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Abstract Based on bifurcation analysis, the synchroni-

zation behaviors of two identical pancreatic b-cells

connected by electrical and chemical coupling are inves-

tigated, respectively. Various firing patterns are produced

in coupled cells when a single cell exhibits tonic spiking or

square-wave bursting individually, irrespectively of what

the cells are connected by electrical or chemical coupling.

On the one hand, cells can burst synchronously for both

weak electrical and chemical coupling when an isolated

cell exhibits tonic spiking itself. In particular, for electri-

cally coupled cells, under the variation of the coupling

strength there exist complex transition processes of syn-

chronous firing patterns such as ‘‘fold/limit cycle’’ type of

bursting, then anti-phase continuous spiking, followed by

the ‘‘fold/torus’’ type of bursting, and finally in-phase tonic

spiking. On the other hand, it is shown that when the

individual cell exhibits square-wave bursting, suitable

coupling strength can make the electrically coupled system

generate ‘‘fold/Hopf’’ bursting via ‘‘fold/fold’’ hysteresis

loop; whereas, the chemically coupled cells generate ‘‘fold/

subHopf’’ bursting. Especially, chemically coupled burst-

ers can exhibit inverse period-adding bursting sequence.

Fast–slow dynamics analysis is applied to explore the

generation mechanism of these bursting oscillations. The

above analysis of bursting types and the transition may

provide us with better insight into understanding the role of

coupling in the dynamic behaviors of pancreatic b-cells.

Keywords Coupled cells � Bursting � Continuous spiking �
Bifurcation � Fast–slow dynamics analysis

Introduction

Pancreatic b-cells located in islets of Langerhans in the

pancreas are responsible for the synthesis and secretion of

insulin in response to a glucose challenge. Like nerve and

endocrine cells, pancreatic b-cells are electrically excitable

(Ashcroft and Rorsman 1989) and the electrical firing

patterns typically come in the form of bursting, charac-

terized by an active phase of fast spiking followed by a

quiescent phase without spiking (Dean and Mathews

1970). It is well-known that bursting can be exhibited by a

wide range of nerve and endocrine cells, and it is likely one

of the most important and distinctive patterns in dynamic

behaviors. Bursting activity is also important for pancreatic

b-cells because it leads to oscillations in the intracellular

free Ca2? concentration, which in turn leads to oscillations

in insulin secretion (Ravier et al. 1999).

There is strong evidence that impaired insulin secretion

is the initial and main genetic factor predisposing to Type

II diabetes (Bergsten 2000). Insulin secretion is a complex

multicellular process, which depends on interactions

between b-cells within an islet as well as on the interac-

tions between islets in the pancreas (Krasimira et al. 2006).

In order to observe an overall oscillatory insulin profile, it

is necessary to understand the collective behavior of

b-cells. Eelectrical coupling through gap junctions and

chemical coupling through chemical synapse have been

suggested to be exists in regulating basal insulin release
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(Calabrese et al. 2000; Rorsman et al. 1989; Salehi et al.

2005). Evidence for electrical coupling via gap junctions

between islet cells has previously been provided by elec-

tron microscopy, recordings of membrane potential and

currents using sharp intracellular electrodes (Zhang et al.

2008; Orci et al. 1975; Meissner 1976).

Synchronization, as an emerging phenomenon of a

population of dynamically interacting units (Arenas et al.

2008; Wang and Jiao 2006; Wang and Zhang 2003; Zhang

et al. 2010), has been extensively studied both in coupled

cells (Wang et al. 2011;Marek and Stuchl 1975) or com-

plex networks (Gomez-Gardenes et al. 2007; Volman et al.

2011; Sun et al. 2011). It has been demonstrated that the

electrical activity of two electrically coupled b-cells can

exhibit different forms of synchronous activities, both

in vivo (Valdeolmillos et al. 1996) and in vitro (Eddlestone

et al. 1984). Numerical simulations have been used to

examine the role of the electrical coupling strength in

synchronous behaviors within intact islets. Based on a

minimal but representative model of bursting electrical

activity in the pancreatic b-cell, Sherman and Rinzel con-

sidered an idealized case of pairs of identical cells, and

showed that they can be converted from tonic spiking to

bursting by weak electrical coupling (Sherman and Rinzel

1991, 1992). Later, Sherman further gave the bifurcation

analysis of a coupled pair of identical bursters by extending

the theory of bursting for square-wave bursters from single

cell to coupled cells (Sherman 1994). Using the same

method, the normal form analysis of coupled bursters was

primarily presented in (De Vries and Sherman 1998). The

importance of the bifurcation structure for the synchroni-

zation of coupled cells has also been studied in (Perc and

Marhl 2004a, b).

