
BRIEF COMMUNICATION

Estimating causal interaction between prefrontal cortex
and striatum by transfer entropy

Chaofei Ma • Xiaochuan Pan • Rubin Wang •

Masamichi Sakagami

Received: 16 October 2012 / Revised: 21 December 2012 / Accepted: 25 December 2012 / Published online: 4 January 2013

� Springer Science+Business Media Dordrecht 2013

Abstract Transfer entropy (TE) is an information-theo-

retic measure for the investigation of causal interaction

between two systems without a requirement of pre-specific

interaction model (such as: linear or nonlinear). We intro-

duced an efficient algorithm to calculate TE values between

two systems based on observed time signals. By this

method, we demonstrated that the TE correctly estimated

the coupling strength and the direction of information

transmission of two nonlinearly coupled systems. We also

calculated TE values of real local field potentials (LFPs)

recorded simultaneously in the lateral prefrontal cortex

(LPFC) and the striatum of the behavioral monkey, and

observed that the TE value from the LPFC to the striatum

was stronger than that from the striatum to the LPFC,

consistent with anatomical structure between the two areas.

Moreover, the TE value dynamically varied dependent on

behavior stages of the monkey. These results from simu-

lated and real LFPs data suggested that the TE was able to

effectively estimate functional connectivity between dif-

ferent brain regions and characterized their dynamical

properties.

Keywords Causal interaction � Transfer entropy �
Mutual information � Local field potential

Introduction

The brain is a complex system consisting of interconnected

modules (such as: cortical areas) that often perform very

specific operation. For instance, primary sensory areas

receive sensory information and transfer it to higher asso-

ciated areas. Signals from higher-order areas are feedback to

primary sensory areas to influence their information pro-

cessing, forming brain networks with forward and feedback

connections. A fundamental problem in cognitive neuro-

science is to clarify how information is processed in such

networks and how the networks generate corresponded

cognitive functions. Many researchers record neural signals

simultaneously from various brain regions to investigate

these issues. For example, in animal’s neurophysiological

experiments, neural spikes and local field potentials (LFPs)

are able to be recorded at the same time in multiple brain

areas using multi-electrode arrays. Also by invasive meth-

ods, we can record neural signals from sculpt, such as elec-

troencephalography (EEG), magnetoencephalography

(MEG) (Gu and Liang 2007). Based on these recorded data,

one question is how to measure and estimate the strength of

functional connectivity and information flow, or causal

interaction, between brain regions (Fingelkurts et al. 2005).

One popular way of augmenting the concept of causality was

introduced by Norbert Wiener (Wiener 1956). In Wiener’s

definition a variable X1 causes a variable X2 if information

in the past of X1 helps predict the future of X2 with better

accuracy than only information in the past of X2 itself.

So far most implementation of Wiener’s principle

used model-based approaches, such as Granger-causality
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(Kaminski et al. 2001; Freeman 2007; Seth and Edelman

2007; Seth 2008; Barnett et al. 2009; Werner 2009; Hu

et al. 2012), to analyze causal interaction in brain networks.

However, Granger-causality and related methods come

with a serious drawback as they specify a linear model of

interaction a priori (Granger 1969; Ding et al. 2000). It is

common that bran networks have nonlinear behavior of its

parts and nonlinear interactions between them. To char-

acterize nonlinear interactions between two systems, many

researchers have used the concept of mutual information

(Tsukada et al. 1975, 1976; Dan et al. 1998; Paninski

2003), which is quantified in Shannon’s information theory

(Shannon and Weaver 1949). Unfortunately, mutual

information does not provide any dynamical and direc-

tional information. Therefore, Schreiber proposed a

method termed transfer entropy (TE) on the basis of

Wiener’s principle of causality to estimate causal interac-

tion between two systems (Schreibe 2000). TE is an

information theoretical measure able to estimate causal

relationship from time series. It takes into account linear

and nonlinear interactions, without the use of a prior

specification of the interaction mechanism itself (Schreibe

2000). Thus TE can represent a general way to define the

causal strength between brain regions.

TE has been widely used to analyze neural data

(Gourévitch and Eggermont 2007; Garofalo et al. 2009;

Besserve et al. 2010; Ito et al. 2011; Lindner et al. 2011). But

to date most of its applications concentrate spike trains that

consist of a sequence of two states of ‘‘1’’ and ‘‘0’’ (Gour-

évitch and Eggermont 2007; Garofalo et al. 2009; Ito et al.

