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Abstract
Purpose—To develop a T2*-compensated parallel imaging and compressed sensing framework
for water-fat separation, and to demonstrate accelerated quantitative imaging of proton density fat
fraction.

Materials & Methods—The proposed method extends a previously developed framework for
water-fat separation by additionally compensating for T2* decay. A two stage estimation was
formulated that first determines an approximation of the B0 field map and then jointly estimates
and refines the R2* (=1/T2*) and B0 field maps, respectively. The method was tested using a set
of water-fat phantoms as well as liver datasets that were acquired from seven asymptomatic adult
volunteers. The fat fraction estimates were compared to those from a commonly used non-
accelerated water-fat imaging method and also to a sequential parallel imaging and water-fat
imaging method.

Results—The proposed method properly compensated for T2* decay to yield accurate fat
fraction estimates in the water-fat phantoms. Further, linear regression analysis from the liver
datasets showed that the proposed method accurately estimated fat fraction at acceleration factors
that were higher than those achievable by the sequential parallel imaging and water-fat imaging
method. Accurate fat fraction estimates were demonstrated at acceleration factors up to 4x,
although some image artifacts were observed.

Conclusion—The proposed T2*-compensated parallel imaging and compressed sensing
framework demonstrates the potential to further accelerate water-fat imaging while maintaining
accurate estimates of proton density fat fraction.
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INTRODUCTION
The renewed interest in water-fat imaging (1) has led to the development of a quantitative
imaging biomarker known as the proton density fat fraction (PDFF) (2). The importance of
this biomarker is underscored by two factors: 1) the increasing prevalence of nonalcoholic
fatty liver disease (NAFLD), which is now estimated to affect 20-30% of people in the
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United States, and 2) the inadequacies of biopsy, which include risk, invasiveness, and the
variability in sampling that can cause contradicting diagnoses (3,4). The development of an
MRI-based method provides the potential for a safe, noninvasive, and reliable alternative to
biopsy for the diagnosis and grading of steatosis (5). Recent studies have demonstrated the
accuracy and/or precision of chemical shift encoded methods in estimating the PDFF
(hereafter referred to as fat fraction) (6-8).

The benefits of an MRI-based method for quantifying liver fat fraction naturally come with
the limitations of MRI. Of particular relevance is the lengthy scan time, which is further
compounded in chemical shift encoded MRI due to the need for measurements at multiple
echo times. This presents an especially challenging problem for liver imaging in which the
patient must maintain a breath-hold during the scan to avoid respiratory-related image
artifacts. A compromise is often made between spatial resolution, volume coverage, and/or
SNR to achieve a manageable breath-hold time.

Acceleration techniques have been proposed with the goal of reducing the degree of needed
compromise between imaging parameters. The most common technique uses parallel
imaging to un-alias the echo time images followed by water-fat imaging to recover the
signals of interest (7,9). In this case, acceleration is achieved by exploiting only the distinct
spatial sensitivities of the receiver elements. It is conceivable that incorporating additional
acceleration techniques, such as constrained reconstruction (10) and/or compressed sensing
(11), could lead to an even higher acceleration while maintaining accurate estimates of fat
fraction.

The goal of this work is to develop and demonstrate the feasibility of a joint parallel imaging
and compressed sensing technique for estimating liver fat fraction. Whereas previous works
(12-15) have used parallel imaging and/or compressed sensing for qualitative water-fat
imaging, the focus of this work is in accurately quantifying fat fraction. We extend a
previously developed framework for water-fat separation (14) that employed parallel
imaging and compressed sensing to achieve acceleration in the liver, brachial plexus, ankle,
and knee. The current work extends that framework by additionally compensating for the
effects of T2* decay to allow for accurate liver fat fraction estimates. The proposed method
is tested on a set of water-fat phantoms and is then demonstrated on seven asymptomatic
adult volunteers. It is shown to accurately estimate fat fraction at acceleration factors that are
higher than those achievable by the sequential parallel imaging and water-fat imaging
technique.

