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Abstract
Identifying gene and environment interaction (GxE) can provide insights into biological networks
of complex diseases, identify novel genes that act synergistically with environmental factors, and
inform risk prediction. However, despite the fact that hundreds of novel disease-associated loci
have been identified from genome-wide association studies (GWAS), few GxEs have been
discovered. One reason is that most studies are underpowered for detecting these interactions.
Several new methods have been proposed to improve power for GxE analysis, but performance
varies with scenario. In this article we present a module-based approach to integrating various
methods that exploits each method’s most appealing aspects. There are three modules in our
approach: 1) a screening module for prioritizing SNPs; 2) a multiple comparison module for
testing GxE; and 3) a GxE testing module. We combine all three of these modules and develop
two novel “cocktail” methods. We demonstrate that the proposed cocktail methods maintain the
type I error, and that the power tracks well with the best existing methods, despite that the best
methods may be different under various scenarios and interaction models. For GWAS, where the
true interaction models are unknown, methods like our “cocktail” methods that are powerful under
a wide range of situations are particularly appealing. Broadly speaking, the modular approach is
conceptually straightforward and computationally simple. It builds on common test statistics and
is easily implemented without additional computational efforts. It also allows for an easy
incorporation of new methods as they are developed. Our work provides a comprehensive and
powerful tool for devising effective strategies for genome-wide detection of gene-environment
interactions.
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INTRODUCTION
Identification of gene and environment interaction (GxE) in complex diseases has always
been of keen interest, as it helps to elucidate the biological networks underlying complex
disease risk. Understanding GxE also helps identify individuals at highest risk for
developing a disease based on both their exposure patterns and genetic risk profiles, which
informs potential interventions that could prevent or reduce disease burden. In recent years
large-scale genome-wide association studies (GWAS) have been conducted for common
diseases, identifying hundreds of loci, many of which are in previously unsuspected regions
(http://www.genome.gov/26525384). Compared to these novel findings based on marginal
association, there are fewer successes in detecting GxE. Two notable exceptions are the
Wellcome Trust Case Control Consortium GWAS, where the consideration of sex-
differential effects led to the discovery of an additional variant associated with rheumatoid
arthritis [Wellcome Trust Case Control Consortium, 2007], and a GWAS of bladder cancer,
where an interaction of the GSTM1 deletion and a tagSNP in NAT2 with cigarette smoking
was observed [Rothman et al., 2010]. The lack of success is because identifying GxE has
additional challenges compared to identifying marginal genetic association. These include
measurement error in the exposure assessment, heterogeneity across studies, and inadequate
power [Thomas, 2010]. Among these, power is a critical issue, as even in a perfect situation
with no measurement error or heterogeneity, the detection of an interaction needs at least
approximately 4 times as many subjects as are needed to detect a main genetic effect of
comparable effect size [Smith and Day, 1984]. Moreover, the large amount of genotyping
data generated from GWAS presents an additional challenge, that is, how to find the needles
(SNPs having GxE) in the haystack (millions of SNPs) with limited sample size. Innovative
and powerful analytical methods are critically needed to enhance power for detecting GxE.

Many methods have recently been proposed to enhance power of detecting GxE (see
Thomas, 2010 and Mukherjee et al., 2011 for a comprehensive review). A common method
to test for GxE for individual SNPs in a case-control study is to use the standard logistic
regression model testing whether disease risk for GxE differs from the log-additive effect of
gene (G) and environment (E). When both G and E are binary, this essentially tests whether
the correlation between G and E, measured by the log-odds ratio, differs between cases and
controls. When G and E are independent in the population and the disease prevalence is low,
the above GxE test is equivalent to testing whether G and E are correlated in cases only
[Piegorsch et al., 1994]. The case-only test is considerably more powerful than the case-
control test; however, the type I error can be greatly inflated if the independence or the rare
disease assumption is violated [Albert et al., 2001]. To balance between bias and efficiency,
Mukherjee and Chatterjee [2008] proposed an empirical Bayes (EB) estimator, which
combines the case-only and the case-control estimators using a weight, with greater weight
given to the more efficient case-only estimator if the G-E independence is likely to hold and
to the more robust case-control estimator otherwise. Li and Conti [2008] proposed a similar
method using Bayesian model averaging over the case-only and case-control estimators.
Tests based on these weighted estimators have reduced inflated type I error rate compared to
case-only tests and improved power compared to case-control tests. Generally speaking,
case-only or EB tests have been shown to improve the power for identifying GxE
particularly when G and E are independent. However, they focus on individual SNPs, and
have not dealt with simultaneously testing millions of SNPs for GxE as in GWAS.

Towards this end, two types of screening test statistics have been proposed: the marginal
genetic association–based [Kooperberg and LeBlanc, 2008] and the correlation-based
[Murcray et al., 2009], to screen SNPs. A subset of the SNPs, usually the top SNPs based on
the screening test statistics, are then selected for formally testing the GxE in the second
stage. The underlying rationale is that if a SNP has a GxE effect, the SNP may exhibit some
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level of marginal genetic association or correlation with E in combined cases and controls.
For GWAS, where a vast majority of SNPs do not have GxE, the two-stage analysis can
gain substantial power by filtering out those that unlikely have any interaction effect with
multiple comparisons adjustment for only the subset of SNPs more likely to have an
interaction with E. The two different types of screening test statistics are powerful under
different scenarios, which makes it challenging to choose which one to use as the underlying
true models are generally unknown in real data analyses. To overcome this difficulty,
Murcray et al. proposed a hybrid approach combining the two screening test statistics
[Murcray et al., 2011]. However, all these screening methods use the case-control test to test
GxE and have not taken advantage of the more efficient case-only or EB test.