2011). It is usually easy to estimate the state probability and

the transition probability in the spike trains that are necessary

to calculate the TE values. So far, there are few studies that

apply the method of TE to analyze continuous neural data

such as LFP, EEG and MEG (Besserve et al. 2010; Lindner

et al. 2011). One difficult question is how to calculate the

state and transition probabilities from time series.

We used an efficient approach to compute TE in this

paper. We first embedded raw data of time series into a

state space with high dimension, and then applied nearest-

neighbor techniques to estimate the state probability and

the transition probability. We utilized this method to cal-

culate TE values of two simulated time series with non-

linear coupling, and found that the TE value increased with

the increment of the coupling strength between the two

signals, and decreased with the increasing strength of

noise. We also calculated the TE value of LFPs recorded

simultaneously from the lateral prefrontal cortex (LPFC)

and the striatum of a monkey performing a stimulus–

stimulus association task. The results showed that the TE

value from the LPFC to the striatum was larger than the TE

value from the striatum to the LPFC, consistent with ana-

tomical evidence that prefrontal neurons have direct

projections to striatal neurons, but striatal neurons do not

(Alexander et al. 1986). Our results demonstrated that the

TE was able to correctly estimate the strength of functional

connectivity and the direction of information flow between

areas in the brain network.

Modeling

Mutual information

Definition: Assuming there are two random variables (I, J),

their joint probability distribution is p(i, j), and marginal

probabilities are p(i), p(j), respectively. The mutual infor-

mation M(i, j) is defined as relative entropy of the joint

distribution p(i, j) and the product of the marginal distri-

butions p(i) p(j) (Shannon and Weaver 1949), namely:

MIJ ¼
X

pði; jÞlog
pði; jÞ

pðiÞ � pðjÞ ð1Þ

Transfer entropy

There are two stochastic time series I, J, their joint prob-

ability distribution is p(i, j), and the conditional probability

is pðijjÞ. The conditional entropy can be defined as the

following equation (Shannon and Weaver 1949):

HIjJ ¼ �
X

pði; jÞ log pðijjÞ ¼HIJ � HJ ð2Þ

From Eq. (2), we can get a relation: HIjJ � HJjI ¼
HI � HJ , so the conditional entropy is asymmetrical. This

asymmetry, however, is only due to the difference of

individual Shannon entropies and not due to information

flow. Mutual information could have directional

information by introducing a time lag s in either one of

the variables, as the following equation,

MIJ ¼
X

pðin; jn�sÞ log
pðin; jn�sÞ
pðiÞ � pðjÞ ð3Þ

Now we consider a dynamic system by studying its

transition probabilities rather than static probabilities. We

assume that two time series I = in and J = jn can be

approximated by Markov processes, and measure the

deviation from the following generalized Markov process:

Pðinþ1jik
n; j

l
nÞ ¼ Pðinþ1jiknÞ ð4Þ

where ikn ¼ ðin; . . .; in�kþ1Þ and jl
n ¼ ðjn; . . .; jn�lþ1Þ, while k

and l are the orders of Markov processes of I and J. When

the transition probabilities or dynamics of I are

independent of the past of J, the Eq. (4) is fully satisfied,

indicating there is no directed interaction from J to I. The

TE is defined as Kullback–Leibler divergence (1951)

between the two probability distributions at each side of

the Eq. (4), as following equation (Schreibe 2000)
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TJ!I ¼
X

p inþ1; i
k
n; j

l
n

� �
log

p inþ1jikn; jln
� �

p inþ1jik
n

� � ð5Þ

where p inþ1; i
k
n; j

l
n

� �
is transition probability of from state

ikn; j
l
n

� �
to state inþ1, p inþ1jikn; jln

� �
and p inþ1jikn

� �
are

conditional probabilities. Noting that Eq. (5) implies a

prediction time of 1 (from in to in?1). In a general way,

there may be a longer time delay for interaction between

state ik
n ¼ ðin; . . .; in�kþ1Þ and state jln ¼ ðjn; . . .; jn�lþ1Þ. The

TE including prediction time u can be defined as:

TJ!I ¼
X

p inþu; i
k
n; j

l
n

� �
log

p inþujikn; jln
� �

p inþujik
n

� � ð6Þ

TJ!I is now asymmetric, which is determined by the nature

of the conditional entropy. The TE also contains directional

and dynamic information. It measures the degree of

dependence of I on J and not vice versa, and is calculated

on the basis of the transition probability.

