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Objectives: Genotypic HIV drug-resistance testing is typically 60%–65% predictive of response to combination
antiretroviral therapy (ART) and is valuable for guiding treatment changes. Genotyping is unavailable in many
resource-limited settings (RLSs). We aimed to develop models that can predict response to ART without a geno-
type and evaluated their potential as a treatment support tool in RLSs.

Methods: Random forest models were trained to predict the probability of response to ART (≤400 copies HIV
RNA/mL) using the following data from 14891 treatment change episodes (TCEs) after virological failure, from
well-resourced countries: viral load and CD4 count prior to treatment change, treatment history, drugs in the new
regimen, time to follow-up and follow-up viral load. Models were assessed by cross-validation during development,
with an independent set of 800 cases from well-resourced countries, plus 231 cases from Southern Africa, 206 from
India and 375 from Romania. The area under the receiver operating characteristic curve (AUC) was the main
outcome measure.

Results: The models achieved an AUC of 0.74–0.81 during cross-validation and 0.76–0.77 with the 800 test TCEs.
They achieved AUCs of 0.58–0.65 (Southern Africa), 0.63 (India) and 0.70 (Romania). Models were more accurate for
data from the well-resourced countries than for cases from Southern Africa and India (P,0.001), but not Romania.
The models identified alternative, available drug regimens predicted to result in virological response for 94% of
virological failures in Southern Africa, 99% of those in India and 93% of those in Romania.

Conclusions: We developed computational models that predict virological response to ART without a genotype
with comparable accuracy to genotyping with rule-based interpretation. These models have the potential to help
optimize antiretroviral therapy for patients in RLSs where genotyping is not generally available.
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Introduction
The roll-out of combination antiretroviral therapy (ART) in
resource-limited settings (RLSs) is delivering major benefits in

terms of both morbidity and mortality.1 Nevertheless, there
are a number of issues to be addressed if these benefits are to
be maximized over the long term. Many patients on ART are
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likely to experience treatment failure at some point, requiring
a treatment change to re-establish virological suppres-
sion. This should be done promptly to minimize the risk of
disease progression, the development of drug-resistant variants
and, consequently, the spread of drug-resistant virus in the
population.2,3

To enable the rapid scale-up of ART in RLSs, WHO recom-
mends a public health approach based on standardized, afford-
able drug regimens, limited laboratory monitoring and
decentralized service delivery.4 This includes the use of clinical
criteria and CD4 cell counts to diagnose ART failure and guide
treatment changes, rather than viral load monitoring, which is
the norm in well-resourced settings.4 However, this strategy
has been shown to be associated with deferred treatment
switching, accumulation of resistance and increased morbidity
and mortality.5 – 10

In well-resourced settings, following treatment failure a geno-
typic resistance test is routinely performed to identify
resistance-associated mutations.11 This information is typically
interpreted using one of many rule-based interpretation
systems available via the Internet and/or expert advice.12

These systems indicate whether the virus is likely to be resistant
or susceptible to each individual drug, but do not provide any in-
dication of the relative antiviral effects of combinations of drugs.
With 25 or more drugs licensed for use in combination and .100
mutations involved in drug resistance, the selection of the
optimum new therapy can be demanding. The HIV Resistance
Response Database Initiative (RDI) was established in 2002 to
address this and has developed computational models that
use genotype, viral load, CD4 count and treatment history vari-
ables to predict response to drug combinations with �80% ac-
curacy.13 – 15 This compares favourably with the 50%–70%
predictive accuracy found by the RDI for genotypic sensitivity
scores derived from genotyping with rule-based interpretation
for the same cases and with independent studies of the use of
genotyping to predict reponse.15 – 17

The models have been used to power a free experimental
web-based HIV treatment response prediction system (HIV-
TRePS) assessed by experienced HIV physicians in two clinical
pilot studies as a useful aid to clinical practice.18 An alternative
modelling system trained with a European dataset has also
been evaluated and shown to be comparable to estimates of
short-term response provided by HIV physicians.19

Such a system could be a useful tool to support optimal
regimen sequencing in RLSs, particularly as additional drugs
enter clinical practice. However, genotypic resistance tests are
not generally available in RLSs so we decided to explore the pos-
sibility of modelling response without a genotype. In the
absence of substantial data from RLSs, prototype random forest
(RF) models were developed with cases from well-resourced set-
tings. The accuracy of the ‘no-genotype’ models was only slightly
diminished, at 78%–82%, compared with those using a geno-
type.20,21 Similarly, a group using European data confirmed that
models developed without a genotype can achieve levels of accur-
acy that are encouraging.22 However, previous studies have shown
that models are most accurate for patients from ‘familiar’ settings,
i.e. settings from where the training data were collected.16 Since
these models were trained with data from well-resourced settings,
a concern was that their performance might be diminished when
the models were applied to cases in RLSs.

