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Abstract
Objectives—This study sought to ascertain the relationship of 9p21 locus with: 1) angiographic
coronary artery disease (CAD) burden; and 2) myocardial infarction (MI) in individuals with
underlying CAD.

Background—Chromosome 9p21 variants have been robustly associated with coronary heart
disease, but questions remain on the mechanism of risk, specifically whether the locus contributes
to coronary atheroma burden or plaque instability.

Methods—We established a collaboration of 21 studies consisting of 33,673 subjects with
information on both CAD (clinical or angiographic) and MI status along with 9p21 genotype.
Tabular data are provided for each cohort on the presence and burden of angiographic CAD, MI
cases with underlying CAD, and the diabetic status of all subjects.

Results—We first confirmed an association between 9p21 and CAD with angiographically
defined cases and control subjects (pooled odds ratio [OR]: 1.31, 95% confidence interval [CI]:
1.20 to 1.43). Among subjects with angiographic CAD (n = 20,987), random-effects model
identified an association with multivessel CAD, compared with those with single-vessel disease
(OR: 1.10, 95% CI: 1.04 to 1.17)/copy of risk allele). Genotypic models showed an OR of 1.15,
95% CI: 1.04 to 1.26 for heterozygous carrier and OR: 1.23, 95% CI: 1.08 to 1.39 for homozygous
carrier. Finally, there was no significant association between 9p21 and prevalent MI when both
cases (n = 17,791) and control subjects (n = 15,882) had underlying CAD (OR: 0.99, 95% CI: 0.95
to 1.03)/risk allele.

Conclusions—The 9p21 locus shows convincing association with greater burden of CAD but
not with MI in the presence of underlying CAD. This adds further weight to the hypothesis that
9p21 locus primarily mediates an atherosclerotic phenotype.

Keywords
9p21; angiography; coronary artery disease; meta-analysis; myocardial infarction; single
nucleotide polymorphism
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Genome-wide association studies (GWAS) first identified the 9p21 locus as associating with
coronary heart disease (CHD) in 2007 (1-3). A plethora of replication studies have since
confirmed and validated this association in a series of different ethnic populations, making
this the most robust genetic finding for CHD to date. The need for large study samples in
many of these studies has led to phenotypic heterogeneity with inclusion of cases with acute
or stable clinical presentations with presumed healthy control populations and varying
definitions of CHD, including clinical or noninvasive diagnosis of coronary artery disease
(CAD), angiographic CAD, validated myocardial infarction (MI), or a combination of these
(4,5). This lack of phenotypic clarity has resulted in uncertainty about the primary
phenotype mediated by the 9p21 locus, specifically whether it predisposes to atherosclerosis
or promotes a more abrupt plaque rupture or thrombotic process leading to MI. This in turn
has hampered contextualization of early functional studies attempting to resolve the
underlying mechanism (6).

There have been several attempts to tease apart the closely related phenotypes of CAD and
MI (7-9). In the most comprehensive analysis to date, Reilly et al. (8) demonstrated that,
although 11 variants had shown robust association with MI in GWAS when compared with
healthy control subjects, they did not associate with MI when both cases and control subjects
had underlying CAD. It was thus proposed that the primary association for these variants
was likely to be with development of CAD rather than predisposition to plaque rupture or
thrombosis per se. It follows then that carriers of the risk allele at the 9p21 locus should
demonstrate a greater burden of coronary atherosclerosis compared with non-risk carriers.
Although studies with computerized tomography have demonstrated a correlation between
9p21 and greater coronary artery calcification, indicating a role in predisposing to atheroma
formation (10,11), studies using invasive coronary angiography as a more direct and widely
available means of visualizing plaque have demonstrated discrepant results, leading to
ongoing uncertainty with regard to the mechanism of risk (12-15).

To address this lack of consistency we sought to establish a collaboration of genetic studies
and perform a comprehensive meta-analysis of the association between 9p21 and
angiographically defined CAD burden as well as to replicate the lack of association with
superimposed MI in subjects with underlying CAD.