In order to compute the TE, we first have to estimate the

transition probability. Schreiber (2000) suggested that the

transition probability could be calculated based on the joint

probability and kernel estimation. However, the probability

density in stochastic systems is uncertain, and it is difficult to

be estimated. The method to calculate the joint probability and

kernel estimation is dependent on each individual system.

To calculate the probability density, one efficient way is

to reconstruct the state space of the raw data, embedding

the scalar time series into trajectories in a state space of

possibly high dimension (Lindner et al. 2011). The map-

ping uses delay-coordinates to create a set of vectors or

points in a higher dimensional space according to:

Xd
t ¼ ðXðtÞ;Xðt � sÞ;Xðt � 2sÞ; . . .;Xðt � ðd � 1ÞsÞÞ ð7Þ

where d is the dimension of high-dimensional space and s
denotes delay time. The mapping procedure depends on

these two parameters.

After having reconstructed the state spaces of any pair of

time series, we estimated the TE between their underlying

systems. We rewrite Eq. (6) as sum of four Shannon

entropies as Eq. (8):

TðX ! YÞ ¼ S y
dy

t ; x
dx
t

� �
� S ctþu; y

dy

t ; x
dx
t

� �

þ S ctþu; y
dy
t

� �
� S ydy

t

� �
ð8Þ

From Eq. (8), the key problem in calculating the TE is to

compute the combination of different joint and marginal

differential entropies. We used the nearest-neighbor

method and Kraskov-Stögbauer-Grassberger estimator to

estimate these probabilities (Duda et al. 2004; Kraskov

2004; Kraskov et al. 2004). After taking into account these

methods, we rewrote the TE formula as the following

equation:

TðX ! YÞ ¼ wðkÞ þ w n
y

dy
t
þ 1

� �
� w n

ytþuy
dy
t
þ 1

� �D

�w n
y

dy
t

nxdx
t

� �E
t ð9Þ

where W denotes the digamma function, the angle brackets

indicate an averaging over different time points. The dis-

tances to the k-th nearest neighbor in the highest dimen-

sional space (spanned by ytþu; y
dy
y ; x

dx
t ) define the radius of

the spheres for the counting of points nZ in all the marginal

spaces Z involved.

Cao criterion

Taking together, in order to calculate the TE, we first have

to estimate d and s from raw time series. In this paper, we

used Cao (1997) criterion to determine the minimum

embedding dimension and the delay time. A variation

reflecting a relative increase in distance between two

nearest neighbors from d to d ? 1 dimension is defined as:

aðt; dÞ ¼
xdþ1

t � xdþ1
t0ðt;dÞ

xd
t � xd

t0ðt;dÞ

�����

����� ð10Þ

where t ¼ 1; 2; . . .;N � ds, and :k k indicates Euclidean

distance in d and d ? 1 dimensions. The vector xd
t and

xd
t0ðt;dÞare nearest neighbors in the d-dimensional space.

A quantity E(d) averaged across all N instances of a(t, d)

is utilized to define the minimum embedding dimension:

EðdÞ ¼ 1

N � ds

XN�ds

t¼1

aðt; dÞ ð11Þ

E(d) depends only on the dimension d and the time lag s.

The difference of E(d) from d to d ? 1 dimension is

defined as:

E1ðdÞ ¼ Eðd þ 1Þ
EðdÞ ð12Þ

We construct a target function as following:

E1ðd � 1Þ þ E1ðd þ 1Þ � 2�E1ðdÞ ð13Þ

By minimizing this target function, the optimal

embedding dimension d and the time lag s are able to be

determined.

