
Stouffer’s Test in a Large Scale Simultaneous Hypothesis
Testing
Sang Cheol Kim1, Seul Ji Lee2, Won Jun Lee2, Young Na Yum3, Joo Hwan Kim3, Soojung Sohn3, Jeong

Hill Park2, Jeongmi Lee4, Johan Lim5*, Sung Won Kwon2*

1 Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea, 2 College of Pharmacy, Seoul National University,

Seoul, Republic of Korea, 3 Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug

Administration, Seoul, Republic of Korea, 4 School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea, 5 Department of Statistics, Seoul National University,

Seoul, Republic of Korea

Abstract

In microarray data analysis, we are often required to combine several dependent partial test results. To overcome this, many
suggestions have been made in previous literature; Tippett’s test and Fisher’s omnibus test are most popular. Both tests
have known null distributions when the partial tests are independent. However, for dependent tests, their (even,
asymptotic) null distributions are unknown and additional numerical procedures are required. In this paper, we revisited
Stouffer’s test based on z-scores and showed its advantage over the two aforementioned methods in the analysis of large-
scale microarray data. The combined statistic in Stouffer’s test has a normal distribution with mean 0 from the normality of
the z-scores. Its variance can be estimated from the scores of genes in the experiment without an additional numerical
procedure. We numerically compared the errors of Stouffer’s test and the two p-value based methods, Tippett’s test and
Fisher’s omnibus test. We also analyzed our microarray data to find differentially expressed genes by non-genotoxic and
genotoxic carcinogen compounds. Both numerical study and the real application showed that Stouffer’s test performed
better than Tippett’s method and Fisher’s omnibus method with additional permutation steps.
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Introduction

We frequently encounter complex hypothesis testing problems

that require the combination of several independent or dependent

test results. For example, in our experiment motivating this work,

we wanted to assess the pharmacological effects of carcinogens on

gene expression levels. As carcinogens can be classified as

genotoxic and non-genotoxic, depending on the mechanism of

action, we wanted to understand the total mechanism of

carcinogen action through the comparison of gene expression

patterns for these two groups. The experiments were individually

conducted for 3 genotoxic carcinogens (2-AAF, 39MeDAB and

DEN) and 3 non-genotoxic carcinogens (clofibrate, DL-ethionine

and 1,4-dioxane). Both had their own control group and the

experiments were repeated three times. In both genotoxic and

non-genotoxic experiments, we tested the expression levels of each

compound and the common control. We thereby obtained three

p-values, which are dependent on each other by sharing the

common control group. In this example, the test for each

compound is denoted as a partial test for the hypothesis on

expression levels of the compound. The null hypothesis for the

pharmacological effects of carcinogens is written as the intersection

of three hypotheses for three compounds, which is denoted as a

complex hypothesis.

A lot of previous literature has reported the combination of

partial tests of a complex hypothesis [1]. Below, we have listed a

few commonly used combining functions. Suppose we have K

partial tests for the g-th gene and their p-values are p
g
1,p

g
2,:::,pg

K.

Tippett (1931) [2] proposed to use

CT
g
T~minK

k~1p
g
k ð1Þ

whose null distribution, if the Kpartial tests are independent and

continuous, is the minimum of K independent uniform random

variables on (0,1): For a dependent partial test, it allows for

bounds on the rejection probability according to the Bonferroni

inequality. Fisher (1932) [3] proposed to use

CT
g
F~{2

XK

k~1
logp

g
k ð2Þ

which is often called Fisher’s omnibus test and Fisher’s omnibus

function. It is well known that if the Kpartial test statistics are

independent and continuous, then the null distribution of CT
g
F

follows a central X2 distribution with 2K degrees of freedom.

Stouffer (1949) [4] and Liptak (1958) [5] proposed to use
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CTg
z~

XK

k~1
W{1(1{p

g
k)=K~

XK

k~1
z

g
k=K ð3Þ

where W(.) is the standard normal cumulative distribution

function. Again, if the K partial test statistics are independent

and continuous, then its null distribution is normally distributed

with mean 0 and variance 1=K: The classical methods are well

reviewed by Owen (2009) [6].