Although the minimal model explains the minimum

conditions needed for generating bursting oscillations, it

doesn’t involve the ATP-sensitive K? current. Given that

this ionic current does exist and plays an important role in

pancreatic b-cells, the minimal model was extended by

including the ATP-sensitive K? current to get the modified

model, proposed by De Vries and Sherman (2000). In this

paper, it was shown that weak electrical coupling can still

induce synchronous bursting oscillations in cells,which are

incapable of bursting individually, and the coupled system

will return to the in-phase (IP) spiking state eventually

under strong electrical coupling. However, how the syn-

chronous bursting changes during the transition process is

still not clear. Here we show that under moderate electrical

coupling strength, two regular firing patterns can be pro-

duced in the intermediate process, that is, the anti-phase

(AP) spiking firing pattern and another completely differ-

ent bursting synchrony, respectively. We also show that

weak electrical coupling can make the two-coupled cells

transit to burst synchronization with ‘‘fold/Hopf’’ bursting

via the ‘‘fold/fold’’ hysteresis loop while the isolated single

cell only exhibits ‘‘fold/homoclinic’’ type of bursting.

As mentioned above, electrical coupling has been well

studied in the pancreatic islets, and is believed to account

for signal synchronization of islet cells; in contrast, the

influence of chemical coupling on islet synchronization and

its physiological response are less concerned. It was known

that neurons communicate through synapses more often

than gap junctions and neuronal network with chemical

coupling can be successful in producing important bio-

logical rhythms (Rubin and Terman 2002). Chemical

coupling also exists in pancreatic b-cells. The existence of

diffusible chemical coupling in pancreatic b-cells has been

presented in that changes in the flow rate appear due to the

period of oscillation of cells (Cunningham et al. 1996;

Kennedy et al. 2002). Here, we investigate the effects of

chemical coupling on the two chemically coupled b-cells.

In particular, when the single cell exhibits continuous

spiking, the chemically coupled system can exhibit burst

synchronization, and the bursting types of which are sim-

ilar to the electrical coupling case. However, the bifurca-

tion mechanism is totally different. In addition, when the

single cell exhibits ‘‘fold/homoclinic’’ type of bursting, the

coupled system generates the inverse period-adding burst-

ing sequence in a certain range of the coupling strength.

Moreover, with strong chemical coupling strength, the two-

cell model can generate complete burst synchronization

with ‘‘fold/subHopf’’ type of bursting.

This paper is organized as follows. In ‘‘Dynamics of

electrically coupled cells’’ and ‘‘Dynamics of chemically

coupled cells’’, we show how the coupling strength affects

the synchronization firing behaviors of two coupled b-cells

connected by electrical and chemical couplings, respec-

tively. ‘‘Conclusion’’ deals with a discussion of the results.

In the ‘‘Appendix’’, we include the isolated single model

and a description for the generation mechanism of con-

tinuous spiking and the ‘‘fold/homoclinic’’ bursting of the

individual cell.

Dynamics of electrically coupled cells

The main goal of the paper is to analyze what will happen

in synchronization behaviors of the coupled pancreatic b-

cells when an individual cell exhibits either tonic spiking or

‘‘fold/homoclinic’’ bursting, which is shown in the

‘‘Appendix’’. In order to well understand the effects of

coupling strength on the dynamics of the coupled system,

fast–slow dynamics analysis is extended to a pair of cou-

pled identical cells. The results are presented in ‘‘Dynamics

of electrically coupled cells’’ and ‘‘Dynamics of chemically

coupled cells’’ according to the types of electrical and

chemical coupling, respectively. Each section will be
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divided into two subsections depending on the dynamical

behavior of the individual cell.

To incorporate the electrical coupling of two identical

pancreatic b-cells via gap junctions, the variables v, n and

s are indexed by the cell number and a coupling term is

added to the first equation as follows:

s
dvi

dt
¼ �ICaðviÞ � Ikðvi; niÞ � Isðvi; siÞ � IKðATPÞðvi; piÞ

� gcðvi � vjÞ ð1Þ

s
dni

dt
¼ k½n1ðviÞ � ni� ð2Þ

ss
dsi

dt
¼ s1ðviÞ � si ð3Þ

where gcðvi � vjÞ represents the coupling term, and gc is

the coupling strength independent of v1 and v2. The values

of fixed parameters used in this paper are listed in Table 1.

Two coupled spiking cells

When gs = 2, the single cell exhibits continuous spiking

(see Fig. 14a in the ‘‘Appendix’’). It is pointed out that

weak electrical coupling can induce synchronous bursting

oscillations in coupled cells that are incapable of bursting

alone. The strong coupling can make the cells revert to

spiking again (De Vries and Sherman 2000), which also

can be seen clearly from Fig. 1, where the bifurcation

diagram of ISIs versus gc is illustrated.