Results based on simulated data

To investigate the effectiveness of the proposed algorithm,

we first calculated TE values of two simulated time series

with nonlinear coupling. The two time series X and Y were

constructed through the following two equations:
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Xðt þ 1Þ ¼
X9

i¼0

aiXðt � iÞ þ egxðtÞ

Yðt þ 1Þ ¼ YðtÞcXðt þ 1� dÞ þ
X9

i¼0

biYðt � iÞ þ egyðtÞ

ð14Þ

where gx and gy both are white noise processes; c is the

coupling coefficient of the two time series; d is the cou-

pling delay; ai and bi are the combination coefficients

(i = 0, ���, 9); e is the noise intensity. In Eq. (14), the

sequence X contained only its own past information, while

the sequence Y contained not only its own past information,

but also past information from the sequence X. In another

words, there was transferred information from X to Y, but

no information from Y to X.

We examined how the parameters, such as the predic-

tion time u, the noise intensity and the coupling strength

affected TE values of the two time series. In the simulation,

we constructed 100 data sets, and each data set contained

40 trials, and each trial had 1,000 sample points.

We first examined influence of the prediction time on

the TE. The simulated data was generated with following

parameters: the coupling strength was 1.0, the noise

intensity was 0.1, and the delay time was 20 ms. The

optimal dimension of embedded space was d = 4 and the

optimal delay s = 1 using the Cao criterion. We varied

prediction time u from 10 to 32, as u = {10, 11, 12… 32}.

In the simulation, we needed to verify whether the TE

calculated in each data set was significantly different from

the null hypothesis that there was no interaction between

those data. We used the permutation test. The permutation

test is a non-parametrical statistical significance test. The

basic approach is following: shuffle 40 trials data in each

dataset, split the data into two groups, calculate the TE

based on reshuffled data, and repeat this process for 100

times. This gives the distribution of the test statistic under

the null hypothesis of no interaction. If the TE value cal-

culated from the original dataset significantly differs from

the null distribution (P \ 0.05), we can reject the null

hypothesis, indicating that there is transmission of infor-

mation between the two time series. We calculated the TE

value for each of the 100 data sets and checked whether it

was statistically significant or not. The result was shown in

Fig. 1.

In Fig. 1, the x-axis represents the prediction time; the

y-axis represents the percentage of significant TE values. It

can be seen that when u was from 15 to 23, the percent of

significant TE values from the sequence X to the sequence

Y reached one hundred, while the percentage of significant

TE values from the sequence Y to the sequence X was very

low. This was because in the simulation data, there was

information transmission from the sequence X to the

sequence Y, but had no information transmission from the

sequence Y to the sequence X. And the delay time was

20 ms, falling in the range of prediction time that showed

one hundred percentage significant TE values. Figure 2

presents the TE strength between the two series as a

function of the prediction time u.

In Fig. 2, the x-axis represents the prediction time u;

the y-axis is the TE strength. The TE strength from the

sequence X to the sequence Y reached the peak when the

prediction time was about 21. While the TE strength from

sequence Y to sequence X was around zero. We knew there

were 20 ms delays in information transmission from the
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Fig. 1 The percentage of the significant TE value as a function of the

prediction time u. The blue curve shows the significant percentage of

TE value from the sequence X to the sequence Y, and the red curve
indicates the significant percentage of TE value from the sequence

Y to the sequence X. (Color figure online)
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Fig. 2 The TE value as the function of the prediction time u. The

blue curve represents the TE value of the sequence X to the sequence

Y and the red curve is the TE value of the sequence Y to the sequence

X. (Color figure online)
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sequence X to the sequence Y. The delay time fell in the

effective range of the prediction time, indicating that the

TE could estimate the propagation delay between two

signals.

Neural signals always contain noise, so we examined

how noise affected the TE. We generated the data sets with

various strength of noise, and calculated the TE value of

each data set. The relation between the strength of noise

and the significant percentage was shown in Fig. 3.

With the increase of the noise strength from 0.1 to 0.7,

the permutation test detected 100 percentage significant TE

values from the series X to the series Y. With further

increasing, the significant percentage decreased. In the case

of from the sequence Y to the sequence X, we detected a

very low percentage of significant TE values. Figure 4

shows the function of TE values against the strength of

noise. In the case of from the series X to the series Y the TE

value decreased gradually with increasing the strength of

noise. In the case of from the series Y to the series X, the

TE value was unchanged, around zero. These results

demonstrated that the TE was robust to a certain range of

noise, indicating the TE method can also be effective in

detecting the transmission of information between the two

signals even with noise.

