
Mass Preserving Registration for Heart MR Images

Lei Zhu1, Steven Haker2, and Allen Tannenbaum1,★

Lei Zhu: zlzl@ece.gatech.edu; Steven Haker: haker@bwh.harvard.edu; Allen Tannenbaum: tannenba@ece.gatech.edu
1School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
2Surgical Planning Lab, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
02115

Abstract
This paper presents a new algorithm for non-rigid registration between two doubly-connected
regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It
assumes an underlining continuum model, in which the total amount of mass is exactly preserved
during the transformation of tissues. We use a finite element approach to numerically implement
the algorithm.

1 Introduction
Image registration is the process of generating a common geometric frame of reference
between two or more image datasets. This technique is especially useful in the context of
medical image processing. A successful registration technique allows for the integration of
pre-operative information with intra-operative imaging to improve image-guided surgery
and therapy. For example, in brain surgery where craniotomy is performed, the ventricles in
the brain may be compressed due to pressure changes. A surgical plan based on pre-surgical
images must therefore be updated accordingly to reflect these shape deformations. There
have been numerous algorithms proposed for non-rigid registration. See [9] for a detailed
review and the references therein. Our method employs optimal mass transport, and
therefore belongs to the category of warping algorithms based on continuum and fluid
mechanics. The approach may be formulated as an energy minimization problem. We
should point out that our methodology may not be suitable under circumstances where the
mass preservation assumption is invalid, such as the matching of two different perspective
projections of a spatial object.

In the work of [5,11], an algorithm was presented for finding an optimal warping function
between two simply-connected domains, or more specifically two rectangular regions. The
assumption was that the mass is preserved at all points in the image domain. However, this
is not always the case. Sometimes, the mass preserving (MP) assumption is valid only in
parts of the two images. The specific example we have in mind concerns two magnetic
resonance (MR) images of the heart taken at different times in the cardiac cycle, but
corresponding to the same spatial position. Indeed, during the cycle, the MP assumption is
valid in the myocardium, but not in the ventricles where the volume of blood varies from
time point to time point. With this key example in mind, we will derive an algorithm for
extending previous approaches to two doubly-connected domains, based on harmonic
analysis and a Finite Element Method (FEM). Here, we treat image intensity as tissue mass
density, due to the fact that in MR images intensity is related to proton density, thus related
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to mass density. After registration, image intensity (mass density) can change, but the total
amount of mass (mass density times area or the integral of intensity) preserves.

We now outline the contents of this paper. In Section 2, we give a brief review of the
optimal mass transport problem and a general gradient descent solution. In Section 3, we
summarize the approach for finding an optimal MP mapping between two doubly-connected
domains. In Section 4, we illustrate the proposed algorithm using a pair of heart MR images.
Finally, in Section 5, we summarize the contribution of this paper and discuss some possible
future research directions.

2 Background on Optimal Mass Transport
The Monge-Kantorovich Problem (MKP) is concerned with the optimal way of moving
certain amount of mass from one domain into another. The total amount of mass remains
constant in this process. It has been widely studied in various fields such as econometrics,
fluid dynamics, transportation, and image retrieval [7]; see [6] and the references therein. In
this paper, we will consider only 2D problems. Accordingly, let Ω0 and Ω1 be domains of
R2, having smooth boundaries. On each domain Ωi, we assume that there exists a positive
mass density function μi, i = 0, 1. It is further assumed that the same total amount of mass is
associated with the two domains.

We will be considering a class of diffeomorphisms u from Ω0 to Ω1 which satisfy the
“Jacobian equation” in the form of

(1)

where |Du| is the determinant of the Jacobian of u, and ∘ represents the composition of
functions. Equation (1) is an infinitesimal form of the mass preservation (MP) constraint.
We are interested in finding an MP mapping u which differs minimally from the identity. To
this end, we introduce the L2 Kantorovich–Wasserstein penalty functional on u ∈ MP,
defined as:

(2

This functional places a penalty on the distance the map u moves each bit of material,
weighted by the material’s mass. The resulting distribution of material is constrained to be
the given density μ1. The “optimal” mapping ũ is the one that minimizes functional (2), and
is the “cheapest” way of transporting mass from one domain into the other. An energy term
penalizing intensity change can also be added, please refer to [5].