Here we can find that between the two extreme cases,

there exist other synchronous activities during the transi-

tion process. If only regular firing patterns are concerned, it

can be seen that with gc increasing, the continuous spiking

transits to regular bursting firstly, and then experiences

spiking in a certain range of gc. Soon afterwards, the

coupled system transits to bursting again, and if the cou-

pling strength is strong enough, it finally returns to spiking

again. Four typical cases of the electrical coupling

strengths are chosen as representatives to understand the

whole transition process.

The case of gc = 0.01

Now the two-cell model generates synchronous bursting

(see Fig. 2), and the spikes within burst are anti-phase (see

Fig. 3a). The two-coupled cells achieving bursting syn-

chronization have s1 � s2 for the slow variable. In order to

study the bifurcation structure for the fast subsystem of the

coupled system, that is, Eqs. (1), (2), we can treat s1 (or s2)

as the bifurcation parameter (Sherman and Rinzel 1991,

1992; Sherman 1994; Sherman et al. 1988; De Vries and

Sherman 2000; Perc and Marhl 2004a, b). Owing to the

fact of achieving synchronization in the coupled system,

there must exist some function relation between v1 and v2.

Hence, we can only choose v1 (or v2) as the state variable

of the synchronously coupled cells.

The bifurcation of the fast subsystem with respect to the

slow variable s1 is presented in Fig. 3b. For clarity, only

the pertinent solution branches are included. It is seen that

the steady state is the same as that in the single cell. But, on

the upper branch there are two supHopf bifurcations

instead of only one. The periodic branch originated from

the left Hopf bifurcation point H1, corresponding to the

synchronous IP bursting solutions (marked by red color in

figures) of the coupled system, is detected at the same

parameter value as that of the single cell. The IP branch is

initially stable, but loses stability via the pitchfork of

periodic bifurcation (BP). A branch of synchronized AP

bursting solutions (marked by blue color in figures)

emerges from the second supHopf bifurcation H2. It is

unstable initially, but becomes stable via the torus bifur-

cation (TR) up to the fold limit cycle bifurcation (LC).

Moreover, AP has smaller amplitude than IP, as a result,

the termination of the AP branch lies to the right of that of

the IP branch. Thus there exists bistability between the

steady state on the lower branch of the Z shaped curve and
Fig. 1 Bifurcation diagram of ISIs versus the electrical coupling

strength gc in the two electrically coupled cells

Table 1 Parameter values
gCa = 3.6 vCa = 20 mV vm = -20 mV hm ¼ 12 mV s = 20 ms

gK = 10 vK = -75 mV vn = -17 mV hn ¼ 5:6 mV k = 0.8

gK(ATP) = 1.2 p = 0.5 vs = -22 mV hs ¼ 8 mV ss = 20,000 ms

gs = 2 or 4
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Fig. 3 Two electrically coupled cells with gs = 2, gc = 0.01. a The

projection of the coupled system on (v1, v2) plane. b Bifurcation

diagram for the fast subsystem of two-cell model [Eqs. (1), (2)] with

s = s1 = s2 taken as the bifurcation parameter. H1 and H2 refer to the

supHopf bifurcations, BP refers to the pitchfork of periodic bifurca-

tions labeled by open squares, TR refers the torus bifurcation labeled

by diamonds, F1 and F2 refer to the fold bifurcations, HC refers to the

homoclinic bifurcation, LC refers to the fold limit cycle bifurcation.

The red and blue lines represent IP and AP branches, respectively.

c The enlargement of the bistability region in b. The phase plot of the

whole system is also included. d The magnification of the rectangular
area in c. (Color figure online)

Fig. 2 Two electrically coupled cells with gs = 2, gc = 0.01. a Time series of the variable v1. b Time series of the variable v2
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the periodic AP solution on the AP branch, which gives rise

to the bursting oscillation.

In order to better understand the bursting pattern, we

start to explain the system behavior at the silent phase of

bursting. It is seen that the trajectory moves left along the

lower branch of the Z shaped curve until it meets the fold

bifurcation F1. Then the system enters the active phase

without the supHopf bifurcation H1 participated in the

trajectory and there is no IP solution. Instead, the trajectory

mainly lingers on the AP branch during the active phase,

which indicates that the two cells are AP synchronized.

The active phase of trajectory ends with the fold LC, where

the stable periodic solution becomes unstable (see Fig. 3d),

and then the trajectory returns to the bottom branch,

restarting the cycle. According to the classification scheme

of bursting mechanisms given in (Izhikevich 2000), this

type of bursting belongs to the ‘‘fold/fold limit cycle’’

bursting. It marks the beginning of the complex transition

process.