MATERIALS AND METHODS
Signal Model

We extend the formulation that was proposed in previous work (14) by including the effects
of T2* on the received signal. Doing so is especially critical when estimating fat fraction in
the liver due to the potential presence of iron (16), which increases the rate of signal decay.
Both Yu et al. (17) and Bydder et al. (18) have shown that T2* compensation is necessary
for accurate fat fraction quantitation, particularly when the patient exhibits hepatic iron
overload.

The signal model, presented in Eq. 1, relates the unknown signals of interest directly to the
acquired data.

[1]
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The undersampled k-space measurements from all coils and at all echo times (ku) are
modeled as a function of the known k-space sampling (Fu), unknown normalized coil
sensitivity maps (C), unknown B0 field map (ψ) and R2* (=1/T2*) map (both represented in
ψR), known chemical shift encoding matrix (A), and the unknown coil-combined water and
fat images (ρ), in the presence of additive Gaussian noise with zero mean and covariance
matrix Σ. The term ψR is a block diagonal matrix that contains exp(-j2πψp tn)·exp(-R2*p·tn)
at the pth diagonal element of the nth block, where p and n serve as indices over the pixels
and echo times, respectively.

Signal Estimation
Because the R2* term appears in the argument of an exponential function, it is natural to
consider updating its estimate alongside the B0 field map term (17). Under our simplifying
assumption of additive white Gaussian noise (i.e. Σ = σ2I), Figure 1 shows the least squares
cost as a function of B0 field map and R2* map values for one pixel from a fully-sampled
six-echo liver dataset. This exemplary cost surface is a nonconvex function of both the B0
field map and the R2* map parameters. Thus, standard convex minimization may result in
local minima (i.e. suboptimal) estimates. However, we have observed that in the
neighborhood of the true B0 field map value, the cost is a convex function of both
parameters. This observation suggests that estimation can be done in two stages: first, an
approximation of the B0 field map is found (setting R2* = 0) and second, the B0 field and
R2* maps are jointly refined and estimated, respectively. A similar two stage approach was
proposed by Berglund et al. (19), although their motivation for doing so was to reduce both
computational complexity and memory requirements.

As with the water and fat images and the B0 field map, a regularization criterion should be
imposed on the estimate of the R2* map to compensate for the non-acquired k-space
samples. In general this criterion does not prevent convergence to local minima, however the
proposed two stage estimation permits the assumption of a cost function that is convex with
respect to the R2* map parameter. Under this assumption, techniques such as l1-
regularization are applicable with an appropriate sparsifying transform. In particular, we
have found that only 15-25% of the Daubechies-4 (db4) wavelet transform coefficients are
needed to provide a sufficient representation of the R2* map. Thus, an l1-penalty on the db4
wavelet coefficients of the R2* map should help to guide the reconstruction to the true
solution.

We compute the first-order Taylor series expansion of the exponential function exp(-
R2*p·tn) to update the estimate of the R2* map. Using this approximation, the R2* map (and
the B0 field map) update terms are calculated using the following expression.

[2]

In Eq. 2, r is a vector whose elements contain the difference between the measured k-space
and the current estimate of k-space, x is the linear function that relates the B0 field map
update term (Δψ) and the R2* map update term (ΔR2*) to r, λ is the user defined
regularization parameter, W represents the db4 wavelet transform, and Bmax is the finest-
scale cubic B-spline set. The use of cubic B-splines has been shown to compactly represent
the B0 field map estimate while avoiding local minima that would cause a water-fat swap
(14).

By estimating the R2* map in this manner, the remaining parameters of interest may be
estimated by the method that was proposed in previous work (14). In particular, the coil
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sensitivity maps are derived from the SPIRiT (20) k-space kernel and the water and fat
images are estimated by minimizing a cost function that balances data fidelity with an l1-
penalty on the db4 wavelet coefficients of the images, as seen in Eq. 3, where the ‘hat’
denotes current estimates. For simplicity, we use the same value of λ in Eqs. 2 and 3, while
acknowledging the potential for further optimization.

[3]

The estimation algorithm is summarized in Figure 2.