Unlike the case of independent partial test statistics, the exact

distribution of the combined statistics are unknown if they are

dependent to each other. The most common remedy to dependent

partial test statistics is to approximate their null distributions using

additional resampling-based procedure. The permutation proce-

dure is the most common additional procedure to get the null

distribution of the combined tests. However, when applied to the

microarray data analysis, it has at least two shortcomings. First, the

microarray data analysis commonly tests a huge number of genes

simultaneously, in which the test of each gene is based on

combining several dependent partial tests; this arises in our

motivating example, which will be introduced in the section

‘‘Materials and Model’’. Thus, it is computationally heavy.

Second, the multiple testing procedure in microarray data analysis

often makes a decision among small p-values; the thresholding

value to find DEGs is quite small. Thus, the required number of

permutations should also be very large. For example, to

approximate well the true p-value p-5, the number of permutation

samples should be much larger than p5: This, along with the first

shortcoming, makes the resampling-based procedure inconvenient

for large-scale microarray data analysis (see Westfall and Young

(1993) [7] and references therein).

Some theoretical approximations to the null distribution are

also reported in the literature. Brown (1975) [8] assumes that the

partial statistics are from multivariate normal distribution with

known covariance matrix, and develops an approximation to the

null distribution of Fisher’s statistic CT
g
F: Kost and McDermott

(2002) [9] extend the Brown’s approximation to the partial

statistics, which are distributed as multivariate t-distribution with

common denominator. Recently, Yang (2010) [10] thoroughly

compare existing approximations to the null distribution of

Fisher’s statistic, which include the aforementioned two approx-

imations and that based on permutations.

Despite much interest, all existing approximations on dependent

partial test statistics are focused on single hypothesis testing, and

their applications to multiple hypothesis testing are not studied

much. In multiple testing problem, many replications of partial test

statistics are available and their dependent structure (covariance

matrix) can be estimated from data. For example, in microarray

data to find differentially expressed genes (DEGs), we would

compute a set of partial test statistics for each gene, and have many

sets of partial test statistics; the number of sets is equal to the

number of genes in the data.

In this paper, we propose to estimate dependence structure

(covariance matrix) of partial test statistics from this replication

over genes. In particular, we are interested in CTg
z, Stouffer’s test,

which, in theory, is normally distributed with mean 0 and

unknown variance even for ‘‘dependent partial test statistics’’.

Thus, the dependence of partial test statistics can simply be

estimated by estimating their covariance matrix. Our newly

proposed procedure can be interpreted as a data dependent

version of Brown (1975) [8] and Kost and McDermott (2002) [9].

They make theoretical derivation (approximation) on null

distribution of combined test statistic under strong distributional

assumption to the data. On other hand, we assume the covariance

matrix of partial test statistics are same over genes, and estimate it

from observed statistics. The null distribution of CTg
z , Stouffer’s

test statistic, is evaluated as the normal distribution with mean 0

and the variance from the estimated covariance matrix.

We proposed a two-step procedure to estimate var(CTg
z): In the

first step, we conservatively chose the number of true null genes by

plotting the histogram of CTg
z : We chose genes that satisfied

DCTg
z Dc for an appropriately chosen c to guarantee the selected

genes are surely equally expressed. Details on the choice of c are

followed in the section ‘‘Combined test using z-scores’’. In the

second step, we estimated the common covariance matrices of

zg~(z
g
1,:::,zg

K) from pre-detected null genes in the first step, where

z
g
k~W{1(1{p

g
k): The first step might not be required if the

proportion of null gene was close to one.

In this study, we describe (1) the preparation of samples that

motivated the experiment, (2) the procedure to find differentially

expressed genes (DEGs) using Stouffer’s z-score based method, (3)

the numerical comparison of the receiver operating characteristic

(ROC) curves of the Stouffer’s test CTg
z and two p-value based

procedure, CTT and CTF, and (4) the investigation of differen-

tially expressed genes (DEGs) between (i) control and non-

genotoxic compounds, and (ii) control and genotoxic compounds.

Materials and Models

Ethics Statement
All animal procedures were approved by the Institutional

Animal Care and Use Committee of NIFDS (0901KFDA029).

Microarray Design
We conducted a series of microarray experiments to understand

carcinogenicity of compounds in view of toxicogenomics. There

were six target compounds: 2-acetaminofluorene (2-AAF),

39methyldimethylaminoazobenzene (39MeDAB), N-nitrosodiethy-

lamin (DEN), clofibrate, DL-ethionine and 1,4-dioxane, which are

well-known carcinogens. Among them, 2-AAF, 39MeDAB and

DEN have genotoxicity; it was reported that 2-AAF and

39MeDAB bind to DNA and cause hepatocarcinogenesis by

DNA adduct formation [11] [12], while DEN has genotoxicity

since a mutagenic effect was observed in the comet assay [13].