The case of gc = 0.04

In this case, the synchronization of AP continuous spiking

is shown in Fig. 4a, b. It is clearly observed that the

amplitude of spiking becomes smaller than that of indi-

vidual cell (see Fig. 14a in the ‘‘Appendix’’). Fast–slow

dynamics analysis is applied to explore the dynamical

behavior of this phenomenon as shown in Fig. 4c. Com-

pared with Fig. 3b, the Zshaped curve persists with the left

supHopf bifurcation H1 being unchanged, and the IP

branch also ends with the homoclinic bifurcation HC.

However, now the upper branch of the Z shaped curve has

three supHopf bifurcation points together, that is, H1 at

s = -0.235, H2 at s = -0.1183 and H3 at s = 0.1056,

Fig. 4 Two electrically coupled cells with gs = 2, gc = 0.04. a Time

series of the variable v1. b The projection on (v1, v2) plane. c Fast–

slow dynamics analysis of the fast subsystem. H1, H2 and H3 refer to

the supHopf bifurcations, TR1 and TR2 refer to the torus bifurcations

in the AP branch, F1 and F2 refer to the fold bifurcations, HC refers to

the homoclinic bifurcation. d The magnification of the region near the

right knee of the Z shaped curve in c
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respectively. Moreover, two periodic branches originating

from the points H2 and H3 are connected together to form a

closed loop, which is separated from the middle branch and

represents the AP branch, as seen in Fig. 4c. In addition,

the fast subsystem has extra TRs labeled as TR2 in the right

side of AP branch. It is noted that the trajectory locates on

the AP branch totally so that the coupled system exhibits

AP continuous spiking. It is noticed that the amplitude is

very small, only about 10 mv, which is not very practical in

a real neural system. It is interesting to explore essence of

this phenomenon in the present systems studied in the

future.

The case of gc = 0.0435

As the first case with gc = 0.01, the electrically coupled

system exhibits bursting synchronization with the spikes

being AP (see Fig. 5a, b). Compared with Fig. 2, it is seen

that the burst period of the variable v1 becomes much

bigger with gc increasing, and at the same time the spike

amplitude is decreased. Fast–slow dynamics analysis is

illustrated in Fig. 5c. The bifurcation structure of the fast

subsystem is very similar to Fig. 4c. Hence, the details

about the bifurcation diagram are omitted here. Like the

first case, there exists bistability between the stable nodes

on the lower branch and the stable AP branch up to the

second TR TR2. Moreover, the AP branch, which starts

from the second supHopf bifurcation H2 at s = -0.1089

and terminates at the third supHopf bifurcation H3 at

s = 0.1054, is far from the IP branch originating from the

left point H1 at s = -0.235. Therefore, it can be seen

clearly that during the active phase the two cells are syn-

chronized IP at first, and then transit to AP synchronization

very quickly. The disappearance of the silent phase and

active phase depends on the fold bifurcation F1 and the TR

TR2, respectively. Thus, this type of bursting pattern is

Fig. 5 Two electrically coupled cells with gs = 2, gc = 0.0435.

a Time series of the variable v1. b The projection on (v1, v2) plane.

c Fast–slow dynamics analysis of the fast subsystem. The description

of the lines and points is the same as that in Fig. 4c. d The

magnification of the bistability region in c
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classified as ‘‘fold/torus’’ type. Compared with previous

results, Cases 2 and 3 are new phenomena.

The case of gc = 0.15

The two-coupled cells achieve complete spiking synchro-

nization (see Fig. 6a, b). Compared with the former cases,

the upper branch of the Z shaped curve has only one sup-

Hopf bifurcation H1. Hence, the IP branch only exists

while the AP branch disappears. Moreover, there are three

pitchforks of BPs on the IP branch, labeled as BP1, BP2

and BP3, respectively. The stable IP branch becomes

unstable via the first pitchfork of BP BP1 until the second

pitchfork of BP BP2 is reached, and then it is stable and

reverts to be unstable again via the third pitchfork of BP

BP3. The bifurcations BP2 and BP3 are close together, the

local enlargement of the neighborhood near the two points

is given in Fig. 6d to distinguish them. It is seen that the

spiking solution is totally located in the region between the

two bifurcations BP2 and BP3. Thus, the two cells behave

identically. It must be pointed out that even though the

shape of the bifurcation diagram of the two-coupled cells is

almost the same as that of the single cell, and the

dynamical behavior of the variable v1 (or v2) is also nearly

unchanged as mentioned above. However, the detailed

bifurcation structure of the fast subsystem is actually dif-

ferent, especially for the existence of three pitchforks of

BPs. This case is the last situation we listed in the paper

when two continuous spiking cells are electrically coupled.

At last, we point out that if the coupling strength is

larger than the critical value gc = 0.2, the electrically

coupled system still produce complete spiking synchroni-

zation and the bifurcation structure of the fast subsystem is

identical to that of the single cell.