In the GxE testing stage of the two-stage analysis, when the screening test statistics and the
GxE test statistics are independent, the multiple comparison adjustment will only need to
account for the subset of SNPs that are formally tested for GxE [Dai et al., 2010]. The
Bonferroni correction is usually used, treating all SNPs equally once they are selected for
testing GxE. This requires one to decide on some criteria, for example, a p-value threshold,
to select SNPs. To avoid making such binary decision, alternative multiple comparison
procedures may be considered. One possibility is to use weighted hypothesis testing [Roeder
et al., 2007; Ionita-Laza et al., 2007; Roeder and Wasserman, 2009], which allocates the
type I error differentially. Under this framework, all SNPs are tested for GxE but have
different significance thresholds. SNPs ranked high will have less stringent significance
thresholds than SNPs ranked low. For example, Ionita-Laza [2007] proposed a strategy for
family-based GWAS by partitioning SNPs into a relatively small number of partitions such
that SNPs that belong to the same partition receive the same weight and the SNPs ranked
high are given greater weight. Weighted hypothesis testing not only removes the limitation
of having to decide in advance how many top SNPs will be tested, but also has a potential to
increase power by assigning more weight to SNPs that are more likely to have GxE. The key
to the weighted hypothesis testing is SNP ranking. Two-stage methods have a natural
ordering, where the screening test statistics can be used to rank the SNPs.

One can not help wondering whether all of these methods, which aim to enhance power
from various aspects, can be combined so that the power for identifying GxE can be further
enhanced. In the next section, we present a module-based approach to integrating various
methods that exploits each method’s most appealing aspects. Each module includes several
methods, which may be combined both within and across modules. We describe principles
for combining the methods. Following these principles, we develop two novel “cocktail”
methods. In the subsequent Results section, we conduct extensive simulation studies to
evaluate the performance of the cocktail methods as well as many existing methods under a
wide range of scenarios and different interaction models. We conclude the article with some
final remarks in the Discussion section.

METHODS
MODULAR APPROACH

We propose to group the analysis methods into three modules: a “screening” module for
prioritizing SNPs; a “multiple comparison” module for addressing the number of tests
performed; and a “testing GxE” module for testing GxE. Figure 1 illustrates examples of
these modules. In the screening module, one may choose one or both of the marginal and
correlation screening to prioritize SNPs or no screening at all. Since many SNPs are tested
for GxE, multiple comparison adjustment is essential in declaring the genome-wide
significance. Hence, the module-based approach has a multiple comparison module, which
includes various methods for multiple comparisons such as the commonly used Bonferroni
correction and the weighted hypothesis testing. Finally, in the GxE testing module, one of
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the case-control test, case-only or EB test may be used to test GxE for SNPs that pass the
screening or in the case of no screening, all of the SNPs. We want to note that the methods
listed in each module are meant for illustration, and are not intended to be a complete list. It
is easy to see that the methods can be mixed and matched both within and across modules
for genome-wide GxE. For example, the approach proposed by Murcray et al. [2011] uses
both marginal genetic association and correlation for screening, the Bonferroni correction
for SNPs that pass the screening, and the case-control test for GxE testing.

There are several distinctive advantages to this modular approach. First, it offers a
comprehensive approach to genome-wide searching for GxE. By exploiting various
appealing aspects of different methods, such combinations often are substantially more
powerful than each individual method on its own under a wide range of scenarios. For
example, a two-stage analysis, using the more efficient EB test for GxE, can further gain
power compared to the original two-stage analysis that uses the case-control test under most
scenarios. Second, because of the modular nature, it also allows investigators to tailor the
combination of methods that are specific to their own studies. For example, for GWAS in
clinical trials where G and E (say, treatment) are independent due to randomization, the
case-only test may be preferred as it can take a full advantage of the independence
assumption to gain efficiency. Third, it provides great flexibility to incorporate new methods
or extensions of current methods. Finally, the modular approach organizes many existing
methods for GxE in a conceptually straightforward fashion. Because it is modular based,
little specialized programming is needed beyond that of each individual method.

However, one must be careful with mix-and-matching methods across modules. If GxE test
statistics are correlated with screening test statistics, the significance for GxE test statistics
may be distorted if the screening is not appropriately adjusted for. Generally it is convenient
if the multiple comparison adjustment does not need to consider the screening process
besides the number of SNPs that are formally tested for GxE. To do so, it requires that the
screening test statistics be independent of GxE test statistics [Dai et al., 2010].