Methods
Search strategy and selection criteria

We performed a systematic published data search for studies of 9p21 variation in relation to
CAD/MI, published before June 2011 on MEDLINE and EMBASE, combined with cross
references and manual searches. Search terms included “coronary artery disease,”
“myocardial infarction,” or “atherosclerosis,” in combination with “9p21.” No language
restrictions were used. A hand-search of articles and cited reference search were also
performed to identify all articles that cited the index publication. Experts contributed to
identification of cohorts with published and unpublished data (M.R./N.J.S.). For each
included cohort, data were tabulated for angiographic presence or absence of CAD, burden
of CAD, number of MI cases in subjects with underlying CAD, and the diabetic status of all
subjects. Published data search, data collection/abstraction, and entry were performed
independently and reconciled by 2 trained investigators (K.C. and R.P.).

For the analysis of 9p21 association with atherosclerosis burden, only studies with coronary
angiographic data in relation to 9p21 single nucleotide polymorphisms (SNPs) were
included. For the analysis of 9p21 association with MI in subjects with underlying CAD,
studies were included if they had information for both CAD status (angiographic or clinical
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diagnosis) and MI sufficient to classify individuals as MI+/CAD+ or MI−/CAD+.
Myocardial infarction was defined with standard criteria on the basis of clinical symptoms,
electrocardiography, and raised troponin (16). Coronary artery disease was defined as
angiographically documented CAD (≥50% or ≥70% luminal stenosis on visual estimation)
or clinical CAD on the basis of physician diagnosis with history of prior coronary
revascularization. Studies that used only the single phenotypes of CAD or MI or an
indistinguishable admixture of phenotypes in primary comparisons with healthy control
populations were not included.

Data sources
We contacted the principal investigators of the identified studies/cohorts meeting inclusion
criteria to obtain complete published and unpublished data for the prevalence of MI in
subjects with CAD as well as angiographic data where available. For 2 of the eligible
studies, sufficient data were unavailable in the published reports and could not be obtained
on request (Online Table 1). Details of all included study cohorts are provided in the Online
Appendix. From the individual studies, we received (or abstracted) information about: 1)
angiographic CAD, specifically on the number of diseased major epicardial vessels and
criteria used to define disease (≥50% or ≥70% luminal stenosis on visual estimation); and 2)
prevalence of MI in the presence or absence of CAD by 9p21 genotype. We also collected
details on race, sex, age, diabetes status (documented history of diabetes), and the
identification (rs number) of the particular SNP genotyped.

Statistical analysis
Statistical analysis followed guidelines from the Cochrane Handbook for Systematic
Reviews and HuGE Review Handbook for meta-analysis of genetic association studies
(17,18). Random effect models (DerSimonian and Laird) were used to estimate the pooled
per-allele and per-genotype odds ratios (ORs) and 95% confidence intervals (CIs) according
to the 9p21 polymorphism genotypes (RR, homozygous risk allele carrier; RW,
heterozygous risk allele carrier; WW, homozygous reference group) with results presented
as Forest plots (19).

Meta-analysis was first performed for association between 9p21 and angiographic CAD
against angiographic control subjects with the cohorts that had data available for both.
Angiographic control subjects were defined as having completely smooth unobstructed
vessels or <10% luminal stenosis anywhere in the coronary tree. Subsequently we examined
association with angiographic CAD burden, by comparing subjects with coronary
atherosclerosis/stenosis in a single-vessel with those with 2-vessel, 3-vessel, or multi-vessel
(≥1 vessels) disease. Subgroup analyses were planned a priori to investigate the association
with multivessel disease by study size, race, and diabetes status. Finally, we estimated a
pooled estimate for odds of prevalent MI in the presence of underlying CAD (all CAD
definitions), by comparing those with MI and CAD (MI+/CAD+) with those without MI but
with CAD (MI−/CAD+). For the latter we also performed a priori subgroup analysis for
alternate classifications of CAD, including: 1) clinical diagnosis alone; 2) ≥50% stenosis on
coronary angiography; or 3) ≥70% stenosis on coronary angiography.