Fig. 6 Two electrically coupled cells with gs = 2, gc = 0.15. a Time

series of the variable v1. b The projection on (v1, v2) plane. c Fast–

slow dynamics analysis of the fast subsystem. BP1, BP2 and BP3

refer to the pitchfork of periodic bifurcations. d The magnification of

the region between the bifurcations BP2 and BP3 in c. The subfigure
in the right upper corner is the magnification of the region near the

point HC
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Two coupled bursters

In the above statement, it is shown that weak electrical

coupling can make continuous spiking transit to bursting.

Actually, the single system and electrically coupled system

with proper coupling strength, both of which can be able to

generate bursting on their own, while the generation

mechanism for bursting may be different with details

described below.

When gs = 4, as illustrated in Fig. 15a in the ‘‘Appen-

dix’’, the isolated single cell exhibits ‘‘fold/homoclinic’’

type of bursting. The two-cell model with the electrical

coupling strength gc = 0.05 generates the synchronized

bursting, but the spikes are anti-phased (see Fig. 7b).

Compared with the original single model, it is observed

that weak electrical coupling makes the burst period

become longer, about 50 s. The bifurcation diagram is

given in Fig. 7c. It is noticed that the bifurcation structure

of the fast subsystem for the coupled system is almost the

same as that of Fig. 5c. However, the bursting trajectory

with the projection on (v1, s1) plane is quite different.

During the active phase of bursting, the trajectory has a

short stay in oscillating between the maximum and mini-

mum of the IP branches firstly, thus it has some big spikes

at the beginning of the active phase. Afterwards it starts to

wrap towards the stable periodic branch emerged from the

second Hopf bifurcation H2. The trajectory experiences the

third Hopf bifurcation H3, and then spirals the stable focus

originating from H3 with amplitude decaying as shown in

Fig. 7d. Finally, the upper resting state transits to the lower

stable branch via the fold bifurcation F2, and initiates the

silent phase of bursting. According to the classification of

bursting, this type of bursting belongs to the ‘‘fold/Hopf’’

bifurcation via ‘‘fold/fold’’ hysteresis type.

Fig. 7 Two electrically coupled cells with gs = 4, gc = 0.05. a Time

series of the variable v1. b The projection on (v1, v2) plane. c Fast–

slow dynamics analysis of the fast subsystem. The description of the

lines and points is the same as that in Fig. 6c. d The magnification of

the bistability region in c
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Dynamics of chemically coupled cells

In this section, we consider two coupled pancreatic b-cells

with chemical synaptic coupling,

s
dv1;2

dt
¼ �ICaðv1;2Þ � Ikðv1;2; n1;2Þ � Isðv1;2; s1;2Þ

� IKðATPÞðv1;2; p1;2Þ þ
gsynðvsyn � v1;2Þ

1þ expð�rðv2;1 � hÞÞ
ð4Þ

s
dn1;2

dt
¼ k½g1ðv1;2Þ � n1;2� ð5Þ

ss
ds1;2

dt
¼ s1ðv1;2Þ � s1;2 ð6Þ

where the subscript 1 (or 2) represents cell 1 (or 2), gsyn is the

synaptic coupling strength, and vsyn is the synaptic reversal

potential that determines the type of synapses, which is

dependent on the type of synaptic transmitter released from a

presynaptic cell and its receptors. The coupling becomes

excitatory (or inhibitory) for vsyn [ vc (or vsyn \ vc), where

vc is the equilibrium potential for single cell. Here we choose

vsyn = -15 mv, thus the coupling system is on the excit-

atory regime. h is the synaptic threshold, above which the

postsynaptic cell can be affected by the presynaptic one, and

it is fixed at -30 mv; The r ¼ 10 represents a constant rate

for the onset of excitation. The values of other parameters

referred in the equations are the same as the single cell which

can be found in Table 1.

Two coupled spiking cells

When gs = 2, it is known that the single cell exhibits tonic

spiking (see Fig. 14a in the ‘‘Appendix’’). The purpose of

this part is to show that two chemically coupled cells with

moderate coupling strength can also generate bursting

oscillations but with less cases of firing pattern, compared

with the results for electrical coupling in ‘‘Two coupled

spiking cells’’.

The case of gsyn = 0.03

In such case, the dynamics of the two-coupled cells are

bursting synchronization (see Fig. 8) with AP spiking inside

bursts (see Fig. 9a). As the cases referred in the electrical

coupling, the slow variables s1 � s2 is also available. Thus

fast–slow dynamics analysis can also be applied to the

chemically coupled system. The fast subsystem is consisted

of Eqs. (4), (5) with the slow variable s = s1 = s2 taken as

the bifurcation parameter. It is noticed that the Z shaped

curve of the fast subsystem is identical to that of the single

cell. Especially, the twofold bifurcations F1 and F2 are

detected at the same parameter values as the individual cell.