We calculated both TE (Fig. 5a) and mutual information

(Fig. 5b) of these simulated data. Figure 5a shows the

relation between the TE values with the coupling strength.

The abscissa in this figure indicates the coupling strength

between the two signals; the ordinate represents the TE

value. The TE value from the sequence X to the sequence

Y increased monotonically with the increasing of coupling

strength. On the other hand, the TE value from the series Y

to the series X was not different from zero because there

was no information was transferred from Y to X. Figure 5b

shows mutual information as the function of the couple

strength. Both mutual information from X to Y and mutual

information from Y to X increased with the coupling

strength between the two signals. However, the curves of

mutual information in the two directions were overlapped,

even though the information transmission between the two

signals was asymmetric. Mutual information can detect

information transmission between series X and series Y,

but not the direction of information flow. Based on the

simulated data, we demonstrated that the TE method was

able to correctly estimate the coupling delay time, the

direction of information flow and the coupling strength

between two signals, indicating TE can characterize func-

tional connectivity between two systems.

TE values estimated between the lateral prefrontal

cortex and the striatum

We calculated TE values of real LFPs simultaneously

recorded in the LPFC and striatum of one monkey per-

forming a stimulus–stimulus association task (Pan et al.

2008). The monkey had to learn two stimulus–stimulus

associations in the task, e.g., a visual stimulus A1 was

associated with a visual stimulus B1 and a visual stimulus

A2 with a visual stimulus B2. Here we briefly introduced

the task, more detail information of the task and recording

procedures were found in Pan et al. (2008). Each trial of the

task started with the onset of a white fixation spot presented
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Fig. 3 The effect of the noise intensity on the percentage of

significant TE values. The blue curve shows the TE value from the

sequence X to the sequence Y, and the red curve represents the TEV

values from the sequence Y to the sequence X. (Color figure online)
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Fig. 4 The effect of the noise intensity on the TE values. The blue
curves indicates the TE value from the sequence X to the sequence Y,

and the red curves the TE value from the sequence Y to the sequence

X. (Color figure online)
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at the center of the monitor. The monkey had to fixate the

spot for a random duration (1,000–1,200 ms), and then a

sample cue stimulus, for example A1, was presented at the

center of the display for 400 ms. After a variable delay

period (700–1,200 ms), the fixation spot disappeared and at

the same time, the second stimuli, B1 and B2, were pre-

sented pseudo-randomly at the left and right positions on

the monitor. The subject made a saccade to the target

stimulus (e.g. B1) to select it. If the sample stimulus was

A2, the monkey chose the stimulus B2 as the correct target.

We inserted one U-probe electrode with 8 channels

(Plexon Inc, Texas, USA) into the LPFC, and the other

with 8 channels into the striatum to record LFPs simulta-

neously in the both areas. Figure 6 presents the sample data

of LFPs from two U-probes, the 8-channel data recorded

from the LPFC (Fig. 6a) and the 8-channel data from the

striatum (Fig. 6b). The data in each channel was aligned

with the stimulus onset (indicated by the dashed line), with

the duration of 5 s.

We calculate TE values for each pair of channels (one

channel from the LPFC and the other from the striatum) in

two time epochs: fixation period (900 ms prior to the

sample stimulus) and stimulus period (900 ms after the

sample stimulus), respectively. It is known that prefrontal

neurons directly project to striatal neurons. Outputs of

striatal neurons reach the thalamus through the direct and

indirectly pathways, and the thalamus feeds back signals to

the prefrontal cortex (Alexander et al. 1986). According to

such anatomical connections between the prefrontal cortex

and the striatum, striatal neurons would receive signals

directly from prefrontal neurons, whereas prefrontal neu-

rons would not receive information directly from striatal

neurons. Thus we expected that the TE value from the

LPFC to the striatum would be larger than that from the

striatum to the LPFC.

Figure 7a shows the TE values averaged across pairs of

channels in each session and across 10 recording sessions. In

the stimulus period, the TE strength from the LPFC to the

striatum was significantly greater comparing to that in the

opposite direction (two tailed t test, P \ 10-5). The two TE

values, however, had no significant difference in the fixation

period (two tailed t test, P = 0.3158). The TE value from the

LPFC to the striatum increased in the stimulus period com-

paring to in the fixation period. The TE value from the stri-

atum to the LPFC had no change between the two periods.

