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Abstract
While there is general agreement that cardiovascular disease (CVD) development is influenced by
a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis
of how these factors initiate or promote CVD development in some individuals while others with
identical risk profiles do not, is not clearly understood. This review considers the potential role for
mitochondrial genetics and function in determining CVD susceptibility from the standpoint that
the original features that molded cellular function were based upon mitochondrial-nuclear
relationships established millions of years ago and were likely refined during prehistoric
environmental selection events that today, are largely absent. Consequently, contemporary risk
factors that influence our susceptibility to a variety of age-related diseases, including CVD were
probably not part of the dynamics that defined the processes of mitochondrial – nuclear
interaction, and thus, cell function. In this regard, the selective conditions that contributed to
cellular functionality and evolution should be given more consideration when interpreting and
designing experimental data and strategies. Finally, future studies that probe beyond
epidemiologic associations are required. These studies will serve as the initial steps for addressing
the provocative concept that contemporary human disease susceptibility is the result of selection
events for mitochondrial function that increased chances for prehistoric human survival and
reproductive success.

With the exception of the worldwide Spanish influenza epidemic of 1918, cardiovascular
disease (CVD) has been the leading cause of mortality and morbidity in the United States
every year since 19001. Consequently, many studies have investigated the potential causes
of cardiovascular disease, and it is generally accepted that oxidative stress mediated changes
within the cardiovascular milieu are among the most popular postulated mechanisms of
CVD development2–7. Oxidative stress is caused by a collective grouping of reactive oxygen
and nitrogen species (ROS and RNS, respectively) that are capable of disrupting cell
function and exerting cytotoxic effects when generated in amounts beyond the antioxidant
capacity of the cell. The concept that oxidative stress is important in the pathogenesis of
CVD was conceived from studies that noted the cytotoxic and atherogenic properties of
oxidized LDL (oxLDL) cholesterol8–12. Subsequently, it became apparent that vascular
dysfunction can be linked to increased oxidant stress; oxidant stress can have several
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biological effects, including the peroxidation of polyunsaturated fatty acids in membrane or
plasma lipoproteins, direct inhibition of mitochondrial respiratory chain enzymes,
inactivation of membrane sodium channels, and DNA damage2, 3, 5–7, 13–22. These findings
are consistent with the notion that CVD risk factors increase oxidative stress and contribute
to a pro-inflammatory environment5, 11, 12, 23–35. Whereas the majority of these studies
regard atherosclerotic disease, oxidative stress also has been implicated as an important
factor in many other forms of cardiovascular related maladies, including hypertension and
cardiometabolic disease/syndrome.36–39. Although atherosclerosis and hypertension are
often a pathologies ultimately associated with cardiometabolic syndrome, individuals with
hypertension or atherosclerosis do not always have cardiometabolic disease. The classic
traits of visceral obesity and insulin resistance are associated with cardiometabolic
syndrome, although other traits typically linked with metabolic syndrome are common as
well. Multiple early definitions of metabolic syndrome have been related from different
organizations including: the International Diabetes Federation (IDF)40, the revised National
Cholesterol Education Program (NCEP; ATP III criteria)41, the World Health Organization
(WHO)42, and the European Group for the Study of Insulin Resistance (EGIR)43. Based on
a joint interim statement in 2009 from the American Heart Association (AHA), National
Heart Lung Blood Institute (NHLBI), World Health Federation, International
Atherosclerosis Society, International Association for the Study of Obesity, and
International Diabetes Federation (IDF) consensus statement44, the criteria for clinical
diagnosis of the metabolic syndrome include having three of five of the following (or drug
treatment for them): some form of insulin resistance (impaired glucose tolerance or impaired
fasting glucose [≥ 100 mg/dL]), hypertension [systolic ≥ 130 and/or diastolic ≥ 85 mm Hg],
dyslipidemia (higher triglycerides [≥ 150mg/dL, 1.7 mmol/L], and lower HDL [males <
40mg/dL, 1.0 mmol/L; females < 50 mg/dL, 1.3 mmol/L]) and country-specific elevated
waist circumference and abdominal obesity (USA, AHA/NHLBI ATP III thresholds: males
≥ 94–102 cm; females ≥ 80–88 cm) and all of these risk factors have been linked to
oxidative stress45, 4647, 48. Among the potential cellular origins of oxidative stress, studies
have shown multiple sources to be important, including NAD(P)H oxidase, xanthine
oxidase, and myeloperoxidase13, 49–60. More recently, the mitochondrion, both a source and
target of oxidants related to cardiovascular disease development, has garnered
attention61–6465–73.