Similar to Fig. 3b, the upper branch of the Z shaped curve

also has two supHopf bifurcations H1 and H2. However, the

left Hopf bifurcation H1 is taken at a different value at

s = -0.1815, indicating that this is distinct from the elec-

trical coupling cases. The IP branch originating from the H1

point becomes stable via the fold LC LC1 up to the pitchfork

of BP. The AP branch emerging from the second Hopf

bifurcation H2 changes stability via the TR, while it passes

through the fold LC LC2 with the stability unchanged in this

process. As s decreases, the silent phase of bursting corre-

sponding to the lower stable branch of the Z shaped curve

transits to the spiking state corresponding to the stable limit

cycle around the upper branch of the Z shaped curve via the

fold bifurcation F1. Then the trajectory starts to wrap

towards the stable AP branch, thus within each burst the

spikes are completely anti-phased. After a time interval, the

AP branch becomes unstable via the fold LC LC3 as shown

in Fig. 9d. Hence the trajectory jumps to the lower rest state

to complete one loop. In a word, the generation mechanism

Fig. 8 Two chemically coupled cells with gs = 2, gsyn = 0.05.

a Time series of the variable v1. b Time series of the variable v2
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of this type of bursting is similar to that of Fig. 3b. This

bursting also belongs to the ‘‘fold/fold limit cycle’’ type;

whereas the bifurcation structure of the fast subsystem is

very different.

The case of gsyn = 0.13

With this coupling strength, the coupled system is still in

bursting synchronization. Thus, it experiences different fir-

ing patterns (see Fig. 10a) due to the changes of the AP

branch. In Fig. 10c, the unstable AP branch emerged from

the second Hopf bifurcation H2 at s = -0.1081 becomes

stable directly via the TR without the participation of the

fold LC as that in Fig. 9b. Moreover, the AP branch is still

unstable when the trajectory jumps to the upper branch via

the fold bifurcation F1. Hence, the trajectory oscillates along

the IP branch at the beginning, which causes the early stage

of the active phase. As time is evolving, the trajectory is

attracted by the stable limit cycle that results from the TR.

Thereby, the AP synchronization starts until the fold LC

LC2 is reached. Hence, compared with Fig. 8, this type of

bursting can also be classified as ‘‘fold/fold limit cycle’’

type, while the firing pattern has some difference.

Two coupled bursters

When gs = 4, the single cell produces square-wave burst-

ing (see Fig. 15a in the ‘‘Appendix’’). The bifurcation

structure of ISIs of two chemically coupled pancreatic

b-cells is given in Fig. 11, in which the chemical coupling

Fig. 9 Two chemically coupled cells with gs = 2, gsyn = 0.05. a The

projection on (v1, v2) plane. b Bifurcation diagram for the fast

subsystem of two-cell model [Eqs. (4), (5)] with s = s1 = s2 taken as

the bifurcation parameter. LC1, LC2 and LC3 refer to the fold limit

cycle bifurcations, respectively. The description of the lines and other

points is the same as that in Fig. 3b. c The enlargement of the

bistability region in b. d The magnification of the rectangular area
in c
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strength is varied to hunt different firing patterns. It can be

seen that with increasing gsyn, an inverse period-adding

firing sequence can be evidently observed. For the sake of

clearness, Fig. 12 only shows the time courses of inverse-

adding firing sequence from period -1 to 4, where gsyn is

chosen as 1.1, 1.05, 0.97 and 0.95, respectively. It is noted

that the two-coupled system can exhibit ‘‘compound

bursting’’, that is, the bursting rhythm consists of two kinds

of sub-bursting with different spike amplitudes. For con-

venience, we refer to the sub-bursting with larger ampli-

tude as sub-bursting 1, and the other as sub-bursting 2. It is

seen that both the number of spikes and the width of

sub-bursting 1 and 2 are almost equal. Moreover, two cells

are in AP synchronization. In other words, when one cell

happens to be in the active phase of sub-bursting 1, the

other cell just experiences the active phase of sub-bursting

2, and then vice verse. From Fig. 12 it is seen that when

gsyn = 1.1 both sub-bursting 1 and 2 have only one spike in
Fig. 11 Bifurcation diagram of ISIs versus the chemical coupling

strength gsyn in the two chemically coupled cells

Fig. 10 Two chemically coupled cells with gs = 2, gsyn = 0.13.

a Time series of the variable v1. b The projection on (v1, v2) plane.

c Fast–slow dynamics analysis of the chemically coupled system. The

description of the lines and the points is the same as that in Fig. 9b.

d The enlargement of the bistability region in c
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a burst. When gsyn is decreased to 1.05, 0.97 and 0.95,

respectively, the number of spikes in a burst is increased to

2, 3, 4 continuously. This clearly claims the existence of

the inverse period-adding sequence.