Correspondingly, we computed mutual information between

the LPFC and striatum based on the same database (Fig. 7b).

The value of mutual information significantly increased in

the stimulus period than in the fixation period (two-tailed

t test, P \ 10-4), indicating mutual information could detect

the variation of information transmission in the two periods.

But the mutual information from the LPFC to the striatum

was completely same as the mutual information from the

striatum to the LPFC, indicating the mutual information did

not estimate the direction of information transmission. The

results suggested that TE not only characterized anatomical

projections from one region to another region, but also

described dynamical properties of functional connectivity

between those areas. The dynamical properties may reflect

various interactions between the LPFC and the striatum

during different behavior stages.

Discussions

Most approaches used in the investigation of causality in

neuroscience are based on interpretation of the Granger

Causality definition (Ding et al. 2000; Kaminski et al.
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Fig. 5 The TE value and the mutual information as a function of the

coupling strength of the two time series. a shows the function of TE

value against the coupling strength and b shows the function of

mutual information against the coupling strength. The blue curves
indicate the TE value or mutual information from the sequence X to

the sequence Y, and red curves the TE value or mutual information

from the sequence Y to the sequence X. (Color figure online)
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2001; Seth and Edelman 2007; Seth 2008). One limitation

in Granger causality is the prior assumption of linear

interaction between systems. The mutual information has

been widely applied in quantifying the overlap of infor-

mation content of two neurons (Tsukada et al. 1975, 1976;

Borst and Theunissen 1999). However, mutual information

contains no directional information (see Figs. 5, 7). The

TE, based on information theory, is a very general way to

define causality, a way that encompasses both linear and

nonlinear relationship. Compared to mutual information,

TE characterizes the direction of information flow, which

may be an appreciate way to describe the information

process in the neural system with layered structure.

In this study, we calculated TE values of two stimulated

time series X and Y, and found this method was able to

correctly predict the coupling delay time from X to Y (see

Figs. 1, 2). We also observed that the TE value increased

with the increment of the coupling strength between X and

Y (see Fig. 5), and decreased with the noise (see Fig. 4),

indicating the TE method was able to estimate the coupling

strength of two systems. Moreover, the TE value from X to

Y was significantly different from zero only in the case of

information was transferred from X to Y. These properties

suggested that the TE method quantitatively measured the

coupling strength and information flow (or causal interac-

tion) between two systems.

We also calculate the TE values and mutual information

between the LPFC and the striatum based on real LFP data.

The TE method detected the functional connectivity from

the LPFC to the striatum was stronger than the connectivity

from the striatum to the LPFC (see Fig. 7), consisting with

the known anatomical evidence between them (Yin and

Knowlton 2006). More importantly, we found that the TE

value from the LPFC to the striatum was dependent of the

monkey’s behavior. In the fixation period, the TE value

from the LPFC to the striatum did not differ from the TE

value in reverse direction. In the stimulus period, the for-

mer significantly increased, indicating more LPFC infor-

mation was sent to the striatum in stimulus period than in

the fixation period. Therefore, the TE method had the

ability to reveal dynamical changing of functional con-

nectivity between brain regions, which may reflect

dynamical interactions in such prefrontal-striatal networks

correlated to different behaviors. Mutual information

estimated the functional connectivity between the two

areas symmetrically, without directional information (see

Fig. 7b).

The brain system is a hierarchical organization with

forward and feedback connections. A brain region may

send its outputs to a higher-order area, and at the same time

receives feedback information from the higher-order area,

forming a circular circuit. It is usually difficult to distin-

guish casual relations between those signals temporally.

But in the prefrontal-striatal circuits, prefrontal neurons

directly project to striatal neurons through monosynaptic

connections. On the other hand, striatal neurons have no

direct connections to prefrontal neurons. Striatal neurons

project in two different pathways: the direct and the indi-

rect pathways (Percheron and Filion 1991; Kamishina et al.

