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Abstract
Mass spectrometry (MS)-based shotgun proteomics allows protein identifications even in complex
biological samples. Protein abundances can then be estimated from the counts of MS/MS spectra
attributable to each protein, provided that one corrects for differential MS-detectability of the
contributing peptides. We describe the use of a method, APEX, which calculates Absolute Protein
EXpression levels based on learned correction factors, MS/MS spectral counts, and each protein's
probability of correct identification.

The APEX-based calculations consist of three parts: (1) Using training data, peptide sequences
and their sequence properties, a model is built that can be used to estimate MS-detectability (Oi)
for any given protein. (2) Absolute abundances of proteins measured in an MS/MS experiment are
calculated with information from spectral counts, identification probabilities and the learned Oi -
values. (3) Simple statistics allow for significance analysis of differential expression in two
distinct biological samples, i.e., measuring relative protein abundances. APEX-based protein
abundances span more than four orders of magnitude and are applicable to mixtures of hundreds to
thousands of proteins from any type of organism.
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1. Introduction
Mass spectrometry (MS) based shotgun proteomics is a fast and relatively easy method for
large-scale protein identification. A typical shotgun proteomics experiment proceeds by
tandem MS (MS/MS) analysis of peptides from proteolytically digested proteins, followed
by in silico matching of the observed MS/MS spectra against a database of theoretical
peptide spectra derived from the expected protein sequences. Typical database search
engines include SEQUEST or MASCOT (see also Chapter 28). Proteins are identified
through combined evidence for their contributing peptides, resulting in a list in which each
protein is associated with a confidence score (or probability) of correct identification, e.g.,
from ProteinProphet (1). In addition, an MS dataset provides information on the types and
number of different peptide spectra associated with each protein, as well as peak heights
corresponding to ion intensities.

© Springer Science+Business Media, LLC 2012
11Further information and tools.
For APEX calculations, the primary publication (26) and the APEX protocol (39) provide further help. APEX is also implemented in a
free software tool developed by John Braisted and colleagues at the J. Craig Venter Institute, Rockville, MD (38). The software, called
the APEX Quantitative Proteomics Tool, is freely available from http://pfgrc.jcvi.org/index.php/bioinformatics/apex.html . We
recommend the user to try this Java-based tool. It essentially involves the same steps as described here, but does not require the use of
Perl scripts. Using the Perl scripts (and modifying these) allows the user to include further developments such as those described in
Note 10.
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A number of approaches have been developed to quantify protein observations from peak
heights in shotgun proteomics experiments by introducing internal reference standards, often
by addition of isotopically labeled peptides (2, 3) (for summary see Chapter 7). These
reference standards can be derived from cells grown in labeled medium, as in SILAC (4)
(see Chapters 13 and 14), by derivatizing natural samples, as in ICAT (5), or can instead be
synthesized and added to samples, as in isotope dilution (e.g., AQUA (6)) (see Chapter 17).
The necessity (and expense) of synthesizing thousands of isotopically labeled peptides has
prevented easy scaling to full proteomes, even when employing unlabeled peptides (7).

Thus, development of label-free quantitation methods for mass spectrometry has been of
high interest. Peak intensities have been used to estimate protein concentrations, e.g.,
through average the intensities of contributing peptides (8, 9) (see Chapter 16). Other
approaches have considered quantitation from the MS/MS sampling statistics in a shotgun
proteomics experiment (see Chapter 22). Both the coverage of unique peptides in a protein
(i.e., percentage of possible peptides per protein actually observed) and the total number of
repeat observations of MS/MS spectra from all peptides in a protein (spectral count)
approximate protein abundance (10–17). However, both measures have shortcomings, such
as coverage showing saturation (at 100%), spectral counts not accounting for protein size
(larger proteins contribute more peptides), both approaches ignoring sampling depth, i.e., the
total number of MS/MS experiments that go into the calculation, and neither approach
considering the prior odds of observing any particular peptide in the experiment, i.e., the
MS-detectability. Peptides vary considerably in their ability to be detected by an MS
instrument due to, for example, chemical sequence properties that affect peptide ionization
(18). Although such trends can be partly predicted from a peptide's amino acid composition
(19–25), many quantitation approaches have not incorporated these predictions to adjust
observed spectral counts.

Here, we present protocols for implementing a quantitative method, called APEX (Absolute
Protein EXpression index) which addresses each of these limitations using protein
identification scores, spectral counts and prior estimates of the number of unique tryptic
peptides expected for the protein (Oi value) to calculate absolute protein expression indices
(26). We estimate the Oi value employing machine learning techniques accounting for
protein size, sequence properties, ionizability and other properties influencing MS
detectability. The number of MS/MS spectra observed in the experiment, i.e., repeat peptide
observations, is then normalized by the Oi value for each protein, i.e., the number of unique
peptides expected, and serves as an estimate of the protein's abundance. In addition, we
normalize by the total number of spectra observed in the experiment to enable comparison
between experiments with different sampling depths.