In this study we set out to develop models trained with data
from a wider range of sources than before, to maximize general-
izability and to evaluate these models, not only during cross-
validation and with test data from the same settings, but with
cases from clinical practice in different RLSs in Eastern Europe,
sub-Saharan Africa and India. The aim was to develop models
that can predict virological response to ART without a genotype
and evaluate their potential as a generalizable treatment
support tool that could minimize treatment failure in RLSs.

Methods

Clinical data
At the time of the study the RDI database held anonymized data from
�84000 patients from .30 countries worldwide. The package of data
collected when antiretroviral therapy is changed, for whatever reason,
is termed a treatment change episode (TCE).16 TCEs were extracted
that had all the following data available (Figure 1): on-treatment baseline
plasma viral load (sample taken ≤8 weeks prior to treatment change); on
treatment baseline CD4 cell count (≤12 weeks prior to treatment
change); baseline regimen (the drugs the patient was taking prior to
the change); antiretroviral treatment history; drugs in the new drug
regimen; a follow-up plasma viral load determination taken between 4
and 48 weeks following introduction of the new regimen and the time
to that follow-up viral load (in order that the models can be trained to
predict responses at different times).

These TCEs were censored using the following rules established in pre-
vious studies:15 no more than three TCEs from the same change of
therapy were permitted (using multiple follow-up viral loads to generate
additional TCEs), with viral load determinations ≥4 weeks apart; TCEs in-
volving drugs no longer in current use were excluded; TCEs involving
drugs not adequately represented in the database (tipranavir, raltegravir
and maraviroc) were excluded; TCEs that include an unboosted protease
inhibitor (PI) other than nelfinavir, or ritonavir as the only PI, in the failing
or new regimen positions were excluded (but permitted as treatment
history variables); TCEs with an undetectable viral load (,400 copies)
at baseline were excluded as the models were designed to predict
responses to treatment changes following virological failure; TCEs with
viral load values of the form ‘,X’, where X is .400 or 2.6 log copies,
were excluded as the absolute values were not known.15

Computational model development
The qualifying TCEs were used to train a committee of 10 RF models to
predict the probability of the follow-up viral load being ≤400 copies/
mL, using methodology described in detail elsewhere.14,15 The input vari-
ables used were: baseline viral load (log10 copies HIV RNA/mL); baseline
CD4 count (cells/mL); treatment history [five variables determined by
previous research to have a significant impact on the accuracy of
models, comprising zidovudine, lamivudine/emtricitabine, any non-
nucleoside reverse transcriptase inhibitors (NNRTIs), any PIs, enfuvirtide];
antiretroviral drugs in the new regimen [18 variables, comprising zidovu-
dine, didanosine, stavudine, abacavir, lamivudine/emtricitabine, tenofovir
DF, efavirenz, nevirapine, etravirine, indinavir, nelfinavir, saquinavir,
(fos)amprenavir, lopinavir, atazanavir, darunavir, ritonavir (as a PI
booster) and enfuvirtide]; and time from treatment change to the follow-
up viral load (number of days).

The output variable was the follow-up viral load coded as a binary
variable: ≤2.6 log or 400 copies/mL¼1 (response) and .2.6 log or
400 copies/mL¼0 (failure). The models were trained to produce an esti-
mate of the probability of the follow-up viral load being ≤400 copies/mL.

The performance of the models as predictors of virological response
was evaluated by using the models’ estimates of the probability of
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response and the responses observed in the clinics (response versus
failure) to plot receiver operating characteristic (ROC) curves and asses-
sing the area under the ROC curve (AUC). In addition, the optimum oper-
ating point (OOP) for the models was derived and used to obtain the
overall accuracy, sensitivity and specificity of the system.