2008). In the direct pathway, Neurons in the striatum

project onto the cells of the Substantia nigra reticulate-

globus pallidus interna (SNr-GPi) complex. The SNr-GPi
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Fig. 6 The raw LFP data of 16 channels recorded in one trial. LFP

data recorded in the LPFC by a U-probe with 8 channels is presented

in (a) and LFP data recorded in the striatum is shown in (b). LFP data

in each channel was segmented and aligned on the stimulus onset

(indicated by the dashed line). The two gray areas (separated by the

dashed line) indicate the two time windows in which LFP data was

used to calculate transfer entropy and mutual information. Fixation

period is prior to the stimulus onset, and Stimulus period is post the

stimulus onset
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complex projects directly onto the thalamus. Striatal neu-

rons in the indirect pathway project onto the cells of the

globus pallidus externa (GPe), which inhibits the subtha-

lamic nucleus (STN). The STN, in turn, projects inputs to

the SNr-GPi complex and then to the thalamus. Finally,

through the thalamus, the signals are feedback to the pre-

frontal cortex. In the prefrontal-striatal circuits, the trans-

mission time from the prefrontal cortex to the striatum

should be much less than that from the striatum to the

prefrontal cortex. We selected the prediction time u as

10 ms, approximating the averaged transmission time from

the prefrontal cortex to the striatum (Maurice et al. 1998),

to calculate TE of LFP data. Therefore we could find sig-

nificantly higher TE value from the prefrontal cortex to the

striatum than from the reverse direction. It is possible that

when we set the prediction time matching the averaged

transmission time from the striatum to the prefrontal cor-

tex, TE values from the striatum to the prefrontal cortex

would be larger than TE values from the prefrontal cortex

to the striatum. We can temporally separate cause-effect

relations in the prefrontal-striatal circuits due to their dif-

ferent transmission times. In two generally coupled sys-

tems with similar transmission times, the bidirectional

information theory (Marko 1973) could be used to clarify

information transmission between them. Further study is

necessary to investigate these issues.

Both TE and mutual information were significantly

stronger in the stimulus period than in the fixation period

(see Fig. 7), suggesting the functional connectivity became

more effective from the prefrontal cortex to the striatum in

the stimulus period. The changing of the functional con-

nectivity may be due to the increasing of synaptic strength

through learning or synchronized firing patterns of two

assembled neurons in the prefrontal cortex and striatum.

Synaptic weights between prefrontal and striatal neurons

would be modified during the learning of the task. After the

monkey completed the learning, the weights would keep

stable. LFPs were recorded after the monkey got over-

trained. We compared TE values in the two time epochs

prior to or post the stimulus onset in each trial. It is not

likely for prefrontal and striatal neurons to modify their

synaptic weights quickly enough across the stimulus onset

trial by trial. The increasing TE from the fixation period to

the stimulus period may be due to the changing of syn-

chronized firing patterns in the prefrontal cortex and stri-

atum. In the fixation period, neurons in the two areas fire

independently, and the temporal correlation between them

is low. In the stimulus period, more neurons show syn-

chronized firing and their temporal correlation increases.

So the functional connectivity may reflect information

transmission or communication between assembled neu-

rons that may synchronize to operate a specific function,

and it may depends on the coincidence of arrived EPSPs

and IPSPs at post-synaptic neurons (Tsukada et al. 1977;

Fingelkurts et al. 2005).

The current TE method estimated causal interactions

between two systems in the temporal domain, but not in the

frequency domain. Neural signals, like LFP, EEG, contain

a very broad frequency spectrum, ranging from a fraction

of a Hz to well over 100 Hz, such as h(4–7 Hz),

a(8–13 Hz), b(14–30 Hz) and c(25–100 Hz) frequency

bands (Gu and Liang 2007). Each frequency band and their

interactions may play different functional roles in cortical

information processing (Siegel et al. 2012); for example,

low frequency band is involved in neural communication

between different brain regions, while high frequency band

is involved in neural communication within a brain region

(Buschman and Miller 2007). One important issue that

needs call for further investigation is how to apply the TE

to analyze causal interactions of two systems in the fre-

quency domain.
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Fig. 7 TE and mutual information between the LPFC and the striatum

estimated from real LFP data in the two time epochs. a shows TE and

b shows mutual information. The blue lines indicate the TE value or

mutual information from the LPFC to the striatum, and the red lines

represent the TE value or mutual information from the striatum to the

LPFC. Error bars indicate s.e.m. (Color figure online)
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