When the chemical coupling strength is increased to

gsyn = 2.4, the two cells can realize complete bursting

synchronization (see Fig. 13a, b). Hence s1 = s2 holds

strictly Fast–slow dynamics analysis can be used to explain

the generation mechanism of this type of bursting. The

stationary branch is not Z shaped curve, but it has fourfold

bifurcations instead. The curve of equilibria of the fast

subsystem can be divided into three parts, that is, the upper,

middle and lower parts, respectively. The middle part is

connected by fold bifurcations F3 and F4, and it is com-

posed of the saddles of the fast subsystem. The upper part

is that above the middle part and is composed of foci of the

fast subsystem. The remainder is named as the lower part,

which is coincident with the Z shaped curve of the single

cell before (see Fig. 13c). Therefore, the upper part, the

middle part and the lower sub-branches of the lower part

have the same meaning as before and are composed of foci,

saddle and node, respectively. Here we notice that although

the steady states both on the middle part and the middle

sub-branch of the lower part are saddles, but their eigen-

values have different characters. The saddle on the middle

part has three negative eigenvalues and one positive

eigenvalue, while the saddle on the middle sub-branch of

the lower part has two negative eigenvalues and two

positive ones, respectively. Thus, both of which are double

roots. The silent phase of bursting ends with the fold

bifurcation F1, and then the trajectory is attracted by the

stable foci in the upper part to start bursting. With

s increasing, the stable focus in the upper part becomes

unstable via the subHopf bifurcation H2 (see Fig. 13d), and

these results in the transition to the silent phase of bursting.

Thus the coupled system is capable of the ‘‘fold/subHopf’’

Fig. 12 Time courses of the membrane potentials of the period-

adding firing sequence from period -1 to 4 with gsyn = 1.1, 1.05,

0.97 and 0.95, respectively. The red solid lines and the black dashed

lines represent the time courses for the variable v1 and v2,

respectively. (Color figure online)
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type of bursting. It is noticed that there exists a subHopf

bifurcation H1 in the upper sub-branch of the lower part

but it does not influence the shape of bursting pattern.

Conclusion

In summary, the effects of electrical and chemical coupling

on synchronization behaviors of coupled pancreatic b-cells

are investigated by extending the fast–slow dynamics anal-

ysis from single cell to the coupled cells. For two electrically

coupled cells, when an isolated cell exhibits continuous

spiking individually, with the coupling strength increasing,

there exists synchronization transition with at least four

different synchronous states, including two kinds of bursting

synchronization with totally different bifurcation structure

of the fast subsystem, and another two synchronous spiking

regimes with continuous AP and IP rhythms, respectively.

For the model used in this paper, these results explain the

role of the electrical coupling in more detail comparing to

the previous results. For two chemically coupled cells, two

spiking cells can transit to bursting under weak chemical

coupling condition. Moreover, an interesting inverse period-

adding bursting sequence in the coupled cells is found when

the isolated cell exhibits square-wave bursting. In addition,

the two coupled cells with proper chemical coupling

strength can produce the ‘‘fold/subHopf’’ type of bursting.

Our bifurcation analysis is based on the assumption that the

slow variables of two cells s1 � s2. Thus s = s1 = s2 could

be taken as the bifurcation parameter. In fact, this assump-

tion is valid mostly except the inverse period-adding burst-

ing sequence occurring in the chemically coupled cells. The

latter case is worthy of the further research.
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Fig. 13 Two chemically coupled cells with gs = 4, gsyn = 2.4.

a Time series of the variable v1. b The projection on (v1, v2) plane.

c Fast–slow dynamics analysis of the chemically coupled system. The

solid and dashed lines represent the stable and unstable states,

respectively. F1–F4 are the fold bifurcations, respectively. H1 and H2

refer to the subHopf bifurcations. HC1 and HC2 refer to the

homoclinic bifurcations. d The enlargement of the region near the

point H2
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Appendix

See Figs. 14 and 15.

The model for a single pancreatic b-cell is described by

the following equations:

s
dv

dt
¼ �ICaðvÞ � Ikðv; nÞ � Isðv; sÞ � IKðATPÞðv; pÞ ð7Þ

s
dn

dt
¼ k½n1ðvÞ � n� ð8Þ

ss
ds

dt
¼ s1ðvÞ � s ð9Þ

Three variables in this system are: the membrane

potential (v), the delayed rectifier activation (n), and a

very slow variable s which has been postulated to be the

intracellular Ca2? (Sherman et al. 1988). The s equation is

a Ca2?-balance equation.