APEX is a robust and rapid method to quantify absolute protein abundance. It is appropriate
for large-scale protein expression measurements where absolute abundance estimates are
desirable and especially where isotope-labeling is impractical. In comparison to intensity-
based methods, it is an extremely easy and still reliable method. In contrast to other non-
MS-based techniques (27–30), APEX can be used for large-scale datasets and differential
protein expression without construction of fusion protein libraries, labeling, or internal
standards.

APEX-based protein abundances span over four orders of magnitude and are applicable to
mixtures of hundreds to thousands of proteins sampled from any organism of known
sequences (26). We developed and tested APEX on two different electrospray ionization MS
instruments (ThermoFinnigan Surveyor/DecaXP + iontrap (LCQ), ThermoFinnigan LTQ-
Orbitrap); however, the method is equally applicable to other MS instruments. We
successfully applied APEX to proteomes of yeast (26), Escherichia coli, Pseudomonas
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aeruginosa (31), mouse (26), Mycobacterium (32), Arabidopsis (33), rice (31), as well as
human (34). Related methods based on spectral counting were used, for example, for the
fission yeast (35), worm, and fl y proteome (36).

2. Materials
2.1. Equipment

1. Mass spectrometry data of peptides. Raw data needs to be postprocessed using MS
analysis software of choice (see below). For model training (Subheading 3.2.1), a
well-de fined MS dataset is necessary for which several proteins are confidently
identified (or known to be present).

2. Mac, PC, or Linux/Unix workstation.

3. Amino acid sequences for proteins of interest, e.g., FASTA file.

4. Information on amino acid properties, e.g., aaindex1 file from ftp://ftp.genome.jp/
pub/db/community/aaindex/.

5. Files/scripts from the APEX Web site, http://www.marcottelab.org/
APEX_Protocol/.

2.2. Setup
1. Software to analyze MS raw data (Sequest, Mascot; PeptideProphet (37) and

ProteinProphet (1), see http://tools.proteomecenter.org/TPP.php).

2. Scripting language for text parsing (e.g., Perl, Python). For a collection of example
Perl scripts, see http://www.marcottelab.org/APEX_Protocol/.

3. WEKA (http://www.cs.waikato.ac.nz/∼ml/weka/) machine learning software.

4. Alternatively to Setup 2 and 3: the APEX Quantitative Proteomics Tool installed
on Windows PC, freely downloadable from http://pfgrc.jcvi.org/index.php/
bioinformatics/apex.html (38).

3. Methods
3.1. General Practice

This protocol describes APEX in three sections (Fig. 1). First, using a high-quality MS
dataset, vectors of sequence features, and machine learning techniques, we build a
computational model that is able to predict peptide MS detectability (see Subheading 3.2.1).
The resulting model is organism- and sequence-independent and can be reused for any set of
sequences analyzed on the same MS instrument. That means that Subheading 3.2.1 can be
omitted in future analyses if a suitable model is available. Then, we predict protein MS
detectability (Oi -values) as the sum of the respective peptide MS detectabilities predicted
using the model and amino acid sequence features (see Subheading 3.2.2). This section is
similar to Subheading 3.2.1 with respect to preparation of the input data files. However,
peptide observations are not known but predicted using the model created in Subheading
3.2.1. Again, once Oi -values have been calculated for a particular set of sequences and
experimental setup, this step can be omitted in future analyses.

Second, using postprocessed mass spectrometry data, Oi -values for the detected proteins
and an estimate of the total number of molecules per cell (C), we calculate indices of
absolute protein expression (APEX) for a given protein i (see Subheading 3.3).
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Third, for detection of relative protein abundances in two different samples, we present a
test for statistically significant differential protein expression (Fig. 1). The statistical test (Z -
score) is based only on spectral counts; for an estimate of expression fold change between
the two samples, APEX expression values need to be calculated as described in Subheading
3.3.

We describe this protocol with the example of yeast cell lysate analyzed on the LTQ-
Orbitrap Classic (Thermo). Additional information may also be obtained from ref. 39. On
the APEX Web site (http://www.marcottelab.org/APEX_Protocol/), we provide input and
output files created during the process, a suite of corresponding Perl scripts, as well as data
for analysis. [Squared brackets] in this text mention Perl scripts corresponding to the
described step in the analysis. We also provide example data for training and prediction of
MS detectability of E. coli, P. aeruginosa, yeast, rice, mouse, and human proteins both for
the LTQ-Orbitrap and/or an LCQ Deca Plus, as well as a Z -score analysis of yeast grown in
minimal and rich media. The models trained on these (or other) datasets can analyze data of
any origin if the same parameters have been used for data postprocessing.

