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Abstract
Mass spectrometry-based untargeted metabolomics often results in the observation of hundreds to
thousands of features that are differentially regulated between sample classes. A major challenge
in interpreting the data is distinguishing metabolites that are causally associated with the
phenotype of interest from those that are unrelated but altered in downstream pathways as an
effect. To facilitate this distinction, here we describe new software called metaXCMS for
performing second-order (“meta”) analysis of untargeted metabolomics data from multiple sample
groups representing different models of the same phenotype. While the current version of XCMS
was designed for the direct comparison of two sample groups, metaXCMS enables meta-analysis
of an unlimited number of sample classes to facilitate prioritization of the data and increase the
probability of identifying metabolites causally related to the phenotype of interest. metaXCMS is
used to import XCMS results that are subsequently filtered, realigned, and ultimately compared to
identify shared metabolites that are up- or down-regulated across all sample groups. We
demonstrate the software’s utility by identifying histamine as a metabolite that is commonly
altered in three different models of pain. metaXCMS is freely available at http://
metlin.scripps.edu/metaxcms/.

Metabolites are small molecules within biological systems that serve as the substrates and
products of cellular reactions. There is enormous structural diversity among metabolites
ranging from polar compounds to lipids and drug derivatives. Untargeted metabolomics
describes the process by which these molecules are globally profiled without bias. Using
modern mass spectrometers interfaced with either gas or liquid chromatography, tens of
thousands of metabolomic features can typically be detected from cells, biofluids, and
tissues.1,2 A metabolomics feature represents a peak in the chromatogram and is defined as a
molecular entity with a unique mass and retention time. Unbiased metabolomics is
performed by first comprehensively identifying every feature within a sample group, and
then comparing and statistically assigning the relative intensity of each of them among
different sample classes (e.g., healthy versus disease).

Over the course of the past five years, several software tools for differential analysis of mass
spectrometry-based metabolomics data have been developed (e.g., XCMS,3,4 MZmine,5,6

and MathDAMP7). These programs identify features whose relative intensity varies between
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sample groups and are therefore useful in screening for biomarkers of disease. In addition,
however, the identification of dysregulated metabolites has been useful in making advances
to our understanding of fundamental biochemistry. For example, untargeted metabolomics
programs have successfully been applied to reveal new insights related to inborn errors of
human metabolism,8 extremophile bacteria,9 viral pathogenesis,10 the gut microbiome,11,12

and stem cell differentiation.13 A major challenge in interrogating complex biological
phenomena at the metabolite level, however, is in distinguishing dysregulated pathways that
are causally associated with the phenotype of interest from those that are unrelated but
altered as a downstream effect. Knockout model organisms provide exciting opportunities to
study disease, but metabolomics datasets comparing these organisms to wildtype controls
are complicated by the potentially large number of altered features causally unrelated to the
pathology. Examining more animal models of the same phenotype increases the likelihood
of identifying features associated with underlying disease pathology, but current
metabolomics software limits this type of analysis in that only two sample groups can be
compared.

It is important to emphasize that metabolomics programs such as XCMS identify
dysregulated features, not metabolites. The process of identifying a feature as a metabolite
requires searching databases on the basis of accurate mass and comparing the retention time
and MS/MS data to that of a model compound for structural confirmation. Growing
metabolite databases with advanced functionality have facilitated the procedure of
metabolite identification,14–16 but it is still a time consuming and labor-intensive step of the
metabolomics workflow. Thus, data reduction is essential to maximizing the physiological
relevancy obtained from metabolomics experiments. The challenge is implementing an
intelligent methodology to accomplish data reduction at the feature level prior to metabolite
identification.

An effective data reduction strategy used in other fields has been performing second-order
comparisons to identify shared disturbances among shared phenotypes. Such second-order
analyses require the input of multiple sample groups, which previously has not been feasible
with existing metabolomics programs. Here we describe new untargeted metabolomics
software that can be used in conjunction with XCMS to perform second-order (“meta”)
analysis. Pairs of sample groups are first traditionally analyzed with XCMS, and the output
files from any number of pair comparisons are then subsequently input into metaXCMS
where they are realigned, statistically evaluated, and compared for shared differences. This
offers an important metabolomics data reduction tool that has the potential to significantly
decrease the number of interesting features selected for subsequent metabolite identification
(Figure 1). metaXCMS is freely available as an open-source R-package that includes a
graphical user interface. It can be downloaded from http://metlin.scripps.edu/metaxcms/.