We systematically examine (in)dependence of each of the screening test statistics (marginal
association and correlation) in the screening module and each of the GxE test statistics
(case-control and case-only) in the GxE testing module. Briefly, we find that the marginal
association screening is independent of both the case-control and the case-only tests for
GxE, regardless of whether or not confounders are present or the environmental risk factor is
continuous. We also find that the correlation screening is independent of the case-control
test, but not the case-only test. If one does not want to go through the calculations for
deriving proper formulas for the GxE testing accounting for the screening process, these
results suggest that we may use any of the case-control, the case-only, or the EB test to test
GxE if it is the marginal association screening, but only the case-control test if it is
correlation screening. A detailed proof of the (in)dependence between screening and GxE
test statistics is provided in the Supplementary Materials.

COCKTAIL METHODS
Following the modular approach, we propose two “cocktail” methods, which use a
combined screening approach (marginal association and correlation) to rank the SNPs and
test GxE by following the weighted hypothesis testing framework based on the ranking of
the SNPs. Both the case-control and EB tests are used for GxE, depending on whether the
SNP is chosen based on the correlation screening or marginal association screening. The
first cocktail method is aimed to ensure that the screening test is independent of the GxE
test, which requires one to pre-specify a threshold to decide which screening method to use.
To avoid the potential arbitrariness in choosing the threshold, we propose a second cocktail
method. However, in this method, the screening test is not independent of the GxE test.
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Fortunately, we do not need to be concerned about the non-independence in this case, as we
are able to show that the non-independence between the screening and GxE tests in fact
makes the GxE test conservative, not anti-conservative. Hence, the power may be reduced
but the type I error is well controlled.

Specifically, let  and  be the p-values for the marginal association and the
correlation screening test statistic for the ith SNP, respectively for i = 1,…,m. In the first
cocktail method, which is denoted by Cocktail-I, the p value for screening is defined as

where c is a pre-specified threshold, Ind(·) is the indicator function, and the superscript
screen(I) refers to the screening p-value for Cocktail-I. The screening p value uses primarily
the marginal association p value. However, if the p value for the marginal association is
large, say greater than c, the screening p value will then be assigned to the correlation
screening p value. This is to cover the situation that SNPs with GxE interaction do not result
in marginal genetic association but may still be correlated with E. Clearly, the screening p
value can also be modified by using the correlation p value as the primary screening and
then supplemented by the marginal association p value. However, in our simulation the

power for this combination is often less than  where the primary screening is based
on marginal association (results not shown).

Although we want to take advantage of the more powerful EB test for GxE interaction, we
need to avoid inducing the dependence between the screening and testing statistics. In order

to do that, we propose to use the EB test only if , i.e. , and the
case-control test otherwise. We use EB rather than the case-only test, because it is robust
against possible correlation between SNPs and environmental risk factors in the population.
In randomized clinical trials, the case-only estimator can replace EB in the cocktail
procedure if E is the randomized factor. Specifically, the p-value for testing GxE is defined
as

Here the superscript G × E(I) refers to the p-value for GxE for Cocktail-I. We show that

 and  are independent (see Appendix A). This means that we only need to
adjust for the number of SNPs that are formally tested for GxE if the top SNP approach is
taken [Dai et al., 2010]. To perform the weighted hypothesis testing, we can rank the SNPs
based on the screening p-value pscreen(I) and assign the weight by e.g., using the strategy
proposed by Ionita-Laza [2007], see the Results section for more details. The independence

between  and  implies that we do not need to be concerned about the
ranking process while testing GxE.

To avoid pre-specifying a potentially arbitrary threshold c in , we propose a second
cocktail method, which is denoted by Cocktail-II. For this method, we define the screening p
value as following:
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Here the superscript screen(II) refers to the screening p-value for Cocktail-II. For Cocktail-
II, the screening p-value is the marginal genetic association p-value if it is smaller than the
correlation screening p-value, and the correlation-based p-value otherwise. Similar to
Cocktail-I, the GxE testing uses EB or case-control tests, depending on whether the SNP is

selected based on  or . Specifically, the p value for GxE test is defined as

For the Cocktail-II method, screening  and testing  are not independent.

This is because when  is used, it is under the condition that  and  is not

independent of . Fortunately, this non-independence does not inflate the type I error of
the GxE test. In fact, the GxE test is slightly conservative. This is because the correlation
screening test statistic and the case-only GxE test statistic (therefore also the EB test) are
positively correlated. When the EB is used for testing GxE when the correlation p-value is
greater than or equal to the marginal p-value, the type I error is less than or equal to the

expected level, which means that the GxE test based on  in Cocktail-II is
conservative. The detail of the proof is provided in Appendix B.

Like Cocktail-I, we may use the weighted hypothesis testing by using the screening p-value
pscreen(II) to rank the SNPs and assign the weight accordingly. The conservativeness of
Cocktail-II may result some power loss. However, from the simulation results presented
below, we see that the power loss, if any, is very modest, and in fact, in some cases there is a
slight gain in power.