In our example analysis, we train prediction of peptide MS detectability on a set of 89 yeast
proteins which are well-observed in an LTQ-Orbitrap MS/MS experiment, and then estimate
Oi values for all proteins in the entire yeast genome. As an example, the TFC3 protein
(YAL001C) has ∼500 theoretical peptides from a tryptic digest with ≤ 2 missed cleavages.
Only four different pep-tides are observed in the given MS/MS dataset with a total of five
spectral counts (Fig. 2). Given the sequence properties of all ∼500 contributing peptides and
a trained model, TFC3's Oi value is 60.24, i.e., about 60 peptides are expected for this
protein to be observed in an LC-MS/MS analysis on an LTQ-Orbitrap. With an average of
4,000 molecules/protein and a total of 2,033 proteins detected in total, the APEX value for
TFC3 is estimated to be ∼110 molecules/cell.

3.2. Training and Testing of a Model for Prediction of Peptide and Protein MS Detectability
3.2.1. Training

1. If not already done so, postprocess MS/MS raw data with software of choice (e.g.,
Sequest or Mascot, and PeptideProphet (37)/ProteinProphet (1)) and parse for
proteins of confident identification (e.g., false discovery rate <5%). The final
output lists should be available in the .xml and –prot.xml file format to be parseable
with our Perl scripts [np_parse_ProteinProphet.pl].

2. From these proteins, select a set of ∼30–150 proteins identified at high confidence
(see Note 1). Even for these well-identified proteins, not all theoretically possible
peptides will be observed. A comparison of the sequence properties of the observed
versus the nonobserved peptides mapping to these proteins is used for training of
the computational model (Fig. 2a).

3. Digest the amino acid sequences for the proteins in silico into (tryptic) peptides, for
example using Proteogest (40) at http://www.utoronto.ca/emililab/proteogest.htm .
Trypsin cleaves after lysine (K) or arginine (R) unless they are followed by pro-line
(P) (Fig. 2b). In silico digestions usually account for 0, 1, or 2 missed cleavages per
peptide. Missed cleavages strongly increase the number and types of peptides per
protein, i.e., they impact the respective Oi value. In our example, we include up to 2
missed cleavages; however, we observe zero missed cleavages for most peptides,
i.e., the tryptic digest appears to be nearly complete. If only one or zero missed
cleavages are to be allowed, the model should be rebuilt accordingly. For model
building, it is sufficient to digest only the proteins in the training dataset; however,
we typically digest the whole proteome and then select the respective training
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proteins (see APEX Web site for Perl scripts). The choice of the maximum allowed
number of missed tryptic cleavages should be the same for training, testing and
application of APEX.

4. Describe sequence features (attributes) for all peptides [np_peptide_properties.pl]
(see Note 2). Attributes should include the peptide length (number of amino acids)
and the amino acid frequencies (relative and absolute). Attributes can also include
the molecular weight, number of unique theoretical peptides, hydrophobicity,
solubility, solvent accessibility, etc. or features identified by Mallick et al. (24) to
characterize proteotypic peptides. We collected all amino acid features from the
AAindex (http://www.genome.jp/aaindex/). Attributes can be numerical,
continuous or categorical. Consistent with Mallick et al.'s work, we include both
the sum and the average values for any amino acid characteristic as a peptide
feature.

5. For each of the peptides assign “1” if it has been observed in the selected
proteomics data (step 2) and, “0” if it has not been observed. When using Peptide-
and ProteinProphet output, observation of a peptide is marked as
“Contributing_peptide=‘Y’” in the –prot.xml file.

6. Convert the peptide feature vectors including MS observation (1, 0) into
WEKA .arff file format (Fig. 2b) which lists all features (attributes) in the order in
which they occur in the feature vector, as well as the feature vectors in form of
comma separated values [np_arf_to_arff_TRAINING.pl] (see Note 5). The file
format does not contain peptide identifiers; they need to be stored separately. Note
that they could be kept in the file, but would have to be unselected in the WEKA
explorer prior to training.

