
definitions is at question: 1) the sensitivity of C* under the fixed widow approach cannot
exceed that of the all-available approach, and 2) extreme differences in the sensitivity of C*
between exposed and unexposed groups under the two approaches are mitigated because
subjects with dramatically short historical data windows are dropped from the analysis due
to less than requisite lead-up time. Finally, our data pertain only to estimates pooled across
C and does not address heterogeneity of estimates across strata of C as observed in other
circumstances.11
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In summary, this simulation study supports using all available historical data rather than data
observed over a historical window commonly shared by all subjects to define time-invariant
dichotomous covariates in most circumstances.
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Glossary

C measured covariate

C* value of measured covariate considered analytically

D disease (outcome)

E exposure

F unmeasured covariate

pc marginal probability that measured covariate =1

pd0 conditional probability that outcome=1 given exposure=0 and measured
covariate =0≠

pe0 conditional probability that exposure =1 given measured covariate=0≠

pseen0 per month likelihood of contact with the healthcare system≠

punenrolled0 per month likelihood of that a given month was the historically most
recent month for which the subject was not represented in source data≠

RR risk ratio

rrdc risk ratio of measured covariate on outcome

rrde risk ratio of exposure on outcome

rrdf risk ratio of unmeasured covariate on outcome

rrec risk ratio of measured covariate on exposure

rref risk ratio of unmeasured covariate on exposure

rrfc risk ratio of measured covariate on unmeasured covariate

rruf risk ratio of unmeasured covariate on data availability

rrsf risk ratio of unmeasured covariate on likelihood of medical contact
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Figure 1.
Direct acyclic graphs demonstrating modeled effects (solid arrows) in the base case (panel
A) and the expanded model (panel B). Dashed arrows represent relationships that were used
to operationally define C* under the all-available and fixed window paradigms.
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Figure 2.
Base case sensitivity findings. The difference in MSE for ln(RRfixed) minus MSE
ln(RRavailable) is plotted versus bias for ln(RRcrude) under modeled scenarios where
pseen0=0.08 and =0.32. Each point reflects estimates for one combination of simulation
parameter values (as per Table 1). Positive values indicate better performance (ie, lower
MSE) for the all-available approach.
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Figure 3.
Expanded case findings. RR risk estimates for the all-available (black triangles) and fixed
window approaches (grey circles), estimates adjusted for the modeled value of C (“C”) and
estimates adjusted for the modeled value of F (“F”) are plotted versus RRcrude. The modeled
RR was 2.0 (dashed line). Each point reflects estimates for one combination of simulation
parameter values (as per Table 1). Panel A considers scenarios where F confounds opposite
to C (ie, rref>1 and rrdf<1, or rref<1 and rrdf>1). Panel B in considers scenarios where F
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confounds in the same direction as C (ie, rref>1 and rrdf>1, or rref<1 and rrdf<1). Panel C
considers scenarios where F does not confound (ie, rref=1 and/or rrdf=1).
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Figure 4.
Expanded case findings. The difference in MSE for ln(RRfixed) minus MSE ln(RRavailable) is
plotted versus bias for ln(RRcrude). Each point reflects estimates for one combination of
simulation parameter values (as per Table 1). Positive values indicate better performance (ie,
lower MSE) for the all-available approach. The follow scenarios were considered separately:
(left) F confounds opposite to C (ie, rref>1 and rrdf<1, or rref<1 and rrdf>1); (center) F
confounds in the same direction as C (ie, rref>1 and rrdf>1, or rref<1 and rrdf<1); (right) F
does not confound (ie, rref=1 and/or rrdf=1).
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Figure 5.
Expanded case findings. The difference in MSE for ln(RRfixed) minus MSE ln(RRavailable) is
plotted versus the difference in sensitivity of C*available between exposed versus unexposed
subjects. Each point reflects estimates for one combination of simulation parameter values
(as per Table 1). Positive values indicate better performance (ie, lower MSE) for the all-
available approach. Panel A considers scenarios where C*fixed was 0.05 or more lower
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among exposed versus unexposed subjects. Panel B considers scenarios where C*fixed was
within 0.05 among exposed and unexposed subjects. Panel C considers scenarios where
C*fixed was 0.05 or more greater among exposed versus unexposed subjects.
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Table 1

Values of simulation parameters.

Parameter Base case Base case
sensitivity Expanded

pc 0.25 0.1, 0.4 0.25

punenrolled0 0.04 0.02, 0.08 0.04

pseen0 0.16 0.08, 0.32 0.16

pe0 0.2 0.1, 0.4 0.2

pd0 0.1 0.05, 0.2 0.1

rrec 2 0.5, 1.5, 2 2

rrdc 2 0.5, 1.5, 2 2

rrde 2 0.5, 1.5, 2 2

pf0 NA NA 0.2

rrfc NA NA 0.5, 1, 2

rruf NA NA 0.25, 1, 4

rrsf NA NA 0.25, 1, 4

rref NA NA 0.5, 1, 2

rrdf NA NA 0.5, 1, 2

rrsu NA NA 0.5, 1, 2
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Table 2

Base case findings for sensitivity of C*, RR estimates and MSE of ln(RR) for the all-available and fixed
window approaches. [Modeled RR=2.]

All-Available Fixed window Crude

Sensitivity C* (95% CI) 0.93 (0.92, 0.94) 0.65 (0.63, 0.66) NA

RR (95% CI) 2.03 (1.89, 2.18) 2.14 (1.99, 2.29) 2.34 (2.18,2.50)

MSE ln(RR) 0.002 0.006 0.25
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Table 3

Extreme case results. Presented are RR estimates and MSE of ln(RR) for the crude, all-available and fixed
window approaches. [Modeled RR=2; other simulation parameters: pc0=0.25; pe0=0.2; pd0=0.1; pf0=0.2;
rrde=2; rrdc=2; rrec=2; pseen0=0.08; punenrolled0=0.12; rrfc=2; rruf=0.125; rrsf=1; rref=3; rrsu=1.]

F and C confound in
opposite directions (ie,

rrdf=0.5)

F and C confound in
the same direction (ie,

rrdf=2)

F does not confound
(ie, rrdf=1)

RR

• crude

• all-available

• fixed window

1.78
1.51
1.67

2.58
2.09
2.40

3.84
3.06
3.59

MSE

• crude

• all-available

• fixed window

0.02
0.08
0.04

0.07
0.004
0.03

0.43
0.18
0.34
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