Figure 1. Structures of three genotoxic compounds.
doi:10.1371/journal.pone.0063290.g001

Usage of Z-Scores by Stouffer’s Test
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Clofibrate, DL-ethionine and 1,4-dioxane are classified as non-

genotoxic carcinogens. It was reported that clofibrate, a peroxi-

some proliferator, stimulates the peroxisomal fatty acid beta-

oxidation system and accordingly causes non-genotoxic cancer

[14]. DL-ethionine was related to intrachromosomal recombina-

tion [15], and 1,4-dioxane was classified as a non-genotoxic since

it had no activity in DNA repair assay [16]. Each compound

dissolved in vehicle control was administered into rats. Once

toxicity appeared, microarray was performed by using livers taken

from the rats. To adjust errors in animal study, each compound

was repeatedly administered into three individual rats (table 1).

Only vehicle control was administered into three individual rats to

produce control group. The structures of the three genotoxic and

three non-genotoxic compounds are shown in Figure 1 and 2. And

control was corn oil. The data sets are available from GEO,

GSE31307.

Statistics Design
The experiments for genotoxic and non-genotoxic agents are

designed to have four arms: one arm for the control and three

arms for the carcinogenic compounds. Each arm has three

replicates that record the expression levels of 30,199 genes. The

main goal of the study was to find a list of genes that show

differential expression between (A1) control versus genotoxic

carcinogen, (A2) control versus non-genotoxic carcinogen. To do

this, we tested the hypothesis for the g-th gene with g~1,2,:::,G,

H
g
0 : the expression level of the g-thgene is not differentially

expressed. Thereby, three partial test results for three genotoxic (or

non-genotoxic) compounds were obtained and the results were

combined to test the hypothesis H
g
0:

Results and Discussion

Combined Test using z-scores
We recalled the hypothesis for the g-th gene H

g
0 that the

g-thgene is not differentially expressed between two comparison

groups, the control versus each of the genotoxic (or non-genotoxic)

compounds. As stated in the experimental section, we had three

partial tests for three compounds, 2-AAF, 39MeDAB, and DEN

(or clofibrate, ethionine, and 1,4-dioxane). We let t
g
k, z

g
k, and p

g
k,

for, k~1,2,3, g~1,2,:::,G, be their testing statistics, z-scores, and

p-values.

First, let us consider the tests for the aims (A1) and (A2) in the

experimental section. For these goals, Tippett’s test

CT
g
T~min(p

g
1,p

g
2,p

g
3)

and Fisher’s omnibus test

CT
g
F~{2(logp

g
1zlogp

g
2zlogp

g
3)

would be the two most common combining functions to test H
g
0:

The reference distributions for both are well understood when test

statistics t
g
ks are independent of each other. However, in our

example, test statistics of partial tests share a common control

group, and they are dependent on each other. Thus, null

distributions of both CTTand CTFare not available analytically.

The re-sampling-based procedures, or permutation procedure

more specifically, are commonly used to approximate the null

distributions of CT
g
T, and CT

g
F: In this paper, we proposed to use

z-score rather than p-value. The z-score for gene g is defined as

z
g
k~W-1(G0(t

g
k)), for k~1,2,3,g~1,2,:::,G,

where G0 is the cumulative distribution function (CDF) of the test

statistics tg under the null (A1) or (A2). Here, G~30199: Under

the null, it has the standard normal distribution. We proposed to

use Stouffer’s statistic

CTg
z~(z

g
1zz

g
2zz

g
3)=3,

and, under the null, it has a normal distribution with mean 0 and

variance

vg~Var(CTg
z)~

X3

i~1

X3

j~1
sg

ij=32 ð4Þ

where s
g
ij~cov(z

g
i ,z

g
j ): In practice, s

g
ijs are unknown but can be

estimated from the replicates of (z
g
1,z

g
2,z

g
3) over genes under the

assumption that they are equal over equally expressed genes.