In all meta-analyses we used Cochran’s Q test to evaluate the degree of heterogeneity
between studies and the I2 statistic to measure the proportion of total variation in study
estimates attribute to heterogeneity (20). This was further investigated through subgroup
analyses on the basis of cohort size, ethnicity, and diabetic status of individual patients. In
addition to subgroup analyses by cohort size, possible publication bias was also explored by
analysis of a funnel plot and Egger’s test (21). We identified a priori that a major source of
between-study heterogeneity is likely to arise due to use of different 9p21 markers in
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different studies. The markers used in this series of studies included rs1333049 (C),
rs10757278 (G), and rs2383206 (G), which are all in tight linkage disequilibrium (LD)
(Online Fig. S1). Therefore, we used a random effects model to permit heterogeneity in the
association being measured between studies. This delivers more conservative CIs than a
fixed effects model. However, to further model individual 9p21 SNP effects we also applied
a Bayesian method, developed to address the problem of meta-analyzing gene-disease
association studies that report different SNPs. Rather than including all SNPs in a single
univariate test under an assumption of exchangeability (as in the aforementioned random
effects analysis), separate effects are modeled for each SNP as part of an adjusted
multivariate model. This is made possible by imputing the unobserved SNPs in each study
according to LD information from HapMap. Further details are available in the Online
Appendix Methods section.

The random effects meta-analyses were performed with a STATA software package
(version 11.0, College Station, Texas). Bayesian analysis was performed with the Java
package “BayesMeta,” described in Newcombe et al. (22). Post hoc power calculations were
performed with G*power software package. Figures were created with STATA.

Results
Characteristics of the study cohorts

We identified 114 studies matching our database search terms, for association between 9p21
and CAD and/or MI with a further 2 identified through manual searching of references. Of
these, 89 were excluded, because they were reviews, letters, or repeat studies on the same
cohorts. A further 4 studies were excluded, because they only examined associations
between CAD/MI with healthy control subjects. Of the remaining 23 studies, 2 had
sufficient data published for this meta-analysis. We contacted the PIs for the 21 other studies
and received information from 19. In total, sufficient data for meta-analysis were obtained
for 21 studies consisting of 29 unique cohorts (Fig. 1).

Of the 21 studies included, there were 6 cohorts (n = 13,150) available for study A
(presence/absence angiographic CAD), 13 cohorts (n = 20,987) for study B (burden of
angiographic CAD), and 29 cohorts (n = 33,673) for study C (prevalent MI in CAD
subjects) (Fig. 1). Table 1 lists age, sex, and ethnicity distributions of the different cohorts.
The mean age for the populations ranged from 47.6 to 70.0 years; 73.1% were male, with
86.1% of European ancestry, 11.1% Asians, 1.5% Hispanics, and 0.9% Africans; 52.8% of
the pooled population had a history of MI (Table 1). Genotype frequency data were obtained
for all studies except 1, for which only summary statistics were available (23). The genotype
distributions for all 9p21 markers were in agreement with Hardy-Weinberg equilibrium,
with overall risk allele frequencies similar to HapMap and published reports.

Study A: 9p21 association with angiographic CAD presence/absence
We first confirmed an association between the 9p21 risk locus and presence or absence of
angiographic CAD, with a subset of studies in which genotype data were also available for
those with normal coronary arteries on angiography (n = 10,428 cases, n = 2,722 control
subjects). Meta-analysis revealed an overall pooled allelic OR of 1.31 (95% CI: 1.20 to
1.43) for association with angiographic CAD (Online Fig. S2A). Heterozygotes for the risk
allele had 39% greater odds of having CAD (OR: 1.39, 95% CI: 1.21 to 1.59), compared
with those without any risk alleles, whereas homozygotes for the risk allele had 73% greater
odds (OR: 1.73, 95% CI: 1.45 to 2.05) (Online Figs. S2B and S2C).
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Study B: 9p21 association with atherosclerosis burden on angiographic CAD
In the combined analysis on all those with angiographic CAD (n = 20,987), the 9p21 risk
variant was associated with a greater odds of multivessel disease (n = 14,232) compared
with single-vessel disease (n = 6755), with a summary OR of 1.10 (95% CI: 1.04 to 1.17)/
risk allele (Fig. 2A). Under genotypic models, heterozygotes had 15% greater odds of
having multivessel disease (OR: 1.15, 95% CI 1.04 to 1.26), compared with non-risk allele
carriers, whereas homozygotes for the risk allele had 23% greater odds (OR: 1.23, 95% CI:
1.08 to 1.39) (Figs. 2B and 2C). The 9p21 risk allele carriers also showed significantly
increased odds of 2-vessel disease over 1-vessel disease (OR: 1.08, 95% CI: 1.02 to 1.13) as
well as 3-vessel disease over 2-vessel disease (OR: 1.07, 95% CI: 1.01 to 1.13) (Online Figs.
S3 and S4).