Experiments
Acquisition & Reconstruction—Data were acquired on a GE Signa EXCITE HDxt 3T
(Version 16) system (GE Healthcare, Waukesha, WI). Fully-sampled k-space measurements
were acquired at six different echo times using an investigational version of the GE IDEAL-
IQ sequence (GE Healthcare, Waukesha, WI). The acquisition parameters are listed in Table
1.

Images were reconstructed using up to three different methods (described later). For all
methods other than the proposed one, a phase preserving algorithm (21) was implemented
on an echo-by-echo basis to combine the individual coil images at each echo time. This coil
combination step was done immediately prior to the water-fat reconstruction. Note that coil
combination was not performed when using the proposed method since the signals of
interest are estimated directly from the undersampled k-space measurements. In all
reconstructions, we assumed a six-peak fat spectrum (9) with known relative amplitudes and
frequency shifts. The fat fraction image was calculated from the water and fat estimates
using the magnitude discrimination method (22). Lastly, the value of the regularization
parameter was selected based on subjective assessment of image quality. A value of 4.5 was
used for all of the reconstructions presented in this paper. Image reconstruction was
performed in Matlab R2011a (The Mathworks Inc., Natick, MA), which was installed on a
personal computer (8 GB RAM, 2.8 GHz dual-core processor).

Phantom—Three water-fat phantoms were constructed, each containing a different
concentration of distilled water and 20% Intralipid (Baxter Healthcare, Deerfield, IL). The
first phantom contained only distilled water, the second contained equal parts by mass of
distilled water and 20% Intralipid, and the third contained only 20% Intralipid. One
milligram of manganese chloride (J.T. Baker, Center Valley, PA) was dissolved in each
phantom to create a T2* shortening effect. The phantoms were placed in a circular glass
container together with other phantoms that were not a part of this experiment. The
container was filled with tap water to reduce susceptibility.

The center slice was reconstructed using an in-house implementation of the IDEAL
algorithm (23) without and with T2* compensation (17) to determine the effects on the fat
fraction estimate. To demonstrate the feasibility of the proposed method, the fully-sampled
k-space data were retrospectively undersampled using a variable-density Poisson disk
sampling pattern. The central 16 phase encoding lines were retained to estimate the 7×7
SPIRiT kernel, yielding a net acceleration factor of 3.4x. The retrospectively undersampled
data were then reconstructed using the proposed method.

Liver—Based on previous MRI scans, an effort was made to choose a subject cohort that
represented a spectrum of liver fat fractions. The presence of iron in the liver was not an
inclusion/exclusion criterion in this study. Each subject was instructed to maintain a breath-
hold during the 18-20s scan.
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The center two slices from each subject were reconstructed using the following three
methods. First, the fully-sampled dataset was reconstructed using an in-house
implementation of T2*-IDEAL (17). The estimates from this reconstruction served as the
references. Second, the fully-sampled data were uniformly undersampled at net acceleration
rates of 2.5x, 3.1x, 3.6x, and 4x, and were then reconstructed using Autocalibrating
Reconstruction for Cartesian sampling (ARC) (24) followed by T2*-IDEAL (ARC/T2*-
IDEAL) (7,9). We used the ARC implementation that is found in the SPIRiT (20) software
package. Lastly, the fully-sampled data were undersampled using a variable-density Poisson
disk sampling pattern at the same net acceleration rates as for ARC/T2*-IDEAL, and were
then reconstructed using the proposed method. In both ARC/T2*-IDEAL and the proposed
method, the 16 central phase encoding lines were retained to estimate the 7×7 k-space
kernels.

A total of three ROIs were placed in each fat fraction image. The water image was used as a
guide to avoid placing the ROIs in regions of large vessels. Each ROI was 9 × 9 pixels,
which was approximately 2.2 × 2.2 cm2.

RESULTS
Figure 3 shows the estimated fat fraction images for the three water-fat phantoms using 1x
IDEAL without and with T2* compensation as well as the proposed method at 3.4x
acceleration. By not accounting for T2* decay, the fat fraction is overestimated by between
4-5%. The fat fraction estimates using T2*-IDEAL and the proposed method are in close
agreement with the expected values and a similar image quality is observed between the two
methods.