Now we introduce the two-step procedure to estimate the null

distribution. In the first step, we select the null genes by plotting

the histograms of CTg
z : We select the genes with DCTg

z Dc for an

appropriately chosen c: The thresholding value c is chosen to

satisfy ‘‘zero assumption’’ by Efron (2004) [17], which is also

termed ‘‘purity’’ by Genovese and Wasserman (2004) [18]. The

details on the choice of c is very same with that in Efron (2004)

[17]. We then estimate the covariance matrices of |zg~(z
g
1,z

g
2,z

g
3)

using the sample covariance matrixes of the selected genes. To be

specific,

Figure 2. Structures of three non-genotoxic compounds.
doi:10.1371/journal.pone.0063290.g002

Table 1. The design of the microarray experiments.

Genotoxic Carcinogen Control 2-AAF 39MeDAB DEN

# of replicates 3 3 3 3

Non-genotoxic Carcinogen Control clofibrate DL-
ethionine

1,4-dioxane

# of replicates 3 3 3 3

doi:10.1371/journal.pone.0063290.t001
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ŜS~S~

S11 S12 S13

S21 S22 S23

S31 S23 S33

0
B@

1
CA

where I~fg : DCTg
z Dvcg, ��zz�zzi~

P
g[I z

g
i =DID, and

sij~
1

DID

X
g[I

(z
g
i {

��zz�zzi)(z
g
j {

��zz�zzj)

for i,j~1,2,3: Finally, the variance of CTg
z is estimated by

v̂vg~Var(CTg
z)~

X3

i~1

X3

j~1
S

g
ij=32:

In summary, the procedure of this paper is:

S1) Find the z-scores �z
g~(z

g
1,z

g
2,z

g
3) for g~1,2,:::,G:

S2) Compute the Stouffer’s test statistic CTg
z~(z

g
1zz

g
2zz

g
3)=3:

S3) Find the set I~fg : DCTg
z Dvcg, for c satisfying Efron’s zero

assumption.

S4) Compute the estimate of variance of CTg
z, which is notated

as v̂vg:

Figure 3. Boxplot of ROC curves for (A1) and (A2). (a, b) are for the standard normal distribution; (c, d) are for the t-distribution with degrees of
freedom 5; and (e, f) are for the gamma distribution with parameters 3 and 1. Here, the number of samples in (a), (c), (e) are 5, and the number of
samples in (b), (d), (f) are 20.
doi:10.1371/journal.pone.0063290.g003

Table 2. Summarized rank statistics of 200 DEGs among 4000 genes (A1 and A2).

N = 5

Mean SD

1st Qu. Median Mean 3rd Qu. Max 1st Qu. Median Mean 3rd Qu. Max

Normal Dunnett 82.24 221.18 443.16 558.56 3589.85 10.32 14.42 25.12 43.52 324.07

Fisher 59.03 145.21 331.24 356.42 3384.30 3.68 10.88 35.32 46.79 472.84

Tippett 83.83 217.17 435.04 525.01 3391.70 8.28 17.99 39.80 60.59 384.98

Stouffer 58.36 142.98 297.16 333.36 3203.95 3.53 11.90 29.57 37.66 669.17

T Dunnett 94.70 284.28 638.28 804.97 3761.55 11.40 32.92 52.56 100.11 99.21

Fisher 69.02 210.02 540.59 600.76 3895.35 6.30 22.12 50.20 87.10 141.64

Tippett 96.59 286.72 630.83 813.27 3909.70 8.47 25.55 51.59 101.63 118.24

Stouffer 66.00 195.83 491.50 546.64 3858.45 5.52 18.22 44.13 77.75 113.96

Gamma Dunnett 201.17 689.35 1137.75 1873.45 3797.55 36.32 93.63 67.96 168.90 10.00