1Selection of high-quality training data.
High-quality training data is crucial for successful model building and model performance. The training set of proteins (and its size)
should be chosen so that (1) recall and precision (F -measure) in cross-validation are maximized (see Subheading 3.2, step 10); and (2)
time for model calculation is within desired time frame. In general, the larger the fraction of observed versus nonobserved peptides in
the data (i.e., the larger the number of true-positives compared to true-negatives), the better is the model performance. This fraction
seems more important than the actual number of proteins (or peptides) selected to be in the training dataset (∼30–150). However, the
larger the training dataset, the more time is required to build a model.
We usually select a training dataset based on high protein identification probabilities as well as high spectral counts per protein from a
trusted dataset. The protein identification probabilities are an output from the ProteinProphet (1) software. If the user decides not to
use Peptide- and ProteinProphet, training proteins could be selected based on high scores obtained in the primary database search
(with SEQUEST, MASCOT, or similar) (see Chapter 28). Alternatively, training proteins could be chosen based on knowledge of
their presence in other data (e.g., from Western blot experiments or if using a synthetic mixture). In other words, as long as the user is
confident that a certain set of proteins is present in the sample, he or she can compare their observed peptides to their nonobserved
peptides and learn MS-detectability from these. For our setup, we found that ion suppression does not seem to play a big role, as the
complexity of the mixture (i.e., how many proteins are contained in it) only marginally affects the Oi values.
Usually, we obtained the best model when selecting proteins based on high protein identification probability (e.g., 1.00) and high
spectral counts per protein (e.g., >200)—rather than when selecting for high probabilities/spectral counts per peptide. However, note
that these cutoffs are MS/MS dataset- and machine-dependent and should be reevaluated for different experimental setups. Our cutoffs
provide a guideline for experimentation.
For example, when creating a training file for model for data collected on a Thermo LTQ-Orbitrap, we analyzed yeast cellular lysate
identifying 89 proteins of high protein identification probability (pi = 1.00) and with least 200 total spectral counts per protein. For
these proteins, 9% (1,331) of the peptides were observed in the MS/MS experiment; 91% (13,279) of peptides were not observed.
2The number and types of attributes included is important for model performance.
We observed the best model performance when including a total of 66 attributes (Table 1). These length, molecular weight, relative
and absolute amino acid frequencies, secondary structure, five attributes identified by Mallick et al. (24) and four additional attributes.
As described by Mallick et al. (24), different instruments, in particular different ionization techniques, require selection of different
sequence attributes that influence MS detectability. Assuming that most users may operate a MudPIT ESI type instrument, we focus
here on the calculations of Oi values for these.
5An error message appears when uploading the .arff training or testing file.
Thoroughly check the .arff file format. Check that the number of attributes listed in the header is the same as the number of attributes
(features) in the data rows. Ensure that all rows with data entries have the same number of attributes listed. Check for correct
description of attribute types, e.g., as string, numeric or class . Very that rows lack peptide names or other identifiers. If nothing helps,
try uploading our example .arff files and work from there.
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7. Create a model of peptide MS detectability using WEKA (see Notes 4, 6). The
process requires a lot of computer memory (depending on the size of the training
set), thus we recommend allocating extra memory to WEKA when opening it or
using the command line options. Here, we describe the steps to be taken with
WEKA Explorer Java user interface. To open WEKA and allocate 500 MB
memory, enter “java -Xmx512m -jar < your directory here>/weka.jar.” Computing
times quoted here are obtained allocating 1,800 MB of memory to WEKA with no
other processes running.

8. In WEKA, load the .arff file in the “Preprocess” tab (Fig. 3a) and then switch to
“Classify” (Fig. 3b). Select classifiers in the “Classifier—Choose” option: first
select CostSensitive Classifier under “meta” classifiers. Then, select in the popup
window bagging under “meta” classifiers. Click on the text bar listing Bagging and
select RandomForest under “meta” classifiers. Of course, one can chose not to use
Bagging or to use a different classifier. However, in our experience this performs
best.

Within the popup window for the CostSensitive Classifier, define a “costMatrix”
(see Note 3). Cost-sensitive training is crucial as the training dataset is heavily
biased towards one class (e.g., here 91% of nonobserved peptides) and a cost
matrix counteracts this bias by weighted use of the training data. Adjust the matrix
size to 2. In our example, the cost matrix looks like as follows:

It implies that during learning, the contribution of true-positives, i.e., observed
peptides, is weighted as 91% while they represent only 9% of the data. Vice versa,