There was some evidence of heterogeneity between studies (I2 = 49.5%, Q = 27.7, p =
0.015, Egger test p = 0.058). However, upon exclusion of smaller studies (n < 1,000), the
evidence of heterogeneity substantially reduced (I2= 43.2%, Q = 14.1, p = 0.08, Egger test p
= 0.69), suggesting that part of the heterogeneity was caused by publication bias. The funnel
plot across all studies was also consistent with possible publication bias (Online Fig. S8).
Encouragingly, the effect estimate was robust to exclusion of the smaller (n < 1,000) studies:
Among the 9 remaining studies (total sample size of n = 16,612) the meta-analyzed OR was
1.15 (95% CI: 1.08 to 1.23).

Although studies of subjects of European ancestry and studies of Asians showed similar
effect sizes, the association was nonsignificant for the studies of Asians, likely due to
smaller overall sample size (OR: 1.12, 95% CI 0.92 to 1.35, n = 2,283). Diabetes status did
not significantly alter the association of 9p21 with greater CAD burden (Fig. 3).

Finally, in the Bayesian analysis that formally models different SNPs as different variables,
the SNPs were largely indistinguishable under model selection, suggesting that all tested
SNPs are good markers for association with CAD burden. This is perhaps not surprising,
given the high levels of LD observed in HapMap (r2= 1 for rs1333049 and rs10757278; and
r2= 0.87 for rs1333049 and rs2383206).

Study C: No association between 9p21 and MI in subjects with CAD
The 9p21 SNPs did not show a significant association with MI when comparing MI cases
with control subjects consisting of subjects without MI but with underlying CAD (Fig. 4).
The summary effect size was estimated at 0.99 (95% CI: 0.95 to 1.03)/risk allele, with no
evidence of publication bias (Egger p = 0.843) and little heterogeneity between studies (I2 =
20.9%) (Online Fig. S9). Similar findings were noted in genotypic analysis, with an OR of
0.98 (95% CI: 0.92 to 1.04) for heterozygotes and 0.99 (95% CI: 0.91 to 1.07) for
homozygotes (Online Figs. S5 and S6). Subgroup analysis revealed that the findings were
not significantly altered by CAD definition (on the basis of clinical definitions or confirmed
angiographic stenosis of ≥50% or ≥70%), ethnicity, study size, and diabetes status of the
population (Online Fig. S7). Results from the Bayesian meta-analysis were entirely
consistent with those described in the preceding text (Online Table 2).

Discussion
We have demonstrated, through a comprehensive and collaborative meta-analysis, that the
9p21 risk locus is associated with a greater burden of angiographically defined CAD.
Homozygotes for the risk allele are 23% more likely to have multivessel disease than single-
vessel disease when compared with homozygotes for the non-risk allele. Furthermore, we
confirmed that there is no association between 9p21 and MI in the presence of background
CAD. These results support the hypothesis that the 9p21 locus primarily promotes
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atherosclerotic lesion development and functionally significant coronary stenosis rather than
precipitating plaque rupture and thrombosis.

Early GWAS demonstrated significant association between 9p21 and both MI and CAD
(1-3). Given that MI predominantly occurs in those with CAD, it was initially unclear
whether 9p21 promoted the upstream phenotype of atherosclerosis or the later complication
of MI. Subsequent studies attempted to refine this phenotype and demonstrated robust
association with CAD, including angiographically defined atherosclerosis (7). Three large
studies have demonstrated further association between 9p21 and CAD burden with a number
of diseased vessels or semi-quantitative methods such as the Gensini score, suggesting that
9p21 promotes progressive atherosclerosis (12,13,24). However, other studies have not
confirmed this association, and this lack of consistency has led to difficulties in reconciling
association with presence but not extent of CAD (14,15). However, this meta-analysis,
which includes almost all published and unpublished reports on 9p21 and angiographic
CAD, convincingly demonstrates that 9p21 is associated with greater CAD burden, overall.