WORKFLOW
The data processing workflow using metaXCMS can be summarized in the following steps.
First, metaXCMS is used to import the data from multiple metabolomics experiments as
TSV (tab separated) files or Excel sheets (.xlsx), both of which are standard formats
exported by XCMS that can be directly imported into metaXCMS without any further
preprocessing. After loading of the experimental data, sample class assignments are verified
and the control group for each experiment is defined. During the second processing step,
feature lists are filtered by fold change (e.g., ≥ 2), p-value (e.g., ≤ 0.01), or predefined
patterns of up- and down-regulation (e.g., features that are up-regulated in a first
experiment: wildtype 1 vs. knockout 1, but down-regulated in a second experiment:
wildtype 2 vs. knockout 2). In addition, feature lists can be designed to be subtracted from
the final result so that metabolic changes in a control experiment (such as a reverse
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knockout) can be disregarded. The next step is the automated alignment of the feature lists
from the different experiments on the basis of both m/z and retention time. The alignment
method “group.nearest” that is implemented in XCMS is employed to align the data within
user-defined m/z and retention time windows. Best results are achieved if the same LC/MS
conditions are used for all samples that are to be aligned.

While the number of data sets that can be compared with metaXCMS is generally not
limited, a direct visualization of the result as a Venn diagram is only possible for instances
in which the number of sample groups is five or less. The Venn diagram shows the number
of common features to all sample groups as well as the number of features contained within
other possible intersections. It should be noted that in some experiments features that are not
shared among sample groups may be the most biologically interesting, depending on the
model systems being investigated and the question being asked. All metaXCMS results are
displayed in tables that can be exported as Excel sheets.

For a detailed visual verification of the results, the retention time correction for all raw data
files is re-calculated using OBI-Warp17 and extracted ion chromatograms (EIC) are
generated for all selected features. Furthermore, boxplots are generated to visualize the
distribution of feature intensities across the experiments. All graphic results can be exported
as PNG or PDF files. The visualization displays are shown in Figure 2 for an example
dataset.

EXPERIMENTAL SECTION
As a demonstration of the utility of the software, here we briefly describe the experimental
application of metaXCMS to the investigation of three mouse models of pain as well as five
Halobacterium salinarum knockout organisms. For the pain study, metabolites were
extracted from 10 mg pieces of skin isolated from the hind paw of animals. The following
animal groups were compared: (A) animals plantar injected with Complete Freund’s
Adjuvant (CFA) and control animals, (B) animals to which noxious heat was acutely applied
to the hind paw and room temperature-treated control animals; and (C) animals
intraperitoneally injected with serum from K/BxN mice (i.e., KRN-treated mice) and
vehicle-treated controls. These animals represent an inflammatory model,18 an acute heat
model,19 and a spontaneous arthritis model of pain,20 respectively. All experiments were
conducted in accordance with the National Institutes of Health and the Scripps Research
Institute animal care and use guidelines. Five biological replicates were used for each pain
model and control group.

Halobacterium salinarum cultures of four knockout strains (ΔVNG1816G, ΔVNG2094G,
ΔVNG1179C, and ΔVNG0314G) were grown to logarithmic-growth phase and compared
to their parent control strain (Δura3). Cultures were centrifuged, rinsed with phosphate
buffer solution, and lyophilized. Metabolites were extracted from 5 mg of frozen cell pellets
from each culture. The genes VNG1816G, VNG2094G, and VNG1179C encode leucine-
responsive regulatory protein (Lrp) family transcription factors.21,22 The proteins encoded
by VNG1816G and VNG2094G share binding sites that are upstream to genes involved in
glutamic acid metabolism. The Cu-responsive transcription factor VNG1179C represses
VNG2094G and has been reported to affect glutamic acid metabolism by Cu trafficking in
previous studies.22 VNG0314G encodes an enzyme in the shikimate biosynthesis pathway.
VNG0314G served as negative control for a metabolic pertubation that does not affect
glutamic acid biosynthesis.

From skin tissue and lyophilized cell cultures, metabolites were extracted using cold
methanol and acetone as described before.13 Liquid chromatography was performed using a
reverse-phase C18 column (Zorbax C18, Agilent, 5 mM, 150×0.5mm diameter column) with
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a flow rate of 20 μl/min. Samples were analyzed by using electrospray ionization time-of-
flight mass spectrometry (Agilent 6510 TOF) with water and acetonitrile for mobile phases
A and B, each containing 0.1% formic acid. The chromatography started at 90% mobile
phase A with a 45-min linear gradient to 98% mobile phase B.

RESULTS AND DISCUSSION
Although each of the pain models used in this study involves different pathogenic etiologies
and mechanisms, we hypothesized that there may be common metabolites involved in
triggering the transduction of nociceptive signals. We first compared each of the pain
models to its respective control by using XCMS. XCMS performs feature detection as well
as nonlinear retention time alignment and calculates statistics (Welch t-test) for each feature.
The XCMS result is a table that contains the m/z and retention time coordinates, p-value and
fold change for each feature, and the integrated feature intensities from all aligned samples.
Each one of the three pain model comparisons resulted in more than 7,000 features, with the
total number of summed features from all comparisons being 22,577. The three TSV files
that were generated by XCMS were imported into metaXCMS and filtered by fold change
(≥ 1.5) and p-value (≤ 0.05). No restrictions were made on up- or down-regulation.