4WEKA crashes during training or testing.
The Java-based WEKA explorer uses a lot of memory, especially when handling large files. If WEKA crashes during model building
(training), consider allocating more memory or reducing dataset size by filtering the training data more stringently (see Subheading
3.2.1, step 2). Alternatively, use the command-line to set up WEKA runs, avoiding the memory-consuming Java-based interface.
When applying the model to predict peptide MS detect-ability, we found that for a test file with 100,000 lines, at least 1,500 MB
memory is required (see Subheading 3.2.1, step 7). If the test file contains more than 100,000 lines, we recommend splitting the file
into smaller .arff files, assigning more memory when starting WEKA (see Subheading 3.2.1, step 7) and/or using the WEKA
command line interface. For example, the peptide file for the whole yeast genome needs to be split into approximately ten
separate .arff files with each 100,000 lines or fewer. Unselect “Output model” under “More options” to save the memory required to
output the model.
6Training results in a poor model, e.g., the F -measure for observed peptides is <0.5.
Check that the correct cost matrix is used, as described in Subheading 3.2.1, step 8. Check quality of the training data (see Note 1).
Consider reducing your training set to fewer proteins, possibly hand-select them for their quality of peptide identification. Check that
peptides classified as observed have high peptide identification scores (or probabilities). Check that proteins in the training set are not
degenerate, i.e., that several proteins of different names do not map to the same group of peptides. Check that peptides in the training
set are not degenerate, i.e., that their observation is not mapped to several proteins of different names. (When selecting our training
data, we exclude all degenerate proteins and peptides.) Ensure you use WEKA correctly by training on one of the files provided on the
APEX Web site and comparing your training outputs with our result files.
Check types of peptide attributes (see Note 2). Modify the kinds and number of attributes used to describe peptide sequences. Not all
66 attributes used in our example set are equally important for training. Performing different tests in the “Attribute selection” section
in WEKA (Ranker-PrincipalComponents, Ranker-InfoGain, and BestFirst-CfsSubset), we identified attributes describing peptide
length, the isoelectric point, hydrophobicity, solvent access, solubility, volume, secondary structure as most important, while among
amino acid frequencies the number of C, R, and K were top-ranked (see APEX Web site). Consider adding attributes listed by Mallick
et al. (24) as important for your experimental setup (if not yet included).
3Training with a cost matrix.
If no cost matrix is specified, model performance is very poor, in particular if there is a strong class bias in training data. The reason
lies in the overabundance of true-negatives, i.e., nonobserved peptides. In fact, we recommend reversing or leaving out the cost matrix
as a control experiment: decreasing model performance (F -measure) compared to correct use of a cost matrix verifies setup of the
calculations. Classifiers other than Bagging and RandomForests may also perform well, as discussed in the original APEX publication
(26).
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true-negatives, i.e., nonobserved peptides, represent 91% of the data and are down-
weighted in their contribution. The cost matrix can also be saved and uploaded in
later uses. Specify 10 in the Cross-Validation tab for tenfold cross-validation.

9. Start calculations by clicking on “Start.” Depending on computer power and dataset
size, model building with cross-validation takes several minutes.

10. The output file contains information on the success of the training (Fig. 3c). For
example, the F -measure which is the weighted harmonic mean of precision and
recall [2 × precision × recall/(precision + recall)] of class prediction. The closer
the F -measure is to 1, the larger are the precision and recall and the better is the
prediction. In many training sets, most peptides are not observed; prediction of
peptide observation is harder than prediction of nonobservation. Therefore, we
recommend paying special attention to the F -measure (as well as precision, recall)
of observed peptides (class 1); the larger this F -measure, the better is the model.
The F -measure should be >0.5.

In the yeast example, observed peptides (class 1) are predicted with an F -measure
of 0.61, i.e., with precision and recall of 0.59 and 0.63, respectively. Nonobserved
peptides (class 0) are predicted with much higher precision (0.96) and recall (0.96),
and the F -measure is 0.96.

11. Once the training is finished and a quality model has been created (see Note 8),
save the model as a .model file by right-clicking in the “Results list” section and
selecting “Save model.”

Subheading 3.2.1 can be omitted if a model has been built and saved in previous
calculations for a particular MS instrument and setup (see Notes 7, 9, and 10). We
found that models are similar between MS instruments using the same ionization