Interestingly, subgroup analysis showed that study size significantly influenced the observed
effect. Association with multivessel disease was observed in large studies (sample size
>1,000) with similar effect size as the overall pooled results but not in smaller studies.
Several of the smaller studies reported on association with CAD burden as secondary
analysis, not suitably powered to detect differences in a crude phenotype (number of vessels
with significant stenoses) combined with a modest genetic effect. Ethnicity meanwhile did
not seem to influence the overall association, although the smaller Asian population size
rendered a wide CI. Finally, diabetes status showed little modification on the results, which
is relevant given the exclusion of diabetic cases in some of the reported studies (12).

Additionally, we demonstrated in a sample size of 33,673 that the 9p21 locus was not
associated with prevalent MI when both cases and control subjects had documented CAD.
This analysis has been proposed by others as a means to tease out the effect of 9p21 on CAD
and MI. Given that MI primarily occurs in the presence of CAD, comparing MI cases with
healthy control subjects might also be testing the hypothesis of CAD versus no CAD. Thus,
by examining control subjects without MI but with underlying CAD, one can determine
whether 9p21 truly associates with an MI phenotype, such as tendency to plaque instability
or thrombosis, or not (7,8,14,25). However, if the locus promotes atherosclerosis, then no
association would be observed, because the frequency of risk allele would be similar in both
cases and control subjects. In the largest such analysis to date, Reilly et al. (8) demonstrated
in 9,427 subjects that 9p21 along with other novel genomic variants did not reach
statistically significant associations with MI when all subjects had angiographic CAD. Our
analysis adds to these findings by including almost 4 times as many subjects. Furthermore,
we also ascertained that the various definitions of CAD do not influence this observation,
and neither does race, diabetes, or study size.

Therefore, our results support the hypothesis that the 9p21 risk locus primarily promotes an
atherosclerotic process and is not associated with a thrombotic or plaque rupture phenotype.
These findings are consistent with several lines of evidence, including significant
associations with: 1) subclinical atherosclerosis (26); 2) coronary calcification (10,11); 3)
carotid atherosclerosis (27); and 4) peripheral arterial disease (28,29). Additionally, these
data are also in line with the observations that 9p21 variants are associated with earlier age
of CAD onset as well as emerging evidence that 9p21 does not predict risk of incident MI
events in those with existing CAD (9,25,30).

Biological studies have also yielded important data suggesting an atherogenic mechanism.
The nearest genes to the non-coding 9p21 region include cyclin-dependent kinase inhibitors
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associated with cell cycling and death, which are relevant to the atherosclerotic process (31).
Visel et al. (32) observed, in a mouse knockout model for the orthologous 9p21 region,
increased expression of these cyclin-dependent kinase inhibitors (CDKN2A and CDKN2B),
with excessive proliferation and diminished senescence of vascular smooth muscle cells
(VSMCs). More recently, Kim et al. (33) reported that CDKN2A knockout mice
demonstrate smaller aortic atheromatous lesions compared with wild-type mice.
Furthermore, the 9p21 variant has been shown to be associated with CDKN2A and
CDKN2B expression in VSMCs, VSMC proliferation, and VSMC content in atherosclerotic
plaque (34), whereas proliferation of neointimal content of macrophages has also been
described (35). These are all key pathological changes implicated in the early development
and progression of atherosclerotic plaques. The exact mechanistic pathway leading to these
events remains to be elucidated, although the regulatory role of the 9p21 region is likely to
involve antisense non-coding ribonucleic acid (ANRIL) at a transcription level (34) and
extensive compensatory regulation of gene expression (33). Thus, our finding of enhanced
atherosclerosis in humans provides robust proof of concept for emerging mechanistic and
murine studies demonstrating a possible proliferative phenotype for the 9p21 risk locus.

Implications
By refining the underlying phenotype, this study has significant implications for our
understanding of the 9p21 risk locus. Firstly, by demonstrating that the mechanism of risk is
likely through development of atherosclerosis, our work helps translate and contextualize
functional studies, which in turn has potential implications for developing novel therapies to
reduce atherosclerotic burden and cardiovascular risk. Secondly, these findings might help
explain why 9p21 does not enhance risk prediction for MI, given that this is a more
downstream phenotype. With expanding use of direct-to-consumer and physician-ordered
testing for 9p21, this work will have greater relevance and will better inform those
interpreting these tests about the actual underlying genetic risk.