Figure 4 shows the fat fraction estimates for one slice using 1x T2*-IDEAL as well as for
ARC/T2*-IDEAL and the proposed method at net acceleration rates of 2.5x, 3.1x, 3.6x, and
4x. Unresolved aliasing artifacts are seen throughout the images estimated by ARC/T2*-
IDEAL, which causes inaccurate fat fraction estimates especially at the higher acceleration
factors. Using the proposed method, the fat fraction estimates are in close agreement with
the reference values and image quality is largely preserved, although some artifacts are
observed at 4x acceleration.

Figure 5 shows scatterplots of the estimated fat fractions from both ARC/T2*-IDEAL and
the proposed method versus the reference fat fraction values. The equations of the linear
trendlines are also shown. The coefficient of determination (R2) for each of those linear
trendlines is plotted in Figure 6. The falloff of the R2 values for ARC/T2*-IDEAL indicates
a reduced goodness of fit at the higher acceleration factors, which is qualitatively observed
in Figure 5. In contrast, the R2 values for the proposed method remain above 0.99 for all
acceleration factors. Figure 7 shows scatterplots of the standard deviation of the fat fraction
estimates versus the reference fat fraction value for each of the three reconstruction
methods. For all of the methods, the low R2 values from linear regression analysis indicate
that the standard deviation does not exhibit a strong linear dependence on the reference fat
fraction value. Qualitatively, one may observe that the standard deviations tend to be higher
for ARC/T2*-IDEAL than for the other two methods. This observation is supported by
Table 2, which lists the mean of the standard deviations for each method.

DISCUSSION
The findings from this preliminary study demonstrate that the proposed parallel imaging and
compressed sensing framework can accurately estimate liver fat fraction at acceleration
factors that are higher than those achievable by ARC/T2*-IDEAL. Linear regression showed
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the accuracy of the fat fraction estimates from the proposed method at acceleration factors
up to 4x. Further, the average standard deviation of the fat fraction estimates at each
acceleration factor was within 1% (in absolute terms) of that using 1x T2*-IDEAL, which
suggests relatively minor noise amplification. Despite these quantitative findings, a
qualitative perspective reveals the presence of image artifacts, especially at 4x acceleration,
that could degrade the confidence of the estimated fat fractions in prospective studies.
Therefore, it would be premature to draw final conclusions about the acceleration potential
of the proposed method until a further analysis is performed that uses a larger subject cohort
and radiologists’ evaluations of image quality.

The signal model in Eq. 1 assumes that water and fat share a common R2* value, which is
not true in general. This assumption is known to introduce bias into the fat fraction estimate.
However at clinically-relevant values of SNR and fat fraction, the introduced bias is
outweighed by an improvement in noise performance when compared to the dual-R2*
model (25,26). Thus it has been suggested by Reeder et al. that the use of the single-R2*
model is appropriate in this setting (26).

Our findings indicate that cubic B-splines provide a representation of the B0 field map that
is sufficient enough for accurate fat fraction quantitation. The use of cubic B-splines
imposes a parametric model on the B0 field map, which allows for the field map to be
represented using fewer variables (i.e. B-spline coefficients) than the number of pixels.
While this modeling is beneficial for estimating the B0 field map from undersampled
measurements, it also prevents the field map estimate from assuming arbitrary values. Thus,
it could have been the case that small errors in the B0 field map estimate caused significant
errors in the fat fraction estimate.

A limitation of this study was that the undersampled k-space measurements were obtained
by retrospectively downsampling the fully-sampled data rather than by truly acquiring them
in an accelerated acquisition. Additional limitations of the present work include the need for
a user defined regularization parameter and a relatively long reconstruction time of
approximately 15 minutes per slice. It is worth noting that the same value of λ was used for
all reconstructions, so it may be reasonable to fix this value for all future acquisitions that
use similar parameters. However, for a more general approach, recent developments from
Khare et al. (27) can be incorporated both to free the user from selecting any regularization
parameters and to reduce the reconstruction time using iterative soft thresholding
algorithms.