8Quality control.
When establishing the APEX protocol, we encourage the reader to use the Perl scripts and sample data files provided on our Web site
as a control for correct setup. Probabilities of peptide MS detectability may also be compared to predictions by Mallick et al. (24) and
by the Peptide Detectability Predictor at http://darwin.informatics.indiana.edu/applications/PeptideDetectabilityPredictor/. Other tests
of the quality of APEX estimates are described in the original publication (26).
7You are unable to use saved/previous WEKA models. Newer WEKA versions are often incompatible with older versions’ models.
Thus, one has to retrain the model for the new version of WEKA. Input files are provided on the APEX Web site.
9When to retrain the model.
A number of additional options are worth keeping in mind. Some users may prefer to retrain the Oi -values for each organism they
use, assuming that organism-specific properties (e.g., amino acid composition, the extent of posttranslational modifications) may
influence the overall MS-detectability of the peptides. Other users even consider retraining for every experiment. In principle, the Oi -
values are robust when similar experimental conditions apply. While a model built on one organism's data might be usable to predict
MS-detectability for another other organism, mammalian proteins may, for example, be more heavily phosphorylated than bacterial
proteins, and phosphorylation impacts MS-detectability of peptides containing serine, threonine, or tyrosine. In this case, retraining
with a mammalian dataset to be used to predict mammalian APEX values is reasonable.
The user should, however, retrain the Oi-values if the mass spectrometry equipment or protocols change. For example, different MS
instruments, and in particular different ionization techniques strongly influence MS detectability. Experimental conditions such as
oxidization of cysteine residues using iodoacetamide also influence MS detectability of cysteine containing peptides.
10Future possible refinements.
We provide this protocol not only for easy calculation of absolute and relative protein expression values but also encourage the reader
to experiment and optimize the method to suit his or her needs. Several refinements are possible. For example, when training for
peptide MS detectability, actual peptide identification probabilities could be taken into account: instead of using a binary classification
(observed, nonobserved) one would use a continuous value. Peptide charge states and prior modifications (e.g., on Cysteine residues)
may also be considered. Further, the user may try and estimate how the number of missed cleavages may affect the total number of
peptides observed, and incorporate that into the calculation. In addition to charge state, more complex features such as bi-amino acid
frequencies may be included in the training process; however, the user should be careful to avoid over fitting, i.e., to have
disproportionally many features compared to the size of the dataset.
When including more features, the user should keep two aspects in mind. First, ideally the feature values show a mound-shaped
frequency distribution which is easy to check in WEKA. If the distribution is far from Gaussian, one should consider (log)
transforming the values to achieve a better distribution. Many learning algorithms require normally distributed feature values. Second,
if two features are highly intercorrelated (e.g., Spearman's R > 0.9), for example sequence length and molecular weight, one of the
features should be left out to reduce redundancy.
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method and mass range, and the resulting Oi values correlate strongly. However,
since, for example, an LCQ is less sensitive than an LTQ-Orbitrap, Oi values are
generally smaller on the former instrument than on the latter.

3.2.2. Testing (Predictions)
1. Postprocess MS/MS raw data as in Subheading 2.1, item 1 (Fig. 2a) to obtain –

prot.xml files. This time include all proteins of interest, e.g., with <5% false
discovery rate. Parse the file to obtain a tab-delimited text file
[np_parse_ProteinProphet.pl].

2. Digest the amino acid sequences for all proteins of interest (above) in silico into
(tryptic) peptides, using the same parameters as in Subheading 3.2.1, step 3, i.e.,
allow for the same number of missed cleavages. Beware that this file easily
becomes large; a yeast genome with ∼6,000 genes in silico digests into ∼921,000
peptides (≤2 missed cleavages).

3. Analyze all peptides for their sequence features using the same attributes as in
Subheading 3.2.1, step 4 [np_peptide_properties.pl].

4. Convert peptide feature vectors into WEKA .arff file format similar to Subheading
3.2.1, step 6 [np_arf_to_arff_TEST.pl]. At the end of each feature vector, place a
question mark “?” instead of the “1” or “0” describing peptide observation (Fig.
2b).

5. Predict probability of observation (peptide MS detectability) using WEKA. In the
“Preprocess” tab, load the .arff file created in step 4. In the “Classify” tab, load the
model created in Subheading 3.2.1 by right-clicking within the “Result list” section
and choosing “Load model.” If you do not yet have a model available, create it
according to Subheading 3.2.1 Select CostSensitive Classifier, Bagging, and
Random Forests as classifiers and de fine a cost matrix as described in Subheading
3.2.1, step 8. Do not select Cross-Validation. Select the “Supplied test set” option
and upload the test .arff file, i.e., the file for which you like to obtain predictions.
Under “More Options,” unselect to output the model and select to display the
output predictions. After loading the existing model, right-click within the “Result
list” section and select “Re-evaluate existing model with current dataset.”

6. Start calculations by clicking on Start. Depending on computer power and dataset
size the calculations can take several minutes.

7. Cut and paste the output file into a text file or save it by right-clicking in the
“Result list” section and selecting “Save result buffer.” The second but last column
of the output file provides the probability of peptide observation (Fig. 3d), i.e., the
class 1 probability, and this value is used for further calculations. Note that while
peptide MS detectability is binary during training (observed/nonobserved), it is
continuous when calculating Oi (class 1 probability: value between 0 and 1).