RESULTS
METHODS COMPARISON

We conducted a simulation study to evaluate the performance of our two cocktail methods
and other possible combinations according to the proposed modular approach. These
methods are listed in Table I. For each screening approach (no screening, correlation, and
marginal association abbreviated by No, Corr, and Marg, respectively), the GxE test can be
case-control (CC), case-only (CO), or EB. Either the Bonferroni correction for all SNPs
(Bonf), top SNPs (Top), or the weighted hypothesis testing (Wt) may be used to adjust for
multiple comparisons. Here “top SNPs” refers to using a cut-off value (e.g., a p-value
threshold) for screening tests to select top SNPs. For example, a test with name of “Corr-
Top-CC” uses correlation for screening and the case-control test for GxE with Bonferroni
correction for top SNPs. Three combination approaches, H2, Cocktail-I and Cocktail-II, are
also listed in Table I. The H2 approach was recently proposed by Murcray et al. [2011]. It
uses both correlation and marginal association for screening, followed by CC test for GxE.
Using our naming convention, H2 would be named as Comb-Top-CC, where “Comb” refers
to a combined screening approach. Cocktail-I and Cocktail-II would be named as Comb-Wt-
CC/EB with different combined screening approaches. Clearly, within each module, other
methods could be used. For example, instead of using EB to test GxE, one may also use the
Bayesian averaging method [Li and Conti, 2008]. To avoid cluttering, we do not exhaust all
possibilities. We note that the choices we made here are fairly representative and expect that
the conclusions based on these simulation results generally hold for similar types of
combinations.

For selecting top SNPs for testing GxE, we set the p-value threshold 10∗3 for the screening
test statistics. The same threshold is also used as c in Cocktail-I. For the H2 method, an
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equal allocation, i.e., 5 × 10−4, was taken for the two screening approaches. The Bonferroni
correction will be adjusted for the top SNPs. For the weighted hypothesis testing, we
adopted the strategy proposed by Ionita-Laza et al. [2007] with the initial group size K = 5.
According to the strategy, the ranked SNPs are grouped as follows: the first group consists
of the first 5 SNPs, the second group consists of the next 10 SNPs, the third group consists
of the following 20 SNPs, so on and so forth until all SNPs are assigned. Then the
corresponding group-level significance thresholds are α/2, α/4, α/8, …. One can see that this
will control the overall type I error since α/2 + α/4 + α/8 + … < α. Within each group, the
individual SNP significance threshold is calculated using a Bonferroni correction. For
example, for the first group, the threshold for individual SNPs is (α/2)/5 with 5 being the
number of SNPs in the first group, and for the second group, the threshold is (α/4)/10 with
10 being the number of SNPs in the second group, and so forth.

Figure 2 shows a schematic plot of the significance thresholds for the Bonferroni correction
for all SNPs, the Bonferroni correction for only top SNPs, and the weighted hypothesis
testing. In contrast to the constant threshold for the Bonferroni correction either for all or top
SNPs, the threshold of the weighted hypothesis testing is monotonically more stringent with
the rank of the SNPs.

SIMULATION SCENARIOS
We generated one dichotomous environmental covariate denoted by E with Pr(E = 1) = 0.5
and odds ratio (OR) = 1.5, representing a moderate environmental effect. We generated a
total of 100,000 SNPs. For simplicity, we assumed SNPs were binary variables with
frequencies randomly generated from Uniform[0.1,0.4]. Among these SNPs, we randomly
selected 10 SNPs having main effects with no GxE effect on disease risk. The ORs of the
main effects were generated from Uniform[1.1, 1.8], mimicking the moderate genetic effect
of common variants that have been identified in GWAS. We generated a small amount of
correlation in the data with each SNP having 0.5% probability to be correlated with E, where
the log(OR) of the correlation was generated from a normal distribution with mean 0 and
variance {log(1.5)/2}2. Hence, the correlation is very modest: 95% of times when SNPs and
E are dependent, the OR for correlated SNPs is from 0.67 to 1.5. We also considered the
situation of no correlation at all, that is, all of the SNPs are independent of E. A logistic
regression model was used to generate disease status, including the environmental covariate,
E, and the 10 associated SNPs. The intercept in the model was set to be −7, to yield about 1
in 1000 disease incidence. Since there is no SNP having interaction effects, this simulation
scenario was used to assess the type I error.

To assess power of the methods we used the same set-up, but generated one SNP that had a
GxE. We denote this SNP by G to differentiate from SNPs that have no interaction effects.
We assumed G was a binary variable with Pr(G = 1) = 0.5. We simulated scenarios where G
was and was not correlated with E in the population. For the correlated scenario, we
considered both positive (OR = 1.20) and negative (OR = 0.83) correlations. Two types of
GxE models were considered:

i. Synergistic interaction model: The OR of developing a disease in individuals with
(G=1, E=1) is much greater than in individuals with (G=0, E=0), (G=1, E=0), or
(G=0, E=1). For simplicity, we assumed no main genetic effect and considered a
series values for the interaction effect with exp(β) = 1.5, 1.75, 2, 2.25, and 2.5.

ii. Qualitative interaction model: The OR of developing a disease in individuals with
G=1 compared to those with G=0 are in opposite direction in the exposed (E=1)
and unexposed group (E=0). We considered a series of values for the interaction
effect, exp(β) = 1.5, 1.75, 2, 2.25, and 2.5. We let the magnitude of the odds ratio in
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the exposed increases by the same amount as that decreased in the unexposed
group; this can be achieved by setting the main genetic effect to 2/{1 + exp(β)}.
Note that this is a rather extreme situation, as it results in no genetic marginal
effects at all.