In conclusion, we have developed and demonstrated the feasibility of a joint parallel
imaging and compressed sensing framework for liver fat quantitation. The proposed method
accurately estimated liver fat fraction at acceleration factors that are higher than those
achievable by a sequential parallel imaging and water-fat imaging method.
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Figure 1.
The least squares cost (top figure) for one representative pixel from a fully-sampled six-echo
liver dataset is a nonconvex function of the B0 field map and R2* parameters. At different
values of the B0 field map (denoted by the dashed and solid lines in the top figure), the cost
function is minimized at different values of R2* (solid dots in the bottom figure). These
observations suggest that standard convex minimization algorithms may converge to local
minima (i.e. non-optimal) solutions. To address this issue, a two stage estimation scheme
was proposed in which an approximation of the B0 field map is found (setting R2* = 0)
followed by a joint refinement and estimation of the B0 field and R2* maps, respectively.
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Figure 2.
A flowchart depicting the estimation algorithm. After estimating the coil sensitivity maps,
the water and fat images (ρ) and the B0 field (ψ) and R2* maps are alternately estimated.
The B0 field map is updated using cubic B-splines of successively finer scale, where m
represents the scale and Bm is the corresponding B-spline set. The R2* map is estimated
only upon reaching the finest scale mmax. Convergence is reached when both the B0 field
and the R2* map update terms (Δψ and ΔR2*, respectively) have a maximum absolute value
of less than 1Hz.
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Figure 3.
(a) Photograph of three water-fat phantoms that were constructed using different
concentrations of distilled water and Intralipid. One milligram of manganese chloride was
dissolved in each phantom to create a T2* shortening effect. The expected fat fraction value
is shown for each phantom. The remaining phantoms in the photograph were not a part of
this experiment. (b) The estimated fat fractions using IDEAL without T2* compensation. An
overestimation of between 4-5% is seen when T2* is not accounted for. (c) The estimated
fat fractions using IDEAL with T2* compensation (T2*-IDEAL). The estimated values
agree closely with the expected values. (d) The estimated fat fractions using the proposed
method at 3.4x acceleration. Accurate estimates are maintained at this acceleration factor. In
addition, a similar image quality is observed between the proposed method and T2*-IDEAL.
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Figure 4.
The fat fraction image estimates using 1x T2*-IDEAL as well as ARC/T2*-IDEAL and the
proposed method at four acceleration factors. The table shows the fat fraction estimates for
each ROI. For the accelerated methods, the ROI fat fraction estimates are displayed as ARC/
T2*-IDEAL ∣ proposed method. Unresolved aliasing artifacts are observed in all of the
images estimated using ARC/T2*-IDEAL (arrowheads), with increased severity at the
higher acceleration factors. These artifacts affect the quantitation. Image quality using the
proposed method is largely preserved, although artifacts are apparent at 4x acceleration
(arrows). However, the accuracy of the fat fraction estimates remains fairly consistent across
all acceleration factors.
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Figure 5.
Scatterplots and linear trendline equations of the estimated fat fraction versus reference fat
fraction for ARC/T2*-IDEAL (×) and the proposed method (○) at each acceleration factor.
Each point in the plot represents the estimates in one ROI. The identity line is denoted by
dashes.
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Figure 6.
The coefficient of determination (R2) of the linear trendlines for ARC/T2*-IDEAL (×) and
the proposed method (○) at each acceleration factor. Observe the falloff of the R2 value for
ARC/T2*-IDEAL, which indicates a reduced goodness of fit of the linear trendline at higher
acceleration factors. The R2 values for the proposed method remain above 0.99 at all
acceleration factors.
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Figure 7.
Scatterplots showing the standard deviation (SD) of the fat fraction estimates in the ROI
versus the reference fat fraction value for T2*-IDEAL (◊), ARC/T2*-IDEAL (×), and the
proposed method (○). Note that the SD values for T2*-IDEAL (◊) are for 1x acceleration.
At all acceleration factors, the average standard deviation for ARC/T2*-IDEAL was higher
than that for the proposed method. For all three methods, the low R2 values indicate that the
standard deviation of the fat fraction estimates does not exhibit a strong linear dependence
on the reference fat fraction value.
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