8. Match the peptide identities to probabilities of peptide observation of the WEKA
output file [np_PeptidePredictions_to_ProteinOi.pl]. Sum over the probabilities for
all peptides mapping to a protein; this sum is the Oi value of the protein, i.e., the
expected number of observed peptides. Store these Oi values in a data file.

Once calculated for an organism for a particular experimental setup, the Oi values
can be reused for any number of MS/MS analyses of the same proteins. The APEX
Web site provides Oi values for the entire proteomes of E. coli, yeast and human
for analysis on an LCQ and an LTQ-Orbitrap using a given protocol, mass range,
etc. (provided on the APEX Web site).
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3.3. Estimation of Absolute Protein Expression Levels
1. Postprocess MS/MS raw data as described in Subheading 3.2.1, step 1. For each

protein identified in the MS/MS experiment, we need the probability of correct
identification pi and the total number of observed MS/MS spectra ni. Parse the –
prot.xml file to obtain a tab-delimited text file [np_parse_ProteinProphet.pl].

2. Calculate Oi values for each protein as described in Subheading 3.2.2, i.e., the
expected number of unique peptides per protein corrected by the differential
peptide MS detectability.

3. Estimate the total number of protein molecules per cell C . A total of 5 × 107

molecules/cell for yeast (29) and 2−3 × 106 molecules/cell for E. coli (41, 42) have
been suggested. This total number of molecules will be split amongst the proteins
identified in the MS experiment. Since the number of proteins identified can vary
between different experiments, an alternative way to estimate C is to multiply the
number of proteins identified by an estimate of the average number of molecules
per protein. For yeast, an average of ∼2,000–10,000 molecules per protein is
expected (26, 27, 29), for E. coli < 1,000 (26, 41, 42). In our example experiment,
2,033 proteins were identified with <5% false discovery rate on the LTQ-Orbitrap;
thus, we estimate C = 2,033 proteins × 4,000 molecules/protein ≈ 8.1 × 106

molecules. Third, if not cellular lysates but a synthetic protein mixture is used, C
can be estimated using the total concentration of proteins in the sample (if known).
Fourth, C can also be set to a constant (e.g., 1 or 100) which results in APEX
values of proteins relative to each other in the sample. Note that this use of the term
relative differs from that in Subheading 3.4 which considers a protein's abundance
in two different samples.

4. Calculate APEX protein absolute protein expression values using Eq. 1
[np_APEX_from_Oi_and_protlist.pl].

1

In Eq. 1, ni is the total spectral count for protein i (total number of MS/MS spectra
attributable to protein i), Oi is the expected unique peptide count for protein i (sum
of peptide MS detectabilities for a given protein), and pi is the protein identification
probability. Values for ni and pi are extracted from postprocessed MS/MS data; Oi
is computed as described above.

As a control for correct APEX calculations, we that recommend the user conducts a
spike-in experiment as described in the original publication (26). In such an
experiment, a mixture of proteins of known abundances is spiked into cellular
lysate and APEX is used to estimate protein concentrations in the mixture. This
control experiment may be conducted once in the lab to assure that the setup
produces reliable estimates of protein concentrations. It does not have to be
repeated frequently.

3.4. Estimation of Relative Protein Expression (Comparison of Two Samples)
1. Postprocess MS/MS raw data of both samples as described in Subheading 3.2.1,

step 1, including parsing of the –prot.xml files [np_parse_ProteinProphet.pl]. For
each protein identified in the MS/MS experiment, we need the probability of
correct identification pi and the total number of observed MS/MS spectra ni.
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2. Calculate APEX-based protein abundance estimates as described in Subheading 3.3
[np_APEX_from_Oi_and_protlist.pl]. The expression fold change between the two
samples 1 and 2 can then be expressed as the ratio APEXi,1/APEXi, 2. If a protein is
absent in one sample, its spectral count is ni = 0 and an APEX-based fold-change
cannot be calculated. However, a Z -score describing the significance of the
expression change can always be calculated.

3. Calculate the total number of observed MS/MS spectra (total spectral counts) N for
each sample. This sum includes only peptides of confident identification (above
threshold). Convert the spectral counts ni into fractions fi = ni/N.

4. Calculate for each protein the overall proportion fi,0 = (ni,1 + ni,2)/(N1 + N2). The
proportion fi,0 is the null expectation in the event that protein i is present at the
same level in both samples. The calculation can be done for proteins which are
confidently identified in both samples, and for proteins which are only identified in
one sample but assumed to be absent in the other sample.