Under each setting, a total of 2000 data sets, each consisting of 1000 cases and 1000
controls, were generated.

TYPE I ERROR
Table 1 shows the type I error of all methods considered at an overall level 0.05 when none
of the SNPs is correlated with E (no corr) and when there is a moderate correlation (modest
corr) where inflated type I error rates are bolded. It can be seen that the type I error of the
correlation-based screening followed by either case-only or EB tests for GxE are greatly
inflated, even when none of the SNPs is correlated with E, hence, these combinations cannot
be recommended for use. The case-only approach has inflated type I error if there is a
correlation between SNPs and E. The EB tests, on the other hand, control the type I error
well under all scenarios. All hybrid approaches, H2, Cocktail-I, and Cocktail-II maintain the
correct type I error. The type I error of H2, Cocktail-I, and Cocktail-II are 0.047, 0.032, and
0.031 when there is no correlation between SNPs and E, respectively, and 0.043, 0.049, and
0.046, respectively when there is a modest correlation. As expected, Cocktail-II is slightly
more conservative than Cocktail-I.

POWER COMPARISON
For the power comparison, we omitted methods that do not maintain the correct type I error,
as power for these methods may look artificially greater than other methods due to inflation
of the type I error. The omitted methods are all approaches that use case-only tests for GxE,
and the correlation-based screening followed by the EB test. We describe the results of
power comparison of the following methods: No-Bonf-CC, No-Bonf-EB, Corr-Top-CC,
Marg-Top-CC, Marg-Top-EB, Corr-Wt-CC, Marg-Wt-CC, Marg-Wt-EB, H2, Cocktail-I,
and Cocktail-II. Supplementary Figure S1, S2 and S3 show the power comparison for these
methods, when G and E are independent, positively correlated, and negatively correlated,
respectively.

Among the methods being compared, two general patterns are consistently observed. First,
the EB test for GxE is considerably more powerful than the CC test when G and E are
independent, regardless whether it is synergistic or qualitative model, whether screening is
performed or not, or whether it is the Bonferroni correction or the weighted testing. When G
and E are positively correlated, a smaller gain is observed for EB; however, when G and E
are negatively correlated, the EB estimator loses a small amount of power compared to CC.
In this case, the EB estimator behaves more like the CC test, though still having some
weight on the case-only test, the latter of which would lose power if G and E were
negatively correlated.

Secondly, the weighted hypothesis testing gains power compared with the top SNP approach
under both correlation and marginal association screening. One reason for the power gain is
that highly ranked SNPs have a lower significance threshold in weighted testing than in the
top SNP approach. That said, we want to point out that the power of both approaches
depends on the threshold or the group size choices. For the top SNP approach, Murcray et al.
Murcray et al. [2011] examined carefully the effect of the threshold on sample size
requirement for GxE, and noted that a robust choice can be made across various scenarios.
We observed a similar phenomenon in our simulation, for both the top SNP threshold and
the threshold c in the Cocktail I method. We set 10−3, which, for a 100,000 marker panel
here, brings about 100 SNPs to test for interaction. This number is in line with the threshold
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used in Murcray et al. [2011], in which the threshold was set to 10−4 for 1,000,000 SNPs,
also yielding about 100 SNPs for interaction testing. For weighted testing we tried other
choices for the initial group size (K=10 and 20) and found that the power is also relatively
invariant.

To further investigate the differences of power between methods, we selected the best
performing method from each category under most scenarios: no screening (Bonf-EB),
correlation-based two-stage analysis (Corr-Wt-CC), marginal association two-stage analysis
(Marg-Wt-EB), and the three hybrid methods (H2, Cocktail-I, and Cocktail-II). The power
of these methods is shown in Figure 3, 4 and 5, when G and E are independent, positively
correlated, and negatively correlated, respectively.

Under the synergistic interaction model, the two-stage analysis that uses the marginal
association as screening (Marg-Wt-EB) has the best power, particularly when a modest
correlation is present between null markers and E. No screening (Bonf-EB) has the lowest
power. The power of the correlation-based screening falls between that of Marg-Wt-EB and
Bonf-EB. In contrast, under the qualitative interaction model, the marginal association
screening has the lowest power while the correlation-based screening has the best power
with Bonf-EB in between. This is due to the hypothesized qualitative interaction model,
which results in no genetic marginal effect. Therefore, the marginal association screening is
unable to place G among the top SNPs to be brought to the second stage for interaction
testing.