Fisher 125.26 533.98 1025.33 1666.00 3954.50 20.07 65.32 69.14 160.15 44.74

Tippett 212.86 724.78 1135.55 1812.45 3947.35 32.05 96.81 70.72 147.74 45.10

Stouffer 113.16 460.48 911.77 1407.05 3939.35 14.60 52.96 62.11 125.25 94.28

N = 20

Mean SD

1st Qu. Median Mean 3rd Qu. Max 1st Qu. Median Mean 3rd Qu. Max

Normal Dunnett 50.75 100.55 101.86 150.35 286.90 0.00 0.22 0.64 0.37 74.54

Fisher 94.10 94.10 101.23 94.10 230.63 1.97 1.97 0.59 1.97 51.43

Tippett 78.73 78.73 102.55 95.50 276.10 3.85 3.85 0.91 32.08 77.43

Stouffer 50.75 100.50 100.79 150.25 227.20 0.00 0.00 0.32 0.22 41.81

T Dunnett 54.23 122.70 251.45 268.41 2953.50 1.79 8.10 32.92 33.16 622.52

Fisher 44.60 106.39 205.35 200.29 3024.65 13.69 3.55 24.06 16.08 628.35

Tippett 52.24 119.87 251.48 264.62 3035.30 3.14 4.46 31.48 24.51 620.30

Stouffer 51.24 106.13 189.69 195.46 2540.95 0.74 2.62 18.38 15.17 619.45

Gamma Dunnett 51.88 117.38 271.52 274.95 3206.30 1.13 4.95 32.57 41.75 679.76

Fisher 31.28 105.19 205.27 193.93 2919.50 2.95 2.97 22.90 17.40 614.13

Tippett 52.60 117.45 255.89 262.48 3021.90 2.32 6.03 29.03 42.12 459.53

Stouffer 50.95 104.03 189.85 187.89 2540.40 0.52 2.30 20.88 14.95 769.03

doi:10.1371/journal.pone.0063290.t002
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S5) Test the expression levels of gene g, using statistic CTg
z=

ffiffiffiffiffi
v̂vg
p

and standard normal distribution.

Numerical Study
We numerically compared the powers of Stouffer’s test,

Tippett’s test and Fisher’s omnibus test. In comparison, we

additionally consider Dunnett’s test (Dunnett (1955) [19]), which

tests the difference between multiple treatment groups to a single

control group. The p-values of Tippett’s test and Fisher’s omnibus

test were approximated by additional permutation procedures.

For the study, we generated data sets that had the same

structure (or dimension) as that of our motivating example. To be

specific, we had one control group and three compound (agent)

groups and changed the number replicates in each group to 5 and

20. We fixed the total number of genes at 4,000, and the number

of differentially expressed genes (DEGs) at 200. Thus, the number

of equally expressed genes (EEGs) was 3,800. Let y
g
ik be the

expression level of the g-th gene for the k-th replicates of the i-th
compound. Here, g~1,2,:::,4000, i~1,2,3 and k~0,1,:::,5 (or

20); i~0 indicated the control group. We assumed that, for the

control group, y
g
0k~eg

0k; for the compound groups i~1,2,3,

y
g
ik~f

mgze
g
ik i~1,2,3, g~1,2,:::,200

eg
ik i~1,2,3, g~201,202,:::,4000

where mg is fixed as 1.5, e
g
iks are independently and identically

distributed (IID) from the normal distribution with mean 0 and

variance 1; the t-distribution with 5 degrees of freedom (dfs); and

the gamma distribution with parameters 3 and 1. We used 5,000

permuted samples in doing CTT and CTF:
Figure 3 compared the receiver operating characteristic curves

(ROCs) of three methods, CTT, CTF, and CTzfor each error

distribution. Figure 3 (a, b) are for the standard normal

distribution; Figure 3 (c, d) are for the t-distribution with degrees

of freedom 5; and Figure 3 (e, f) are for the gamma distribution

with parameters 3 and 1. Here, the number of replicates (k in the

model above) in (a), (c), (e) is 5, and the number of replicates in (b),

(d), (f) is 20.

The ROC curve plots two accuracy measures, false positive rate

(FPR) and true positive rate (TPR), of a test, where the FPR is the

probability that the test mistakenly detects the EEGs as DEGs, and

the TPR is the probability that it correctly detects the DEGs. In

each data set, we estimated their probabilities as portion

FbPPR~
# of EEGs whose H

g
0 is rejected:

total # of EEGs:

and

TbPPR~
# of DEGs whose H

g
0 is rejected:

total # of DEGs:

with various critical values for tests. The plot is the average of

FbPPRs and TbPPRs over 20 data sets simulated from the model

described above. It shows that Stouffer’s test has the highest

statistical power (specificity) in detecting differentially expressed

genes, whereas Tippett’s procedure performs worst among three

procedures based on p-values or z-scores. In addition, the

computational burden of CTz was much lighter than CTF, which

relied on an additional re-sampling procedure. Dunnett’s test

performs worse than all others in overall.