5. Calculate for each protein a Z -score of differential expression according to

2

where N1 and N2 are the total spectral counts in samples 1 and 2, fi,0 is the overall
proportion of a protein's spectral counts, and fi,1 and fi,2 are the proportions of a
protein's spectral counts in sample 1 and 2, respectively. Note that script [np_two_
files_ Zscore.pl] performs steps 3–5 and provides Z -scores as the output of a
comparison of two .apex files.

Two-sided P -values require |Z| > 1.96 for P -value < 0.05; |Z| > 2.58 for P -value <
0.01. Proteins of high abundance in both samples can be significantly differentially
expressed even if the actual expression fold-change is small. Thus, we recommend
examining both Z -scores and expression fold-changes for each protein. The APEX
Web site contains an example of differential protein expression analysis (yeast
grown in minimal versus rich medium).
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Fig. 1.
APEX pipeline—overview. The protocol describes three different calculations. (1) Using
training MS/MS data, a model is created to describe peptide MS detectability. This model is
then used to predict peptide MS detectability for any test data file. (2) Using Oi -values
(summed probabilities of peptide MS-detectability) and MS/MS data, we calculate APEX,
an estimate of absolute protein expression. (3) Two MS/MS data files can be statistically
compared calculating a Z -score. Fold-changes of expression levels are based on APEX
estimates described in step 2. Reprinted from ref. 39 with permission from Macmillan
Publishers Ltd.
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Fig. 2.
Preparation of input files. We use two basic types of input data. (a) Postprocessed MS/MS-
data from which information on the probability of correct protein identification (pi), the
types of contributing (observed) peptides and the number of their MS/MS spectral
observations is extracted A total of five MS/MS spectra map to the example protein,
YAL001C. (b) Sequence feature data calculated for in silico digested protein sequences
using known amino acid features. The feature vectors can be extended to any length; the
most important features are described in literature (24, 26). The example protein YAL001C
is described for a prediction of peptide MS detectability; for its peptides the panels list the
length, molecular weight and two arbitrary features. Reprinted from ref. 39 with permission
from Macmillan Publishers Ltd. Asterisk—total spectral count per protein
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Fig. 3.
Use of WEKA. The screenshots illustrate how use of the WEKA Explorer can look like.
Ovals mark steps described in this protocol. (a) Uploading the .arff file. (b) Choosing the
classifier and defining cost matrix and other parameters. (c) Training output. (d) Prediction
output. Reprinted from ref. 39 with permission from Macmillan Publishers Ltd.
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Table 1

Features used for training. The number and types of peptide sequence attributes is important for performance
of the training/testing of peptide MS detectability. Except for length, all amino acid attributes and their
descriptions originate from AAindex (http://www.genome.jp/aaindex/). For all attributes except for length and
amino acid composition, both total (sum) and average values along sequence are included in the description of
peptide properties (.arf and .arff files)

Attribute type Source (reference number
in AAindex)

Comment

Length

Molecular weight Fasman (43) FASG760101 Strongly correlated with Length (can be left out to
reduce redundancy)

Relative amino acid frequencies Instances of type of amino
acid in sequence divided by
length

Absolute amino acid frequencies Instances of type of amino
acid in sequence

Correlated with Length

Normalized frequency of alpha-helix Chou Fasman (44) CHOP780201 Secondary structure

Normalized frequency of beta-sheet Chou Fasman (44) CHOP780202 Secondary structure

Normalized frequency of beta-turn Chou Fasman (44) CHOP780203 Secondary structure

Propensity to be buried inside Wertz Scheraga (45) WERD780101 Main attribute for MUDPIT-ESI identified by
Mallick et al. (24)

Isoelectric point Zimmerman et al. (46) ZIMJ680104 Main attribute for MUDPIT-ESI identified by
Mallick et al. (24)

Net charge Klein et al. (47) KLEP840101 Main attribute for MUDPIT-ESI identified by
Mallick et al. (24)

Atom-based hydrophobic moment Eisenberg McLachlan
(48)

EISD860102 Main attribute for MUDPIT-ESI identified by
Mallick et al. (24)

Positive chargeFauchere et al. (49) FAUJ880111 Main attribute for MUDPIT-ESI identified by
Mallick et al. (24)

Normalized flexibility parameters (B -values), average
Vihinen et al. (50)

VINM940101 Additional attribute

Normalized van der Waals volume Fauchere et al. (49) FAUJ880103 Additional attribute

Apparent partition energies calculated from Chothia index
Guy (51); Amino acid side-chain partition energies and
distribution of residues in soluble proteins

GUYH850105 Additional attribute

Transfer energy, organic solvent/water Nozaki Tanford
(52)

NOZY710101 Additional attribute
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