Skip to main content
. 2013 May 14;8(5):e63708. doi: 10.1371/journal.pone.0063708

Table 1. Results of the Linear Mixed Effect models for the AUC, Kappa, IFK, FGM and DFAC (deviance from average variable contribution).

Algorithms AUC Kappa IFK FGM DFAC
Max vs ANN (+) *** (+) *** (+) *** (+) *** (−) ***
Max vs GAM ns ns ns ns (−) ***
Max vs GBM (+) *** (+) *** ns (−) *** (+) ***
Max vs GLM (+) *** (+) *** ns ns (−) ***
Max vs RF (+) *** ns ns (−) *** (+) ***
Max vs Con (−) * (+) *** (+) ** ns Na
ANN vs GAM (−) *** (−) *** (−) *** (−) *** (+) ***
ANN vs GBM (−) ** (−) *** (−) *** (−) *** (+) ***
ANN vs GLM (−) *** (−) *** (−) *** (−) *** ns
ANN vs RF (−) * (−) *** (−) *** (−) *** (+) ***
ANN vs Con (−) *** (−) *** (−) *** (−) *** na
GAM vs GBM (+) *** ns ns (−) *** (+) ***
GAM vs GLM (+) * ns ns ns (−) ***
GAM vs RF (+) *** ns ns (−) *** (+) ***
GAM vs Con (−) *** (+) * ns ns na
GBM vs GLM ns ns ns (+) *** (−) ***
GBM vs RF ns ns ns (−) ** (+) ***
GBM vs Con (−) *** ns ns (+) *** na
GLM vs RF ns ns ns (−) *** (+) ***
GLM vs Con (−) *** ns ns ns na
RF vs Con (−) *** (+) * ns (+) *** na
Max vs Records (−) *** ns ns (−) ** na
ANN vs Records ns (+) * (+) * ns na
GAM vs Records (−) *** ns ns (−) ** na
GBM vs Records (−) * ns ns (−) *** na
GLM vs Records (−) ** ns ns (−) ** na
RF vs Records (−) * ns ns (−) *** na
Con vs Records (−) *** ns ns (−) *** na
Max vs Distribution (−) * ns ns (−) * na
ANN vs Distribution ns (+) *** (+) ** (+) * na
GAM vs Distribution ns ns ns (−) ** na
GBM vs Distribution ns ns ns ns na
GLM vs Distribution ns ns ns (−) * na
RF vs Distribution ns ns ns ns na
Con vs Distribution ns ns ns ns na

The significance of the pairwise algorithms comparisons, their interaction with the number of records and spatial distribution is presented. The positive and negative signs apply for the first algorithm being compared against the second. For the first four measures the positive sign points to algorithms that render higher values -better fits and maps similarities. In the DFAC, the negative signs point to a more consistent algorithm as it renders lower deviances than the second. Max = Maxent, Con = Consensus approach; ns = no significant; na = not applicable. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. Corrected Tukey’s P values reported.