Theoretical results [2,3] show that there is a unique minimizer ũ ∈ MP, and that this
minimizer is characterized as being the gradient of a convex function w, i.e., ũ = ∇w. There
have been a number of algorithms proposed for solving this problem, e.g. linear
programming [6], which is the most popular one. However, the linear programming
approach has a high computational complexity. In the method presented here, we use a
gradient descent approach to solve for the optimal transport problem, based on the
equivalent problem of polar factorization. Here we will briefly describe the procedure; for
mathematical details we refer the reader to [5].

The first step of the method is to construct an initial MP mapping. For two rectangular
regions, the initial mapping can be found by solving a family of 1D problems unsing simple
numerical integration. Assume the two domains have shapes of Ω0 = [0, A0] × [0, B0] and Ω1
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= [0, A1] × [0, B1], respectively. Assume further that the initial mass preserving mapping has
the form of u0(x, y) = (a(x), b(x, y)). Since both μ0 and μ1 are positive everywhere, it is easy
to solve u0 = (a(x), b(x, y)) from the following equations:

(3)

The second step is to find the minimizer ũ of the energy functional (2), using an iterative
approach. In [5], it is shown that the evolution of u should have the following form in order
to satisfy the mass preserving constraint:

(4)

where ⊥ rotates a vector by π/2 in the counterclockwise direction, Δ−1 denotes the inverse of
Laplacian, and id stands for the identity map. It can be shown that the optimal mapping ũ is
a curl-free vector field [5].

3 Mass-Preserving Registration Between Two Doubly-Connected Domains
In the previous section, we briefly described the approach for solving the transport problem
between two rectangular regions. However, this approach cannot be applied on doubly-
connected regions (i.e. an annular region) without some modifications. The main difficulty
comes from the construction of an initial MP mapping u0 between two irregular doubly-
connected domains. In this section, we present an algorithm which constructs such a
mapping by using harmonic parametrization. In this approach, the two domains are first
harmonically parameterized, then the initial MP mapping u0 is constructed by solving a 1D
transport problem along one harmonic coordinate, followed by a family of 1D transport
problems along the other harmonic coordinate.

3.1 Harmonic Parametrization
Here we sketch the steps for constructing an analytic function fh = uh + ivh for the harmonic
parametrization. Similar techniques have been applied for measuring tissue thickness [10],
for colon surface visualization [4], and for parametrization of ventricular regions of the heart
[8].

Assume we have a triangulated doubly-connected domain Σ, which has an inner boundary
denoted by σ0 and an outer boundary denoted by σ1 as shown in Figure 1. First, we want to
construct uh, which is the real part of f. It is assumed that uh satisfies

(5)

The Laplace equation can be solved by using standard FEM techniques [4]. A cut C is then
found from σ0 to σ1 by following the gradient of uh from an arbitrary point x0 ∈ σ0 to
another point x1 ∈ σ1. The cut C and two original boundaries σ0 and σ1 form a new closed
and oriented boundary B for the domain,
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The boundary condition of the imaginary part vh can be then prescribed by,

according to the Cauchy-Riemann equations. Inside the cut surface, vh is found as the
solution of Laplace’s equation Δvh = 0.

Once the analytic function fh = uh + ivh is constructed, a curvilinear harmonic polar
coordinate system is defined by taking uh as one coordinate axis and vh as the other. The
coordinate uh can be thought of as a curvilinear “radius” and vh as the “angle”. By scaling uh

and vh by a constant, vh can be made to run from 0 to 2π. Figure 2 shows such a
parametrization on a heart MR image without involving the ventricle area.