Equation (7) is the current balance equation that deter-

mines the membrane potential v and is composed of four

ionic currents, which are defined by

ICaðvÞ ¼ gCam1ðvÞðv� vCaÞ
IKðv; nÞ ¼ gKnðv� vKÞ
Isðv; sÞ ¼ gssðv� vKÞ
IKðATPÞðv; pÞ ¼ gKðATPÞpðv� vKÞ

Fig. 15 a Time series of the single model with gs = 4. b Bifurcation diagram of the fast subsystem. The description of the lines and points is the

same as that in Fig. 14b

Fig. 14 a Time series of the single model with gs = 2. b Bifurcation

diagram of the fast subsystem of [Eqs. (8), (9)]. H refers to the

supHopf bifurcation, F1 and F2 refer to the fold bifurcations, HC

refers to the homoclinic bifurcation. The C shaped curve represents

the maximum and minimum values of periodic solutions originated

from H. The phase plot of the whole system is also superposed on the

(v, s) plane. The red line is the s-nullcline. (Color figure online)
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with the constant conductance gCa, gK, gs and gK(ATP) and

the reversal potentials vCa, vK for Ca2? and K? ions,

respectively. ICa is assumed to respond instantaneously to a

change in membrane potential with the steady state func-

tion m1ðvÞ, while the dynamics for IK is governed by the

gating variable n via Eq. (2), where s is the activation time

constant for the delayed rectifier K? channel, and n1ðvÞ is

the equilibrium function for the activation variable n. In the

expression of IK(ATP), p is the fraction of the open K(ATP)

channels. The dynamics for Is is similar to that of IK. But

comparing with s, the time constant ss becomes much

bigger.

The equilibrium functions m1ðvÞ, n1ðvÞ and s1ðvÞ have

the general expression given by x1ðvÞ as follows:

x1ðvÞ ¼ ½1þ eðvx�vÞ=hx ��1; x ¼ m; n; s

Since ss [[ s, s responds on a much slower time scale

than v and n. Thus Eqs. (7)–(9) construct a system with

both slow and fast scales. The fast subsystem is composed

of Eqs. (7) and (8), in which the slow variable s is

considered as the bifurcation parameter. The trajectory of

the whole system is then superimposed on the bifurcation

diagram of the fast subsystem to explain the dynamical

behavior of the model; this is the fast–slow dynamics

analysis (Rinzel 1987).

All the parameters are listed in Table 1. Depending on

the value of the parameter gs, the system either undergoes a

spiking solution or generates bursting oscillations. Both of

which can be explained by using fast–slow dynamics

analysis. The details of the two typical cases are explained

as follows.

When gs = 2, the single cell gives continuous spiking

(see Fig. 14a). The bifurcation diagram of the fast sub-

system with respect to the slow variable s is plotted in

Fig. 14b. The equilibrium points form a Z shaped curve in

(v, s) plane. The Z shaped curve is made up of the upper,

middle and the lower branch. With the increase of s, the

stable foci on the upper branch become unstable via a

supHopf bifurcation H at s = -0.235. A branch of stable

limit cycle oscillations emerges from the H point, and it

terminates at homoclinic bifurcation HC. The middle and

lower branches are composed of saddles and stable nodes,

respectively. The s-nullcline is also superimposed onto the

bifurcation diagram. The dynamics of the full system

can be understood by using the Z shaped curve and the

s-nullcline together. It is seen that the s-nullcline intersects

the periodic branch and the intersection sufficiently deeps

into the periodic branch, so that the system produces

continuous spiking (Terman 1992).

When gs = 4, the single cell exhibits a typical bursting

oscillation (see Fig. 15a). Fast–slow dynamics analysis is

illustrated in Fig. 15b. It is noticed that gs is not involved in

the slow subsystem. Hence, it has no effect on the s-null-

cline. Compared with Fig. 14b, it is seen that the s-null-

cline still intersects with the periodic branch, and at this

time the intersection is near the end of the periodic branch.

If the variable s varied very slowly, this would result in

continuous spiking. However, s does not vary such slow

actually in this case so that the bursting can be produced

(Terman 1992). Moreover, for values of s between the left

knee of the Z shaped curve and the homoclinic bifurcation,

there is bistablility between the stable node state on the

lower branch, which corresponds to the silent phase of

bursting, and the stable limit cycle oscillation corre-

sponding to the active phase of bursting. The silent phase

disappears via the fold bifurcation F1, and the active phase

ends with the homoclinic bifurcation HC. Since this type of

bursting depends on passing through both fold and homo-

clinic bifurcations, it is called as ‘‘fold/homoclinic’’

bursting (Perc and Marhl 2003). It is also known as

‘‘square-wave’’ bursting, due to the fact that the active

phase spikes rise from a plateau (Rinzel 1987).
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