Table 2 summarized rank statistics of 200 DEGs among 4000

genes. In the table, we reported the averages of the quantiles of

ranks of 200 DEGs (among 4000 genes) over 20 simulated data

sets. Lower ranks of DEGs tells the higher detectability of DEGs

by a given procedure.

Table 3 summarized the true FDR from 20 data sets. For each

simulated data set, the FDR was controlled using q-value by

Storey [20]) and the true FDR was evaluated (in the simulated

data set, we have a list of 200 DEGs). When sample size is small

(N = 5), the FDRs are slightly larger than the targetted FDR in all

procedures. However, as the sample size increases (N = 20), the

FDR is better controlled at the targetted level (0.1 or 0.2 in the

table). In particular, the FDR levels of Tippett’s test and Fisher’s

omnibus test are close to the aimed level, whereas the Stouffer’s

test gives the FDR value lower than the target. This indicates that

the proposed procedure using Stouffer’s test is rather conservative

in detecting DEGs. It is reassured from the data example in next

section.

Data Example
We analyzed the microarray data described in the experimental

section. The data sets are available from GEO (Gene Expression

Omnibus; http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE31307). The data aimed to understand genotoxicity

and carcinogenicity of compounds in view of systems toxicology.

In the microarray data, 2-AAF, 39MeDAB and DEN were known

Table 3. Summary of FDR estimates based on 20 data sets
having 200 DEGs among 4000 genes (A1 and A2).

FDR = 0.1 FDR = 0.2

Normal N = 5 Dunnett 0.61 (0.02) 0.69 (0.02)

Fisher 0.10 (0.06) 0.22 (0.05)

Tippett 0.17 (0.20) 0.22 (0.11)

Stouffer 0.03 (0.08) 0.11 (0.06)

N = 20 Dunnett 0.18 (0.03) 0.31 (0.03)

Fisher 0.11 (0.02) 0.21 (0.03)

Tippett 0.11 (0.02) 0.22 (0.03)

Stouffer 0.01 (0.01) 0.02 (0.01)

T N = 5 Dunnett 0.59 (0.03) 0.68 (0.02)

Fisher 0.14 (0.09) 0.22 (0.08)

Tippett 0.20 (0.19) 0.24 (0.11)

Stouffer 0.03 (0.07) 0.07 (0.08)

N = 20 Dunnett 0.18 (0.03) 0.31 (0.03)

Fisher 0.10 (0.02) 0.20 (0.04)

Tippett 0.10 (0.02) 0.19 (0.03)

Stouffer 0.04 (0.02) 0.09 (0.02)

Gamma N = 5 Dunnett 0.74 (0.03) 0.78 (0.02)

Fisher 0.22 (0.23) 0.26 (0.12)

Tippett 0.55 (0.39) 0.49 (0.36)

Stouffer 0.33 (0.41) 0.13 (0.12)

N = 20 Dunnett 0.18 (0.03) 0.30 (0.05)

Fisher 0.10 (0.03) 0.19 (0.04)

Tippett 0.10 (0.03) 0.21 (0.03)

Stouffer 0.04 (0.02) 0.09 (0.03)

doi:10.1371/journal.pone.0063290.t003
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Figure 4. Venn diagram of selected DEGs of genotoxic carcinogen using three methods (Tippett, Fisher, Stouffer) a = 0.001.
doi:10.1371/journal.pone.0063290.g004

Figure 5. Venn diagram of selected DEGs of non-genotoxic carcinogen using three methods (Tippett, Fisher, Stouffer) a = 0.001.
doi:10.1371/journal.pone.0063290.g005

Usage of Z-Scores by Stouffer’s Test

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e63290



as genotoxic carcinogens, and clofibrate, ethionine and 1,4-

dioxane were known as non-genotoxic carcinogens.

We preprocessed the data before the analysis using the RMA

(Robust Multi-array Average) method. The RMA method was

developed by Bolstad et al. (2003) [21] for the normalization of

Affymetrix GeneChip array data. The RMA method is a three-

step procedure: (1) Background correction and data transforma-

tion; (2) Normalization at the probe level using the quantile

method; and (3) Model parameter adjustment to get normalized

expression levels. The RMA method is freely available from the

bioconductor website (http://bioconductor.org).

