Table 2.
Comparison of the performances on estimating the precision matrix Θ by the two-stage procedure, the iterative selection procedure of [10], a neighbor-based selection procedure [14] and the Gaussian graphical model using glasso [13], where Δ = Θ − Θ̂.
Method | AUC | SPE | SEN | MCC | ‖Δ‖∞ | ‖|Δ|‖∞ | ‖Δ‖2 | ‖Δ‖F |
---|---|---|---|---|---|---|---|---|
Model 1: (p, q, n)=(100, 100, 250) | ||||||||
Two-stage | 0.91 | 0.99 | 0.49 | 0.56 | 0.32 | 1.18 | 0.68 | 3.24 |
Iterative | 0.91 | 0.99 | 0.48 | 0.56 | 0.33 | 1.17 | 0.67 | 3.18 |
glasso | 0.81 | 0.97 | 0.24 | 0.21 | 0.69 | 1.89 | 1.12 | 5.19 |
Neighbor | 0.86 | 0.99 | 0.38 | 0.48 | ||||
Model 2: (p, q, n)=(50, 50, 250) | ||||||||
Two-stage | 0.91 | 0.97 | 0.69 | 0.65 | 0.35 | 1.31 | 0.73 | 2.43 |
Iterative | 0.92 | 0.98 | 0.69 | 0.66 | 0.37 | 1.30 | 0.72 | 2.36 |
glasso | 0.74 | 0.87 | 0.37 | 0.18 | 0.75 | 2.12 | 1.20 | 4.57 |
Neighbor | 0.88 | 0.95 | 0.60 | 0.48 | ||||
Model 3: (p, q, n)= (25, 10, 250) | ||||||||
Two-stage | 0.89 | 0.91 | 0.76 | 0.62 | 0.23 | 0.90 | 0.51 | 1.20 |
Iterative | 0.89 | 0.91 | 0.76 | 0.62 | 0.24 | 0.90 | 0.52 | 1.21 |
glasso | 0.57 | 0.43 | 0.73 | 0.12 | 0.65 | 1.99 | 1.12 | 2.77 |
Neighbor | 0.85 | 0.84 | 0.68 | 0.44 | ||||
Model 4: (p, q, n)=(1000, 200, 250) | ||||||||
Two-stage | 0.93 | 1 | 0.32 | 0.51 | 0.46 | 1.77 | 0.91 | 13.42 |
Iterative | 0.90 | 1 | 0.31 | 0.47 | 0.59 | 1.81 | 0.97 | 13.48 |
glasso | 0.88 | 0.98 | 0.08 | 0.02 | 0.71 | 2.86 | 1.31 | 19.82 |
Neighbor | 0.87 | 1 | 0.12 | 0.16 | ||||
Model 5: (p, q, n)=(800, 200, 250) | ||||||||
Two-stage | 0.93 | 1 | 0.21 | 0.45 | 0.48 | 1.80 | 0.97 | 12.58 |
Iterative | 0.89 | 1 | 0.21 | 0.34 | 0.75 | 2.30 | 1.20 | 12.82 |
glasso | 0.87 | 0.97 | 0.07 | 0.02 | 0.76 | 2.97 | 1.40 | 18.39 |
Neighbor | 0.87 | 0.96 | 0.61 | 0.19 | ||||
Model 6: (p, q, n)=(400, 200, 250) | ||||||||
Two-stage | 0.79 | 1 | 0.05 | 0.20 | 0.39 | 1.56 | 0.79 | 7.13 |
Iterative | 0.75 | 1 | 0.05 | 0.21 | 0.44 | 1.55 | 0.77 | 6.86 |
glasso | 0.71 | 0.95 | 0.03 | −0.01 | 0.69 | 2.72 | 1.22 | 11.01 |
Neighbor | 0.73 | 0.99 | 0.08 | 0.10 |