Among the hybrid methods, the power of the proposed Cocktail-I and Cocktail-II methods
are consistently very close to the best performing method under all scenarios, whether the
interaction effect is synergistic or qualitative, the null markers are or are not correlated with
E, or G is or is not correlated with E. The H2 method Murcray et al. [2011] generally has
less power than the cocktail methods. For example, under the synergistic model when there
is no correlation between the null markers and E and also between G and E, the best power
is from Marg-Wt-EB, which is 0.970. In the same scenario, the power for Cocktail-I and II
is 0.968 and 0.962, respectively, and the power for H2 is 0.736 (Table II). For another
example, under the qualitative interaction model with a modest correlation between the null
markers and E, OR(G,E)=1.20, the correlation screening with weighted hypothesis testing,
Corr-Wt-CC, gives the best power, 0.890. The Cocktail-I and Cocktail-II methods give
power 0.879 and 0.884, respectively, and H2 gives power 0.686 (Table III). The H2 method
is closer to the better performing of the methods that uses the top SNP approach, Corr-Top-
CC and Marg-Top-CC, see Supplementary Figure 1–3. We also modified the H2 method by
using the weighted testing. The power is now similar to the Cocktail methods under the
qualitative model, but less under the synergistic model. The reason is that under the
synergistic model, the marginal screening is usually more powerful than the correlation
screening, and for marginal screening, the cocktail which uses EB to test GxE is more
powerful than the H2 which uses the case-control test (results not shown).

We also conducted simulations for when Pr(E) = 0.25 and Pr(E) = 0.75, respectively. Under
the qualitative interaction model, as expected, the correlation-based screening is more
powerful than the marginal association screening. Under the synergistic interaction model,
interestingly, the correlation-based screening is more powerful or as powerful as the
marginal association screening when Pr(E) = 0.25, but is considerably less powerful when
Pr(E) = 0.75. In either case, both cocktail methods, again, track very well with the best
performing method and the difference between the two cocktail methods is minimal (results
not shown).
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DISCUSSION
In this article, we propose a modular approach to integrating various GxE methods,
exploiting each method’s most appealing aspects. Three modules are considered: screening,
multiple comparison and GxE testing. We combine all three of these modules and develop
two novel “cocktail” methods, Cocktail-I and Cocktail-II. We prove that asymptotically
Cocktail-I maintains the correct type I error, while Cocktail-II is conservative. Our
simulation studies indeed show that Cocktail-II is slightly more conservative. A major
advantage of Cocktail-II compared to Cocktail I is that it does not require pre-specifying any
threshold for choosing marginal association or correlation as screening. Generally speaking,
the power of the two cocktail methods is similar and both perform very well under all
parameter settings considered. For GWAS data where the underlying true GxE interaction
models are generally unknown, such cocktail methods are particularly useful.

While the simulation in this paper is focused on binary E, the proposed methods are readily
applied to continuous E. The (in)dependence of screening and GxE test statistics is the same
for when E is continuous as when E is binary (see Supplementary Materials). One caveat
with continuous E is that we can not regress E on G for the case-only test using linear or
other simple regression models as the regression coefficient does not have the same
interpretation as the GxE interaction in the logistic regression model for the case-control
analysis. Instead, we recommend regressing G on E using logistic or polytomous model, as
G is always a categorical variable, and under suitable modeling the parameters associated E
have the same interpretation as the GxE interaction in the logistic regression model for the
case-control analysis and they can be combined to form EB estimators.

For quantitative traits, the cocktail methods may also be used, depending on the sampling
scheme of the subjects. For example, if the subjects are sampled from the two extreme tails
of the distribution and the data are analyzed as if they were case-control data, the proposed
cocktail methods can readily apply. However, if the data are analyzed as continuous given
the sampling scheme, the screening strategies may still apply; however the case-only and
therefore the EB estimators are not defined. Further work is needed in extending the cocktail
methods to quantitative traits.

A common practice for accounting for multiple testing in GWAS is to use a Bonferroni
correction in which all SNPs are treated equally. Recently methods have been proposed to
up-weight and down-weight hypotheses, based on prior likelihood of association with the
phenotype Roeder et al. [2007] or results of grouped analysis of the data Roeder and
Wasserman [2009]. The two-stage analysis provides a natural choice for determining the
weight based on the screening statistics. Here we used the approach proposed by Ionita-Laza
et al. to assign the weight. Our results show that it increases power; in some cases this power
gain is up to 30% ~ 40%. A fruitful area of research may be to construct optimal weights
based on screening in order to further improve power. Biologic information about SNPs can
also be brought in to inform the weights.

The statistical interaction depends on the measure used for describing the association. In this
paper it is defined as departure from the multiplicative main effects on the odds of
developing disease, which, in the rare disease situation, approximates the disease risk.
Biological interaction generally refers to two or more causes of disease that together assert
their influence on disease risk. Biological interaction may be manifested in statistical
interaction, however they are not equivalent. A statistical interaction can be due to model
misspecification such as inadequate fit of main effects or misspecified measures of the
association (e.g., additive versus multiplicative effects). Additionally, as with all association
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analyses, association does not imply causation. For further discussion on statistical
interaction and biological interaction, see Thomas [2010] and Gerstman [2003].