We found the DEGs from the control in non-genotoxic and

genotoxic carcinogens. In each of non-genotoxic and genotoxic

carcinogens, we assumed that y
g
ik for i~1,2,3 had the common

mean m
g
1 whereas y

g
0k had the mean m

g
0, for the g-th gene. We

tested

H
g
0 : mg

1~m
g
0

using CT
g
T, CT

g
F and CTg

z : The p-values of CT
g
T and CT

g
F were

approximated by the permutation method with 5,000 permutation

samples. On the other hand, the p-value of CTg
z was computed as

p-value~2f1-W(DCTg
z D=

ffiffiffiffiffi
v̂vg
p

)g,

where

v̂vg~vbaar(CTg
z)~

X3

i~1

X3

j~1
s

g
ij=9

and s
g
ij~cboov(z

g
i ,z

g
j ),which was estimated as the sample covariance

Table 4. The number of selected genes.

Method Tippett Fisher Stouffer

G NG G NG G NG

a= 0.010 1984 1046 1611 1623 1316 1202

a= 0.001 261 88 266 239 216 160

FDR = 0.05 209 12 266 137 5 2

In the table, a implies the significant level of the test. ‘‘G’’ and ‘‘NG’’ imply
genotoxic compound and non-genotoxic compound, respectively. The genes
were selected at the significance level 0.001.
doi:10.1371/journal.pone.0063290.t004

Figure 6. The genes that show significant differences in expression between control and genotoxic carcinogens. Each entity
represents protein transcribed from selected DEGs and an arrow indicates a connection: (a) Tippett, (b) Fisher, (c) Stouffer.
doi:10.1371/journal.pone.0063290.g006
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of z
g
i and z

g
j over g~1,2,:::,30199: The DEGs were selected to

make Type I error be smaller than 0.05 in all cases.

Figures 4 and 5 are Venn diagrams showing how the selected

genes were distributed in the three methods. Figure 4 is the plot for

the genotoxic carcinogens and Figure 5 is that for non-genotoxic

carcinogens. The figures showed that the selected genes by z-score

method were more similar to those by Fisher’s method than by

Tippett’s method. This would not be unexpected as it can be seen

in both CTz and CTF averaged outcomes of three partial tests

whereas CTT took the minimum of them.

The number of selected genes is summarized in Table 4.

The genes, which were obtained through three different

methods, were interpreted based on DAVID gene ontology

database. In case of Tippett’s method, between 261 DEGs

(a= 0.001) of genotoxic carcinogen, 10 genes such as Opa1,

AIMP, YWHAB, etc., were considered as marker candidates

among 259 genes whose expression was altered in the presence of

genotoxic carcinogen. The other two genes were excluded as they

revealed the same response when the non-genotoxic carcinogen

administered. Similarly, 12 genes such as Stk3, CTNNBL1,

PPP1F15A, etc., were selected among 266 genes as promising

marker candidates by Fisher’s method and 17 genes such as

PPP2R2B, tnfrsf11b, acvr1, etc., were selected among 216 genes

by Stouffer’s method. Consequently, the proportion of marker

candidates in selected genes obtained by Stouffer’s method was the

largest among those three methods. In particular, 9 genes such as

pawr, Opa1, STK17B, AEN, FASTKD3, YWHAB, Stk3, ALS2

and CIDEC demonstrated high significance consistently in more

than two different methods.

Through screening by Tippett’s method, 88 DEGs (a= 0.001)

of non-genotoxic carcinogen were chosen. Among 86 genes, whose

expression was transformed in the presence of non-genotoxic

carcinogen within 88 genes, 15 genes such as snai1, mgea5, Pcsk6,

etc., were further selected as marker candidates according to their

mechanisms. In addition, 25 genes such as EDNRA, Pgcp,

ABHD2, etc., were chosen as potent maker candidates among 239

genes by Fisher’s method and 28 genes such as MTDH, GCH1,

ADH4, etc., were selected among 160 genes by Stouffer’s method.

As a result, the proportion of marker candidates in selected genes

obtained by Stouffer’s method was the highest among those three

methods. Remarkably, 6 genes such as Tsg101, EDNRA1,

EDNRA2 EDENRA3, PRKAR1A and HDAC2 are the more

valuable markers of non-genotoxic carcinogen as they demon-

Figure 7. The genes that show significant differences in expression between control and non-genotoxic carcinogens. Each entity
represents protein transcribed from selected DEGs and an arrow indicates a connection: (a) Tippett, (b) Fisher, (c) Stouffer.
doi:10.1371/journal.pone.0063290.g007
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strated high significance consistently in more than two different

methods.

