Skip to main content
. Author manuscript; available in PMC: 2014 Apr 1.
Published in final edited form as: J Multivar Anal. 2013 Jan 23;116:10.1016/j.jmva.2013.01.005. doi: 10.1016/j.jmva.2013.01.005

Table 2.

Comparison of the performances on estimating the precision matrix Θ by the two-stage procedure, the iterative selection procedure of [10], a neighbor-based selection procedure [14] and the Gaussian graphical model using glasso [13], where Δ = Θ − Θ̂.

Method AUC SPE SEN MCC ‖Δ‖ ‖|Δ|‖ ‖Δ‖2 ‖Δ‖F
Model 1: (p, q, n)=(100, 100, 250)
Two-stage 0.91 0.99 0.49 0.56 0.32 1.18 0.68 3.24
Iterative 0.91 0.99 0.48 0.56 0.33 1.17 0.67 3.18
glasso 0.81 0.97 0.24 0.21 0.69 1.89 1.12 5.19
Neighbor 0.86 0.99 0.38 0.48
Model 2: (p, q, n)=(50, 50, 250)
Two-stage 0.91 0.97 0.69 0.65 0.35 1.31 0.73 2.43
Iterative 0.92 0.98 0.69 0.66 0.37 1.30 0.72 2.36
glasso 0.74 0.87 0.37 0.18 0.75 2.12 1.20 4.57
Neighbor 0.88 0.95 0.60 0.48
Model 3: (p, q, n)= (25, 10, 250)
Two-stage 0.89 0.91 0.76 0.62 0.23 0.90 0.51 1.20
Iterative 0.89 0.91 0.76 0.62 0.24 0.90 0.52 1.21
glasso 0.57 0.43 0.73 0.12 0.65 1.99 1.12 2.77
Neighbor 0.85 0.84 0.68 0.44
Model 4: (p, q, n)=(1000, 200, 250)
Two-stage 0.93 1 0.32 0.51 0.46 1.77 0.91 13.42
Iterative 0.90 1 0.31 0.47 0.59 1.81 0.97 13.48
glasso 0.88 0.98 0.08 0.02 0.71 2.86 1.31 19.82
Neighbor 0.87 1 0.12 0.16
Model 5: (p, q, n)=(800, 200, 250)
Two-stage 0.93 1 0.21 0.45 0.48 1.80 0.97 12.58
Iterative 0.89 1 0.21 0.34 0.75 2.30 1.20 12.82
glasso 0.87 0.97 0.07 0.02 0.76 2.97 1.40 18.39
Neighbor 0.87 0.96 0.61 0.19
Model 6: (p, q, n)=(400, 200, 250)
Two-stage 0.79 1 0.05 0.20 0.39 1.56 0.79 7.13
Iterative 0.75 1 0.05 0.21 0.44 1.55 0.77 6.86
glasso 0.71 0.95 0.03 −0.01 0.69 2.72 1.22 11.01
Neighbor 0.73 0.99 0.08 0.10