Data partition
The majority of qualifying TCEs were from North America, Europe, Australia
and Japan. The few complete TCEs available to RDI at the time from RLSs
that included viral loads (not routinely monitored in RLSs) were set aside to
act as test sets. The 15947 remaining TCEs that met all the criteria
described above were partitioned at random into a training set of 14891
TCEs and a test set of 800 TCEs from 800 patients (�5% of the available
dataset), such that no patient could have TCEs in both sets (additional
TCEs from patients in the test set were discarded).

Internal cross-validation
The committee of 10 RF models was developed using a 10× cross-
validation scheme whereby 10% of the TCEs were selected at random
and the remainder used to train numerous models, and their perform-
ance gauged by cross-validation with the 10% that had been left out.
Model development continued until further models failed to yield
improved accuracy. This process was repeated 10 times until all the
TCEs had appeared in a validation set once. With each partition the best-
performing RF model was selected as a member of the final committee
of models.

External validation
The RF models were validated externally by providing them with the base-
line data from the 800 test TCEs, obtaining the predictions of virological re-
sponse from the models and comparing these with the responses on file.
In addition to evaluating the committee of 10 RF models individually, the
committee average performance (CAP) was evaluated using the mean of
the predictions of the 10 models for each of the test TCEs.

The RF models were then tested using the qualifying TCEs from the
following clinics and cohorts in RLSs. In sub-Saharan Africa, data were
provided by the Gugulethu Clinic, Desmond Tutu HIV Centre, Cape
Town, South Africa (114 TCEs); Ndlovu Medical Centre, Elandsdoorn,
South Africa (39 TCEs); and the PASER-M cohort, in the following six sub-
Saharan African countries: Kenya, Nigeria, South Africa, Uganda, Zambia

and Zimbabwe (78 TCEs).23 Since these individual datasets were small,
they were combined to give a Southern African test set of 231 TCEs. In
Romania data came from the National Institute of Infectious Diseases
“Prof. Dr. Matei Balş” and the “Dr. Victor Babes” Hospital for Infectious
and Tropical Diseases, both in Bucharest (375 TCEs). In India, the data ori-
ginated from an HIV cohort study in the district of Anantapur (206 TCEs).24

Finally, a subset of 55 of the original 800 test TCEs that most
resembled the TCEs from RLSs in terms of their treatment history and
drugs in the new regimen were used to test the models as a control
for the content of the TCEs versus the ‘unfamiliarity’ of the settings
from which the data were obtained.

The differences in performance of the models with the different test
sets were tested for statistical significance using DeLong’s test.25

In silico analysis to identify effective alternatives
to failed regimens
In order to assess the potential of the models to help avoid treatment
failure as a generalizable tool in different settings, they were used to
identify antiretroviral regimens that were predicted to be effective for
the treatment failures that occurred in the clinic in each of the datasets.
The baseline data for these cases were used by the models to make pre-
dictions of response for alternative three-drug regimens comprising drugs
that were in use in these settings at the time, as summarized in Table 1.
For all these tests the OOP (the cut-off above which the models’ predic-
tion is classified as a prediction of response) that was derived during
model development was used, as a test of how generalizable the
system is with cases from unfamiliar settings.

Results

Characteristics of the datasets

The baseline, treatment and response characteristics of the
datasets are summarized in Table 2. The training and main RDI
test sets were highly comparable, as would be expected
as they were partitioned at random from the pool of qualifying
TCEs. A total of 2013 of the training cases gave rise to a single
TCE, with 1615 having two TCEs (using two follow-up viral
loads at different timepoints) and 3216 having three TCEs. The
mean number of linked TCEs per case was 2.18.

Males outnumbered females in the RDI datasets by around
5:1, whereas there were more women than men in the African

Start of new

treatment

Treatment history

Treatment

archive

Failing

treatment

–16 –12 –8 –4 0 4 8 12 16 20 24

weeks

Post-treatment change VLsBaseline VL

Baseline CD4

28 32 36 40 44 48 52

New treatment - no change during this period

Figure 1. Anatomy of a treatment change episode (TCE). VL, viral load.
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data and a gender balance in the Romanian and Indian data. The
patients from RLSs were younger than those from the RDI data-
sets (median 39–42 years). This was particularly true of
Romania (median 20 years) and India (median 28 years). The
median age of the southern African patients was 34 years.