Strengths and limitations
The major strength of this study is the collaborative collection of cohorts combining
published and unpublished data, including 14 that had not previously reported on data with
regard to presence of MI in subjects with CAD. We also present the use of a Bayesian
analysis to account for potential heterogeneity from use of different 9p21 markers and
confirm from a statistical perspective that the several 9p21 markers (rs1333049, rs10757278,
and rs2383206) can be used interchangeably in meta-analyses such as this. There are also
some limitations to our study. First, the cohorts with angiographic data are inherently subject
to selection bias, but because our primary objective was to determine differences in disease
burden, this is not a major concern. Second, we noted significant heterogeneity between the
studies, and although it is possible that there were some clinical differences between studies,
such as referral bias in different countries, these are likely to be small, and we devised a
priori subgroup analyses to investigate these further. Third, our phenotype was relatively
crude for assessing CAD burden, and we did not have more details on, for example,
presence of more proximal prognostic disease, but this was unavoidable given that few
cohorts collect extensive CAD scores such as the SYNTAX score (13). Finally, it is possible
that we might have missed a small effect of risk of MI in the context of CAD, but post hoc
power calculations suggested the analysis had >0.95 power to detect an OR of 1.1 for MI
among subjects with CAD. This observation combined with the consistency of the data from
different groups makes it unlikely that the finding is spurious.
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Conclusions
Our analysis reveals that the 9p21 risk locus is associated with greater CAD burden but not
with prevalent MI when both cases and control subjects have documented angiographic
CAD. Taken together our meta-analysis confirms that the primary phenotype mediated by
the 9p21 locus is one of predisposition to greater atherosclerosis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Published Data Search Results Identifying Association Studies for 9p21 and CAD/MI
CAD = coronary artery disease; MI = myocardial infarction.
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Figure 2. Association Between 9p21 and Multivessel CAD as Compared With Single-Vessel CAD
(A) Odds ratio (OR)/copy of risk allele (allelic model).
(B) heterozygote risk versus homozygote non-risk (genotypic model), random-effects
analysis;
(C) homozygote risk versus homozygotes non-risk (genotypic model), random-effects
analysis. Total n = 20,987; 14,232 multivessel disease, 6,755 single-vessel disease. Non-
European ancestry cohorts were not included in the Bayesian analysis. Bayesian analysis
showed no distinguishable differences between rs10757278/rs1333049 and rs2383206, for
which the marginal effect estimate was nearly identical. CI = confidence interval; Bayesian
= Bayesian model; CDCS = Coronary Disease Cohort Study; Cleveland GB = Cleveland
GeneBank Study; D+L = DerSimonian and Laird random effects model; EmCB = Emory
Cardiovascular Biobank; IHCS = Utah Intermountain Heart Collaborative Study; OHGS =
Ottawa Heart Genomics Study; SAS = Southampton Atherosclerosis Study.
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Figure 3. Summary ORs/Copy of 9p21 Risk Allele for Multivessel Versus Single-Vessel CAD
Categorized by subgroups of study size, ethnicity, and diabetes status. CI = confidence
interval; DM = diabetes mellitus; OR = odds ratio.
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Figure 4. Association Between 9p21 and MI in Patients With Underlying CAD
Odds ratios/copy of 9p21 risk allele for MI in subjects with CAD (allelic model), stratified
according to CAD definition (clinical, angiographic stenosis ≥50% or ≥70%). Total n =
33,673; 17,791 CAD+/MI+, 15,882 CAD+/MI−. ADVANCE = Atherosclerotic Disease,
Vascular Function, and Genetic Epidemiology; CAD/MI+ = cases with history of MI and
underlying CAD; CAD/M− = control subjects without history of MI but with underlying
CAD; LCAS = Lipoprotein and Coronary Atherosclerosis Study; PROCARDIS =
Precocious Coronary Artery Disease; WTCCC = Wellcome Trust Case-Control Consortium;
other abbreviations as in Figures 1, 2, and 3.
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