GWAS data have offered us an unprecedented opportunity to study the genetic etiology of
diseases and how genes may interact with environment. In this article, we show how to
combine various methods in a principled way to enhance power for detecting gene-
environment interaction. Following these principles, we proposed two cocktail methods and
show that they are powerful in detecting GxE under a wide range of scenarios and
interaction models. Both methods use complementary information from marginal and
correlation screens, while exploiting the more powerful EB test when possible. The method
also introduce weighted hypothesis testing rather than the top SNP approach that is more
common in two-stage screening designs. A practical aspect of our methods is that they build
upon common test statistics and hence are easily implemented, allowing for a broad
application to genome-wide scan of GxE. The conceptualization of methods as three
modules also allows for an easy extension to incorporate new tests within each category as
they are developed. Finally, while the proposed methods are targeted for GxE, they are also
applicable to studying gene-gene interactions. Our work opens new possibilities for devising
powerful methods for detecting gene-environment and gene-gene interaction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Proof of independence between screening pscreen(I) and pG×E(I)

Let α1 and α2 be any value between 0 and 1. We show that under the null hypothesis of no

The last step follows the independence between the marginal association screening test
statistic and the case-only test (and therefore the EB test) for the first term, and the
independence between the case-control test for GxE and both marginal and correlation
screening test statistics for the second term. Under the null hypothesis of no G × E, we have
Pr(pEB < α2) = α2 and Pr(pCC < α2) = α2. The type I error for pEB may be slightly inflated
when G and E are not independent in the population, although the bias is quite minimal
(Mukherjee et al. 2008) and therefore we ignore it here. Then
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Therefore, Pr(pG×E(I) < α2|pscreen(I) < α1) = α2. This, with the result from Dai et al (2010),
implies that the proposed Cocktail-I method maintains the correct type I error without the
need to adjust for the screening.

Appendix B

Proof that the Cocktail method II is conservative
Let α1 and α2 be any value between 0 and 1, we show that under the null hypothesis of no G
× E, Pr(pG×E(II) < α2|pscreen(II) = α1) ≤ α2. This implies that for any given screening p-value
= α1, if we control pG×E(II) < α2, the actual type I error is less than α2. So the proposed
Cocktail-II test statistic is conservative. In what follows, we sketch out the proof. First, we
rewrite the joint probability of pscreen(II) and pmarg(II) as

(1)

The last equation is a result of the independence of the marginal association estimators from
both the case-control and case-only estimators for the interaction, and also from the
correlation estimator between G and E in combined cases and controls (see Supplementary
Materials for the proofs of these independences). We have also shown that the case-only
estimator of interaction and the correlation estimator are asymptotically positively
correlated. Since the EB estimator is a weighted sum of case-only and case-control
estimators for GxE, the EB estimator is also positively correlated with the correlation
estimator asymptotically. Hence, we have

Under the null hypothesis of no G × E, the probability Pr(pEB < α2) = α2 and Pr(pCC < α2) =
α2. Plugging them into (1) and with the above inequality, we see that

Hsu et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2013 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Therefore, Pr(pG×E(II) < α2|pscreen(II) = α1) ≤ α2. We prove that the type I error for the
Cocktail-II method is in fact smaller than the pre-determined value α2. In other words, the
Cocktail-II method is conservative.
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Figure 1.
A flow chart of modules including analysis methods for genome-wide Gene × Environment
interactions.
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Figure 2.
A schematic plot of significance levels for three multiple testing methods. Bonferroni
correction for all the SNPs assuming a total of 100,000 SNPs are genotyped (Bonferroni,
green dot-dash line); Bonferroni correction for the top 100 SNPs (Top SNP, blue dash line);
and weighted hypothesis testing using the grouping scheme proposed by Ionita-Laza et al.
(2007) with initial group size K=5 (Weighted testing, red solid line). X-axis is the ranking of
the SNPs.
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Figure 3.
Power comparison of the methods when G and E are independent. The X-axis is the odds
ratio for the interaction e ect and the Y-axis is the power. The odds ratio for the main e ect of
E is 1.5 and for G is 1 under the synergistic model. Under the qualitative model, the odds
ratio for the main e ect of G is 1/1+OR(interaction). (a) Synergistic interaction model and no
correlation between null markers and E; (b) Qualitative interaction model and no correlation
between null markers and E; (c) Synergistic model and modest correlation between null
markers and E; (d) Qualitative model and modest correlation between null markers and E.
The results are based on a total of 2000 simulated data sets, each consisting of 1000 cases
and 1000 controls.
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Figure 4.
Power comparison of the methods when G and E are positively correlated with odds ratio
1.2. The X-axis is the odds ratio for the interaction effect and the Y-axis is the power. The
odds ratio for the main effect of E is 1.5 and for G is 1 under the synergistic model. Under
the qualitative model, the odds ratio for the main effect of G is 1/1+OR(interaction). (a)
Synergistic interaction model and no correlation between null markers and E; (b) Qualitative
interaction model and no correlation between null markers and E; (c) Synergistic model and
modest correlation between null markers and E; (d) Qualitative model and modest
correlation between null markers and E. The results are based on a total of 2000 simulated
data sets, each consisting of 1000 cases and 1000 controls.
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Figure 5.
Power comparison of the methods when G and E are negatively correlated with odds ratio
0.83. The X-axis is the odds ratio for the interaction effect and the Y-axis is the power. The
odds ratio for the main effect of E is 1.5 and for G is 1 under the synergistic model. Under
the qualitative model, the odds ratio for the main effect of G is 1/1+OR(interaction). (a)
Synergistic interaction model and no correlation between null markers and E; (b) Qualitative
interaction model and no correlation between null markers and E; (c) Synergistic model and
modest correlation between null markers and E; (d) Qualitative model and modest
correlation between null markers and E. The results are based on a total of 2000 simulated
data sets, each consisting of 1000 cases and 1000 controls.
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Table I