The data from RLSs had somewhat higher baseline viral
loads, with median values ranging from 3.95 (Gugulethu) to
4.79 log10 copies/mL (India) compared with 3.77 log10 copies/
mL for the training data. This is consistent with patients in
RLSs switching after a greater degree of virological failure,
often based on clinical symptoms or a decrease in CD4 count.
Interestingly, however, there was less of a difference in baseline
CD4 cell counts, with the exception of PASER-M, where the
median was 84 cells/mm3 at baseline compared with 260 for
the training data and 182–285 for the other RLS datasets.
The PASER dataset includes patients from 13 sites in six coun-
tries that were switched to second line after prolonged failure
with no routine virological monitoring.7 This may explain the
low CD4 counts and is likely to represent the reality in many
RLSs in Africa.

Almost all (99–100%) of the cases from sub-Saharan Africa
and India had received nucleoside/nucleotide reverse transcript-
ase inhibitors [N(t)RTIs] and NNRTIs in their history, with 0%–6%

having experience of PIs. Accordingly, 88%–92% of the Southern
African cases and 54% of the Indian cases had been switched
onto two N(t)RTIs+PI. The remaining Indian cases had been
switched onto three N(t)RTIs and a PI, all but two of which
included tenofovir. The Romanian cases included heavily
treatment-experienced patients, with 76% having PI experience.
Nevertheless, 70% were switched onto a PI-based triple therapy.
The data used to train the models included a very diverse range
of new regimens comprising 94 distinct types (defined in terms
of the number of drugs from different classes) involving between
one and eight drugs. The most frequent were: two N(t)RTIs+PI
(28%), two N(t)RTIs+NNRTI (17%), three N(t)RTIs+1 PI (10%),
three N(t)RTIs (8%), three N(t)RTIs+NNRTI (6%) and two N(t)RTIs+
PI+NNRTI (4%).

The RDI subset selected as resembling the cases from RLSs
had a median baseline viral load of 4.17 copies/mL, which
was more comparable to that of the Southern African TCEs
than were the main training and test sets. Seventy-six
percent were switched onto two N(t)RTIs+PI, 4% switched to
two N(t)RTIs+NNRTI, 13% to three N(t)RTIs+PI and 7% to
other combinations.

Results of the modelling

Cross-validation

The performance characteristics from the ROC curves of the 10
individual models during cross-validation and independent
testing are summarized in Table 3. The models achieved an
AUC during cross-validation ranging from 0.74 to 0.81, with a
mean of 0.77. The overall accuracy ranged from 68% to 76%
(mean 72%), sensitivity from 67% to 77% (mean 72%) and spe-
cificity from 63% to 75% (mean 71%).

Testing with the independent set of 800 TCEs

The 10 models achieved an AUC ranging from 0.76 to 0.77,
with a committee average of 0.77. The overall accuracy
ranged from 70% to 73% (committee average 71%), sensitivity
ranged from 70% to 76% (committee average 71%) and spe-
cificity from 63% to 71% (committee average 70%). The ROC
curve for the CAP is presented in Figure 2.

Testing the models with data from RLSs

The accuracy of prediction of the RF committee was tested with
each of the test sets from RLSs and the 55 RDI TCEs that
resembled the cases from RLSs, with the results presented in
Table 4 and the ROC curves in Figure 2. For the data from south-
ern Africa, the AUC ranged from 0.58 for PASER-M to 0.65 for
Gugulethu. For the combined southern African data the AUC
was 0.60. This compares with 0.77 for the RDI 800 test set
and 0.70 for the subset that resembled the RLS cases. Overall
accuracy ranged from 60% (PASER-M) to 64% (Ndlovu), com-
pared with 71% and 75% for the RDI 800 set and the 55 TCE
subset. Sensitivity ranged from 60% to 68% and specificity
from 57% to 63%. This compares with sensitivity of 71% for
the RDI 800 and 75% for the subset and specificity of 70%
and 73% respectively.