Pathway analysis was conducted on selected genes. It finds

relationship between the genes and shows why genes have become

differentially expressed genes (DEGs). Figures 6 and 7 are

demonstrations of search for all relations registered in the database

on the subject, the six DEG lists, which were the search result of

pathway analysis, and expressed them as a pathway map. Figure 6

is a result of pathway analysis on the genes whose properties were

significantly changed in the control group and genotoxic

carcinogen-treated group, and is expressed in the order of (a)

Tippett, (b) Fisher, and (c) Stouffer. As each map showed a similar

level of networking, we discovered that the three methods were

similarly efficient when searching for genes whose properties

changed at the time of injecting genotoxic carcinogen. This can be

interpreted as the chemical structure of genotoxic carcinogen

having high affinity for DNA and damaging the genome in a short

time, so that the range of changing gene properties is wide and the

sorting process is relatively easy. On the other hand, in Figure 7,

which compares non-genotoxic carcinogen and control, the map

for (a) was not formed. Fisher’s method (b) was also insufficient to

find the largest part of a network.

The validity of the selected gene list is verifiable through the

contents of the gene. In Figure 6, the center gene of the network

was mapk1 in all results upon the injection of genotoxic

carcinogen. This result matched with prior findings of existing

research, because mapk1 is a major element for the Ras-MAPK

network, a representative mechanism for cell proliferation signal

transduction. The signal mechanism of Ras-MAPK, a represen-

tative path of proliferation stimulation, reveals a network to

determine whether the cell should proliferate, stop proliferating, or

die; this signaling mechanism is a core issue in the research on

cancer. Therefore, the Ras-MAPK mechanism can be an

indicator to examine the genotoxicity of chemicals. The results

showed that mapk1 was included in the map upon genotoxic

carcinogen injection as shown in Figure 6 (a) (b) (c), but it was not

included upon non-genotoxic carcinogen injection as shown in

Figure 7 (a) (b) (c). Thus, all of the analysis methods showed

different efficiencies, but the direction chosen by each was

reasonable.

Conclusions
In this paper, we revisited Stouffer’s method based on z-scores

and showed that it was useful for large-scale microarray data

analysis. In particular, when we combined dependent partial test

results, unlike that in other popular methods such as Tippett’s test

and Fisher’s omnibus test, the null distribution of the combined

statistic in Stouffer’s test could be easily estimated from the data

and did not require any additional numerical procedure. The

numerical study showed that Stouffer’s test had higher true

positive rates (TPR) than Tippett’s method and Fisher’s method

when we tested a large number of hypotheses simultaneously. In

addition, real data analysis also showed the advantage of Stouffer’s

method over the others.

We conclude the paper with brief discussions on several issues,

which are not fully covered in the main text.

First, in both numerical study and data analysis, the false

discovery rate (FDR) was estimated using the q-value method by

Storey (2002) [20]. We found that the q-value method with the

Stouffer’s test often overestimated the FDR and provided a

conservative list of DEGs; it only detected a smaller number of genes,

which were much differentially expressed, than other methods.

This phenomenon is from deviations between theoretical (which is

used in this paper) and empirical distribution of test statistics. One

simple remedy for this would be the empirical Bayes (EB)

procedures by Efron (2007) [22], Schwartzman et al. (2008)

[23], and many others. They estimate the null distribution of

testing statistics from data, and they are robust to any deviation

from theoretical assumption.

Second, the reviewer points out difficulty from the dependence

of expression levels among genes. As discussed in Efron (2007)

[22], it is one source of deviation between theoretical and

empirical distribution of test statistics (not only CTg
z, but also CT

g
T

and CT
g
F). Again, the EB procedures would be a good remedy for

this difficulty.

Finally, in recent, Benjamini and Heller (2008) [24] introduce

partial conjunction hypothesis on the number of false null

hypothesis, which is much general than the complex hypothesis

considered in this paper. They propose a procedure to combine p-

values (of partial tests) to test the hypothesis, and it would be

interesting to investigate the advantages of using z-scores over p-

values.
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