3.2 Finding the Initial Mapping u0

By performing harmonic parametrization, the first doubly-connected domain (Ω0, μ0) is cut

and mapped onto a rectangular region ( ) via a harmonic (conformal) mapping

. If we define the mass density  by

(6)

then the mapping from Ω0 to  is mass-preserving. Similarly, the second doubly-connected

domain (Ω1, μ1) is mapped onto another rectangular region ( ) via . Here,

 is taken to be

(7)

The remaining task is to find an MP mapping from ( ) to ( ). Since Ω0 and Ω1
are now rectangular regions, we can use the algorithm presented in Section 2 to find an
initial MP mapping uinit between them. This process can be illustrated by the following
diagram.

The resulting initial mapping u0 is the composition of , uinit and , so that

(8)

Compositions of MP mappings and inverses of MP mappings are also MP mappings. Thus

u0 is and MP mapping, since  and uinit are.

3.3 Finding the Minimizer ũ
The equation we use to evolve u is the same as for rectangular regions. The finite element
method (FEM) is used to solve the Poisson equation (the Δ−1 part of equation (4)) on a
triangulated irregular domain.
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In the evolution equation of u (equation (4)), we use an upwinding scheme for computing
Du. For all other derivatives, we use a Least Mean Square (LMS) method to numerically
implement the spatial derivatives. For example, assume that a given point (x0, y0) has N
neighbors (xi, yi), i = 1…N, and a function Φ is defined such that Φ (xi, yi) = Φi for i = 0…N.
It is easy to show that the derivatives of Φ should satisfy

(9)

where A is the position difference matrix given by

(10)

A time step was chosen as in [5] to make the algorithm stable.

4 Example
We illustrate the procedure outlined above on two 256 × 256 MR images of the heart
acquired on a GE scanner. Referring to Figure 3, we show the diastolic (Figure 3(a)) and
systolic (Figure 3(b)) time points of the cardiac cycle.

The black regions in Figure 3 (c) and (d) are two multi-connected domains, corresponding to
the heart muscle and other tissues in which we use image intensity as the mass density.
Uniform mass densities could also be used, in which case mass preservation becomes a
simple area preservation constraint. These regions were chosen as natural candidates to
apply an MP deformation (in contrast to the left ventricle in which the change is too drastic
to sensibly apply the procedure). Harmonic parametrization is first done on each domain (as
shown in Figure 2 for the diastolic image), and an FEM-based L2 MKP is then solved
between the two domains to find the correspondence. Figure 4 shows the deformed grid. We
can also create a morphing video to show the deformation of the first image into the second.
Figure 5 shows some key frames in the video.

5 Conclusions
In this note, we extended the methodology for applying MP registration [5] to a pair of
doubly-connected domains. For an L2 version of the problem, a gradient descent algorithm
is proposed to solve the problem iteratively. Harmonic analysis is employed in this approach
for constructing an initial MP mapping. If the radius of the inner boundary is small enough,
the inner boundary can be considered as a single landmark. In this sense, we have solved for
MP registration on two domains with a pair of corresponding landmarks. This technique can
also be extended into multi-connected domains (corresponding to multiple landmarks).

In the present work, the pure L2 Kantorovich-Wasserstein functional is proposed as the
similarity measure. A modified energy functional penalizing the intensity change can also be
implemented [12]. Other types of distance measures, e.g. minimizers of the Dirichlet energy
integral, can also be combined with a mass preservation constraint [1]. We plan to
implement these ideas in some future work.
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Fig. 1.
A doubly-connected domain Σ with two boundaries
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Fig. 2.
Harmonic parametrization of a heart image

Zhu et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Two heart MR images and their segmentation results

Zhu et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The deformed grid on the systolic heart image
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Fig. 5.
Morphing movie for two heart images in Figure 3

Zhu et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