Table 1. Drug availability (those in use at the time of the TCEs)

Ndlovu Gugulethu PASER-M Romania India

N(t)RTIs
abacavir X † † † †

didanosine † † † † †

emtricitabine X X † † †

lamivudine † † † † †

stavudine † † † † †

tenofovir † X † † †

zidovudine † † † † †

NNRTIs
efavirenz † † † † †

etravirine X X X † X
nevirapine † † † † †

PIs
amprenavir X X X † X
atazanavir X X X † X
darunavir X X X † X
indinavir X X X † X
lopinavir † † † † †

nelfinavir X X X † †

ritonavir † † † † †

saquinavir X X X † X
tipranavir X X X † X

Fusion inhibitors
enfuvirtide X X X † X

Integrase inhibitors
raltegravir X X X X X

Symbols: †, drugs that were in use; X, drugs that were not in use.
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Table 2. Characteristics of the TCEs in the training and test sets

Training set RDI Test set Ndlovu Gugulethu PASER-M
Southern

Africa Romania India RDI subset

TCEs 14891 800 39 114 78 164 375 206 55
Patients 4878 800 38 104 78 153 234 165 55
Male 3625 602 12 28 44 48 111 87 44
Female 778 137 26 76 34 105 109 78 10
Gender unknown 475 61 0 0 0 0 14 0 1
Median age (years) 40 42 32 32 39 34 20 28 39

Baseline data
median (IQR) baseline VL
(log10 copies/mL)

3.77
(2.67–4.71)

3.79
(2.72–4.70)

4.31
(3.88–4.65)

3.95
(3.46–4.55)

4.64
(3.97–5.16)

4.04
(3.57–4.59)

4.07
(2.6–5.07)

4.75
(4.16–5.27)

4.17
(3.27–4.68)

median (IQR) baseline CD4 (cells/
mm3)

260
(135–417)

260 (130–
403)

214
(132–367)

239
(138–332)

84 (29–180) 228 (130–
334)

285
(152–480)

274
(147–478)

262
(142–372)

Treatment history
number of previous drugs

(median)
5 5 4 4 4 4 4 3 3

N(t)RTI experience (%) 100 100 100 100 100 100 100 100 100
NNRTI experience (%) 68 67 100 99 100 99 47 100 89
PI experience (%) 83 81 0 4 6 4 76 6 0

Failures (.2.6 log10 copies/mL
follow-up VL)

6501 309 14 41 8 57 176 74 14

percent 44 39 36 36 10 35 47 36 25

Responses 8390 491 25 73 70 107 199 132 41
percent 56 61 64 64 90 65 53 64 75

New regimens
2 N(t)RTIs+PI (%) 28 31 92 88 91 87 46 55 75
2 N(t)RTIs+NNRTI (%) 17 18 8 12 1 10 5 0 4
3 N(t)RTIs (%) 8 8 0 0 8 3 1 0 1
3 N(t)RTIs+PI (%) 10 10 0 0 0 0 3 45 13
other (%) 37 33 0 0 0 0 45 0 7

VL, viral load.
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For the Romanian cases, the performance was better overall,
with an AUC of 0.71, overall accuracy of 67%, sensitivity of 67%
and specificity of 68%. For India, the AUC was 0.63, overall accur-
acy 57%, sensitivity 55% and specificity 61%.

The models’ predictions were statistically significantly more
accurate for the 800 RDI test set than for the Southern African
cases and the Indian cases (P,0.001), but not the Romanian
cases.

In silico analysis

The proportion of cases from the different regions who experi-
enced virological failure following the introduction of a new
regimen varied from 10% in PASER-M to 47% in Romania, reflect-
ing the different stages of treatment of the patients (Table 5).

The models were able to identify a regimen that was pre-
dicted to be effective, comprising only those drugs represented
in the data provided to RDI by each centre, in between 87%
(PASER-M) and 99.5% (India) of all cases. For those cases
where the new regimen prescribed in the clinic failed, the
models identified alternative three-drug regimens that were pre-
dicted to elicit virological responses in between 75% (PASER) and
100% (Ndlovu) of failures. Alternative regimens with higher pre-
dicted probability of response than the failing regimens were
identified for all cases from all RLSs.

Discussion
The computational models reported here predicted virological
response to a change in antiretroviral therapy following virologic-
al failure, without the results of genotypic resistance testing, with
a level of accuracy that was comparable to genotyping with rule-
based interpretation, which is encouraging. Models that do not
require a genotype to make accurate predictions of response
have potential utility in RLSs, where resistance testing is often
not available. This was the first attempt to test such models
using clinical cases from RLSs, and the results confirmed this
potential.