Combinations of methods for genome-wide GxE and the summary of type I error for when there is no
correlation (no corr) and modest correlation (modest corr) between SNPs and G, respectively. Inflated type I
error rates are bolded

Name Screening GxE Interaction Multiple Testing Type I Error

No Corr Modest Corr

No-Bonf-CC No Case-Control Bonferroni correction 0.040 0.043

No-Bonf-CO Case-Only for all SNPs 0.032 0.653

No-Bonf-EB EB 0.014 0.016

Corr-Top-CC Correlation Case-Control Bonferroni correction 0.048 0.045

Corr-Top-CO Case-Only for SNPs that pass 1.000 1.000

Corr-Top-EB EB correlation screening 0.459 0.505

Corr-Wt-CC Correlation Case-Control Weighted testing 0.048 0.048

Corr-Wt-CO Case-Only for all SNPs ranked 0.999 1.000

Corr-Wt-EB EB by correlation 0.384 0.315

Marg-Top-CC Marg assoc Case-Control Bonferroni correction 0.052 0.044

Marg-Top-CO Case-Only for SNPs that pass 0.040 0.102

Marg-Top-EB EB marg assoc screening 0.025 0.030

Marg-Wt-CC Marg assoc Case-Control Weighted testing 0.038 0.046

Marg-Wt-CO Case-Only for all SNPs ranked 0.039 0.209

Marg-Wt-EB EB by marg assoc 0.025 0.030

H2 Correlation & Case-Control Bonferroni for SNPs 0.047 0.043

(Comb-Top-CC) Marg assoc that pass both screening

Cocktail-I Correlation & Case-Control & Weighted test for all SNPs 0.032 0.049

(Comb-Wt-CC/EB) Marg Assoc EB ranked by pscreen(I)

Cocktail-II Correlation & Case-Control & Weighted test for all SNPs 0.031 0.046

(Comb-Wt-CC/EB) Marg Assoc EB ranked by pscreen(II)
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Table II

Power comparison under both synergistic and qualitative interaction models, and when G and E are
independent, positively correlated, and negatively correlated, respectively. The odds ratio for the main effect
of E is 1.5. For G it is 1 under the synergistic model and 0.62 under the qualitative model. The interaction
effect is 2.25. There is no correlation between null markers and E. The results are based on a total of 2000
simulated data sets, each consisting of 1000 cases and 1000 controls.

Synergistic Interaction Qualitative Interaction

OR(G,E) OR(G,E)

Name 1.00 1.20 0.83 1.00 1.20 0.83

Bonf-CC 0.225 0.212 0.228 0.230 0.234 0.238

Bonf-EB 0.544 0.476 0.149 0.555 0.478 0.156

Corr-Top-CC 0.754 0.790 0.299 0.606 0.784 0.074

Corr-Wt-CC 0.882 0.925 0.433 0.726 0.922 0.196

Marg-Top-CC 0.782 0.786 0.778 0.008 0.011 0.002

Marg-Top-EB 0.916 0.871 0.765 0.010 0.012 0.002

Marg-Wt-CC 0.920 0.923 0.916 0.046 0.060 0.036

Marg-WT-EB 0.970 0.956 0.920 0.195 0.276 0.016

H2 0.736 0.734 0.724 0.566 0.725 0.072

Cocktail-I 0.968 0.956 0.916 0.676 0.914 0.178

Cocktail-II 0.962 0.938 0.913 0.664 0.917 0.152
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Table III

Power comparison under both synergistic and qualitative interaction models, and when G and E are
independent, positively correlated, and negatively correlated, respectively. The odds ratio for the main effect
of E is 1.5. For G it is 1 under the synergistic model and 0.62 under the qualitative model. The interaction
effect is 2.25. About 5% of null markers have a correlation with E. The results are based on a total of 2000
simulated data sets, each consisting of 1000 cases and 1000 controls.

Synergistic Interaction Qualitative Interaction

OR(G,E) OR(G,E)

Name 1.00 1.20 0.83 1.00 1.20 0.83

Bonf-CC 0.220 0.222 0.224 0.208 0.218 0.229

Bonf-EB 0.532 0.464 0.150 0.560 0.469 0.136

Corr-Top-CC 0.712 0.736 0.309 0.586 0.754 0.066

Corr-Wt-CC 0.786 0.907 0.382 0.632 0.890 0.164

Marg-Top-CC 0.78 0.777 0.798 0.006 0.017 0.002

Marg-Top-EB 0.908 0.862 0.776 0.007 0.019 0.002

Marg-Wt-CC 0.920 0.918 0.918 0.040 0.052 0.030

Marg-Wt-EB 0.970 0.954 0.928 0.187 0.274 0.014

H2 0.727 0.714 0.730 0.540 0.686 0.063

Cocktail-I 0.956 0.938 0.874 0.606 0.879 0.154

Cocktail-II 0.952 0.932 0.871 0.598 0.884 0.130
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