The filter step yielded 380, 837, and 608 differentially regulated features for each one of the
pairwise comparisons, resulting in a total number of 1825 dysregulated features (Figure 1,
heatmaps). The second-order comparison was applied using a tolerance of 0.01 m/z and 60
seconds retention time. Three features were found to be differentially regulated in all three
pain models (Table 1).

Retention time correction was then applied to the raw data for the generation of extracted
ion chromatograms for each shared feature. In addition, boxplots were created on the basis
of integrated intensity as exported from XCMS. Retention time correction curves for all pain
samples is shown in Figure 2, along with overlaid extracted ion chromatograms and
boxplots for the feature m/z 112.09. The compound with an observed m/z value of 112.09
was identified as histamine using accurate mass, retention time, and MS/MS fragmentation
data as compared with a model compound. As validation of the approach, our result is
consistent with the literature in that histamine has been well characterized as a mediator of
pain by several mechanisms.23–25 It has been shown that irritation of the skin by
mechanical, electrical, or chemical stimuli causes release of histamine by mast cells
resulting in sensory nerve ending depolarization.26 In the skin, histamine receptors are found
on Aβ fibers, on keratinocytes, on Merkel cells, and on deep dermal Aδ fibers terminating
on dermal blood vessels.27 The precise physiological effects of histamine are complex due
to its immunomodulatory and neurotransmitter properties,28,29 but our observation that it is
commonly dysregulated is consistent with that which has been reported previously.

For the Halobacterium salinarum study, second-order analysis was performed on
ΔVNG2094G and ΔVNG1816G with respect to their parent strains. For these mutants, 282
shared differences were detected. Among those, glutamic acid was found to be similarly
dysregulated as expected (Figure 3a). The identity of glutamic acid was confirmed using
accurate mass and MS/MS data as compared with a model compound. A higher-order
analysis was also performed in which the difference profile from ΔVNG1179C with respect
to its wildtype was introduced into the analysis. The number of shared differences decreased
from 282 to 171 (Figure 3b). Importantly, glutamic acid was similarly dysregulated in all
three mutants, supporting the previously reported physiological link between Cu-trafficking
and glutamic acid metabolism (ΔVNG2094G: fold change 1.6, p-value 0.01, ΔVNG1816G:
fold change 2.2, p-value 0.03, ΔVNG1179C: fold change 1.9, p-value 0.01). Finally, as a
negative control, the comparison of ΔVNG0314G to its parent strain was introduced into the
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analysis. VNG0314G encodes an enzyme involved in shikimate biosynthesis that is
unrelated to glutamic acid metabolism and therefore ΔVNG0314G served as a negative
control. Glutamic acid was not detected as a differentially regulated metabolite among all
four mutants (Figure 3c). The decrease in shared features among all samples with the
addition of ΔVNG0314G demonstrates the utility of eliminating features not specifically
related to the phenotype of interest with metaXCMS by using a negative control.

CONCLUSIONS
In summary, metaXCMS provides software for second-order analysis of metabolomics data
facilitating meta-comparisons similar to those already used in genomics and
transcriptomics.30–33 The introduction of such software in metabolomics is of significant
value as it not only provides an analytical tool for distinguishing metabolites fundamentally
associated with the underlying origin of a particular phenotype, but it also allows for data
reduction at the feature level. Structural characterization of features is a rate-limiting step in
the metabolomics workflow, and therefore metaXCMS offers a method to efficiently
identify features with a higher likelihood to be biologically relevant prior to the time
commitment of compound identification. In addition, metaXCMS provides a tool to analyze
large cohorts of clinical samples from different groups or with complex subgroup variability.
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Figure 1.
Data reduction with metaXCMS. The workflow is demonstrated using the pain dataset,
where pain model A is CFA-treated animals, pain model B is heat-treated animals, and pain
model C is KRN-treated animals. The applied fold changes and p-values for the first
filtering step were ≥ 1.5 and ≤ 0.05, respectively.
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Figure 2.
metaXCMS screenshot showing retention time correction curves and parameter settings for
extracted ion chromatogram (EIC) generation (left), EIC overlay showing the ion intensity
for m/z 112.09±0.01 for all samples from the pain dataset (upper right), and boxplot
showing the distribution of integrated feature intensities of the feature m/z 112.09 for all
pain samples (lower right). Pain models A, B, and C are defined in the legend of Figure 1.
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Figure 3.
Venn diagrams showing the results of the second-order comparisons of four different
Halobacterium salinarum knockout strains using metaXCMS. Mutants 1, 2, and 3 represent
the strains ΔVNG2094G, ΔVNG1816G, and ΔVNG1179C, all of which are characterized
by pertubations in glutamic acid metabolism. ΔVNG0314G does not affect glutamic acid
metabolism, so ΔVNG0314G served as a negative control.
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