The results were fairly consistent for cases from several clinics
in sub-Saharan Africa and India and somewhat better for
Romania, suggesting that this accuracy may be generalizable
to different RLSs in different regions. While Romania is not as
resource-constrained as most of sub-Saharan Africa or India,
genotyping is not generally available and Romania and other

Table 3. Performance of the models during cross-validation and testing with the 800 RDI test TCEs

Model

Performance in cross-validation Performance with the 800 RDI test set

AUC
overall

accuracy (%)
sensitivity

(%)
specificity

(%) AUC
overall

accuracy (%)
sensitivity

(%)
specificity

(%)

1 0.81 74 77 70 0.77 71 76 63
2 0.78 72 73 70 0.77 71 71 71
3 0.76 71 67 74 0.77 72 72 71
4 0.80 76 77 75 0.76 73 75 70
5 0.79 74 76 71 0.76 70 74 63
6 0.77 71 72 70 0.76 70 73 64
7 0.78 71 71 72 0.77 71 73 67
8 0.76 70 70 71 0.77 72 73 70
9 0.76 71 70 72 0.76 70 70 70
10 0.74 68 72 63 0.76 70 74 64
Mean 0.77 72 72 71
95% CI (0.76, 0.79) (70, 73) (70, 75) (69, 73)
Committee average

performance
0.77 71 71 70

95% CI (0.73, 0.80) (68, 74) (67, 75) (64, 75)

1.00

0.80

0.60

0.40

RDI test set (n = 800)

Romanian test set (n = 375)

Indian test set (n = 206)

Southern African test set (n = 231)

RDI resembling RLS (n = 55)

0.20

0.00
0.00 0.20 0.40 0.60

1–Specificity

S
e

n
si

ti
v
it

y

0.80 1.00

Figure 2. ROC curves for the RF models’ predictions for each of the test
datasets.
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countries of Eastern Europe could, therefore, also benefit from
such an approach.

The models were able to identify alternative three-drug regi-
mens comprising locally available drugs that were predicted to
produce a virological response for a substantial proportion of
the failures observed. This proportion ranged from 75% in the
PASER cohort, where the number of drugs available was fairly
restricted, to 93% in Romania, 99% in India, where drug avail-
ability was greater, and 100% in Ndlovu, where drug availability
was highly restricted. The models were able to identify regimens
with a higher predicted probability of success than the regimen
that failed in all cases from RLSs. This suggests that, had physi-
cians been able to use the system to assist their treatment deci-
sions (by choosing regimens with the highest estimated
probability of success according to the system) the number of
virological failures could have been reduced. If so, the models
could have considerable utility, even in settings where treatment
options are highly restricted, and this utility will increase as treat-
ment options expand.

It should be noted that one of the input variables for these
models was the plasma viral load, which previous studies by
our group and others have shown to be critically important for
the predictive accuracy of the models.20,22 Although the viral
load of patients on ART is not monitored routinely in most
RLSs, it is common practice to evaluate the viral load to
confirm virological failure before switching to second-line ART
in cases who meet criteria for clinical or immunological
failure.4 Moreover, challenges related to the implementation of
viral load monitoring in RLSs are increasingly surmountable, as
recent technological advances have led to lower test costs and
simpler equipment requiring less infrastructure, maintenance
and technical expertise.26

The models were more accurate for patients from the familiar
settings providing training data than for cases from unfamiliar
RLSs, other than Romania, which is consistent with results of pre-
vious studies.16 Analyses have so far failed to identify any signifi-
cant differences between datasets that can explain this.
Interestingly, the accuracy of the models was comparable for

Table 5. Results of in silico analysis in which the models were used to identify potentially effective regimens for cases of actual treatment failure

Ndlovu
(n¼39)

Gugulethu
(n¼114)

PASER-M
(n¼78)

Southern
Africa

(n¼231)
Romania
(n¼375)

India
(n¼206)

RDI test set
(n¼800)

No. (%) of all cases for which the models
were able to identify a regimen that
was predicted to be effective

38 (97) 111 (97) 68 (87) 217 (94) 362 (97) 205 (99.5) 767 (96)

No. (%) of cases that failed in the clinic 14 (36) 41 (36) 8 (10) 63 (27) 176 (47) 74 (36) 309 (39)
No. (%) of actual failures for which

alternative regimens were found that
were predicted to be effective

14 (100) 39 (95) 6 (75) 59 (94) 164 (93) 73 (99) 288 (93)

No. (%) for which alternative regimens
were found with higher predictions of
response

14 (100) 41 (100) 8 (100) 63 (100) 176 (100) 74 (100) 307 (99)

Table 4. Combined RF model performance with independent test sets from RLSs

Dataset AUC Overall accuracy Sensitivity Specificity

Ndlovu (n¼39) 0.61 64% 68% 57%
95% CI (0.40, 0.73) (47%, 79%) (46%, 85%) (29%, 82%)
Gugulethu (n¼114) 0.65 62% 62% 63%
95% CI (0.55, 0.76) (57%, 75%) (50%, 73%) (47%, 78%)
PASER-M (n¼78) 0.58 60% 60% 63%
95% CI (0.38, 0.77) (49%, 71%) (48%, 72%) (24%, 91%)
Southern Africa combined (n¼231) 0.60 61% 60% 62%
95% CI (0.52, 0.69) (53%, 67%) (52%, 68%) (49%, 74%)
Romania (n¼375) 0.71 67% 67% 68%
95% CI (0.66, 0.76) (62%, 72%) (60%, 74%) (60%, 74%)
India (n¼206) 0.63 57% 55% 61%
95% CI (0.55, 0.71) (50%, 64%) (47%, 63%) (49%, 72%)
RDI RLS subset (n¼55) 0.70 75% 75% 73%
95% CI (0.51, 0.88) (60%, 85%) (60%, 87%) (39%, 94%)
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those cases from familiar settings selected as being highly com-
parable to those from RLSs and for the RLS cases themselves.
HIV-1 subtype diversity is unlikely to be the primary explanation
as this phenomenon has been observed with familiar and un-
familiar datasets from the same region as the training data
and, in general, there are no substantial differences in ART
responses between different clades of HIV.27 These latest
results provide further evidence that this phenomenon is not
only reproducible, but likely to be due to differences that are
either very subtle or related to factors not included in the training
data. The development of more accurate models in the future
may benefit from the collection of sufficient data from RLSs to
develop region- or country-specific models, or at least sufficient
for representation in the training data.

During cross-validation and testing with a large independent
test dataset from the same settings as the training data, the
models were only �5% less accurate than is typical for models
that use a genotype in their predictions. This accuracy was com-
parable to that achieved by the EuResist group with models
developed and tested using European data only.22 The study
extends those findings by testing models with data from RLSs
for the first time and by using the models to identify potentially
more effective alternatives to the regimens used in the clinic.

The study has some limitations. Firstly, it was retrospective
and, as such, no firm claims can be made for the clinical
benefit that use of the system as a treatment support tool
could provide. The RDI’s relative shortage of complete TCEs
that include plasma viral loads from RLSs meant that the test
sets were relatively small and also prevented the training of
models using data from RLSs only, specifically for use in these
settings. Nevertheless, the results were positive for clinics and
cohorts in many different countries across several disparate
regions of the world, which is encouraging in terms of generaliz-
ability. Another possible shortcoming inherent in such studies is
that the cases used are, by definition, those with complete
data around a change of therapy and therefore may not be
truly representative of the general patient population. For
example, they may be more adherent, which would tend to
lead the models to overestimate the probability of response for
a population containing a higher proportion of non-adherent
patients. Conversely, since we have little information in our data-
base on adherence, the inclusion of some non-adherent patients’
data in the training set is unavoidable and likely to lead to un-
derestimation of the probability of response for an adherent
individual.

Conclusions

This study is the first to demonstrate that large datasets can be
used to develop computational models that predict virological
response to antiretroviral therapy for patients in RLSs without a
genotype, with accuracy comparable to that of genotyping
with rule-based interpretation. The models were able to identify
potentially effective alternative regimens for the great majority
of cases of treatment failure in RLSs using only those drugs
available at each location at the time.

Full validation of this approach would require a prospective,
controlled clinical trial and the current results indicate that the
accuracy of the models might be significantly improved if data
from RLSs were included in the training of future models.

Nevertheless, the results suggest this approach has the potential
to reduce virological failure and improve patient outcomes in
RLSs. It can provide clinicians with a practical tool to support
optimized treatment decision making in the absence of resist-
ance tests and where expertise may be lacking in the context
of a public health approach to ART rollout and management.
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