THE MECHANISMS OF INDIVIDUAL CVD SUSCEPTIBILITY ARE NOT
CLEARY UNDERSTOOD

While significant progress in understanding the pathology, progression and development of
CVD has been made, the determinants of why some individuals with identical CVD risk
factor profiles develop disease while others will not, are not clearly understood. Currently,
less than 5% of CVD appears to result from single mutations, such as those regulating
lipoprotein synthesis74, 75. It has been estimated that 70%–80% of CVD is attributable to
modifiable, non-genetic factors, which is consistent with the notion that environmental
factors heavily influence the risk of disease development74. In addition to endogenous and
environmental risk factors (i.e., hypercholesterolemia and tobacco smoke exposure,
respectively), CVD susceptibility is also increased by age, family history76–81, and ethnicity
(reviewed in82. Some studies have shown that differences in cardiovascular function exist
between racial groups, however the basis of these differences is currently unclear83–88.
Consequently, it is thought that CVD is a multi-factorial disorder that involves both
environmental and genetic factors89, 90. A corollary of this idea however, is that individual
response to environmental factors can be genetically influenced.

The Mendelian concept, or the “common disease, common variants” hypothesis suggests
that common forms of disease such as CVD have a multi-factorial and polygenic basis:
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genetic variants present in many normal individuals, each with a relatively small effect,
alone or in combination with modifier genes and environmental factors contribute to overall
CVD risk89, 90. Hence, it has been hypothesized that multiple genes involved in vascular
regulation, lipoprotein metabolism, inflammation, metabolic control and redox tone (the
balance between oxidant generation and neutralization by antioxidants) and their interaction
with risk factors influence CVD susceptibility77, 78. In this regard, studies have looked for
connections between polymorphic gene mutations and CVD development. However, many
original associations were lost in larger scale studies, or were not as predictive for risk as
plasma markers such as cholesterol levels75, 91–97. Consequently, while important in
advancing the understanding of gene “groups” that may be involved in influencing
predilection to disease development, the underlying genetic and physiologic basis of why
these differences exist is not well understood.

Because CVD usually develops over decades, its etiology should entail subtle changes in the
vascular/endothelial environment over time, collectively resulting in the initiation and
progression of disease. Therefore features of CVD development should involve genetic and
cellular mechanisms that: i) play important roles in multiple cell functions involving the
regulation and expression of multiple genes (e.g., growth, death, signaling, and
bioenergetics); ii) are capable of gradual decline or dysfunction over time (an “aging”
mechanism); iii) are susceptible to oxidative damage (risk factors), and; iv) explain risk
associated with ethnicity.

The mitochondrion and its genome may account for these features in CVD development.
The mitochondrion: i) is a multifunctional organelle which is a central focal point for proper
cell function due to its role in energy production, cell growth, apoptosis, thermogenesis and
redox signaling98–102; ii) has an “aging” mechanism – there are thousands of copies of
mitochondrial DNA (mtDNA) per cell, allowing for the accumulation of mtDNA mutations
and damage over time that cause an age-related decline in mitochondrial function103, 104; iii)
is vulnerable contemporary CVD risk factors and oxidative stress which increase
mitochondrial damage and alter function in cardiovascular tissues61–64, and; iv) harbors the
mtDNA which displays marked regional variation and has proven useful in population and
molecular anthropological studies105. By contrast, most ancient nDNA polymorphisms are
common to all global populations106. Similarly, maternal family history of cardiovascular
disease has also been reported to convey greater risk than paternal history77–81. Although
this association is controversial and has been suggested to be due to offspring – maternal
nutritional effects that were experienced in utero107, 108, studies of in utero risk factor
exposure have shown mtDNA damage64. Consequently, these observations are consistent
with the notion that mitochondria play significant roles in the etiology of CVD.

MITOCHONDRIA ARE MULTIFUNCTIONAL ORGANELLES
Mitochondria are ancient bacterial endosymbionts with their own DNA, RNA, and protein
synthesis systems109. Mitochondria are multifunctional organelles, and serve as the sites for
electron transport, oxidative phosphorylation (OXPHOS), the citric acid cycle, β-oxidation,
steroidogenesis, and many other important cellular functions including growth, oxidant
generation and programmed cell death102. In fact, the primary function of the mitochondrion
is dependent upon the current requirements and environment of the cell. For instance, the
primary function of a mitochondrion within an endothelial cell may be the regulated
generation of oxidants for cell signaling, whereas within a cardiac myocyte, it may be the
generation of ATP, or, a combination of functions therein (e.g. ATP and oxidant
generation). This unique feature of mitochondrial functional biology makes it the central
focal point in terms of the mechanistic basis of many forms of age-related diseases,
including CVD.
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Mitochondria fundamentally execute the conversion of caloric energy into molecular energy,
thermal energy, and oxidants (Figure 1). They achieve these tasks by coupling electron
transport with proton translocation and OXPHOS. The energy released during the movement
of electrons along the electron transport chain is used to pump protons across the inner
membrane at complexes I, III, and IV, which creates a transmembrane electrochemical
gradient. This potential energy is utilized by ATP synthase (complex V) to condense ADP
and Pi to form ATP. The energy not utilized for proton pumping is lost in the form of heat
(thermogenesis). Electrons are also donated directly to oxygen (O2) during electron transport
to form superoxide (O2˙−) which can be converted to hydrogen peroxide (H2O2) and
contribute to cell redox signaling processes, or in the presence of nitric oxide (˙NO), form
peroxynitrite (ONOO−), an oxidant which can react with carbon dioxide (CO2) to form
nitrosperoxycarbonate (ONOOCO2

−), a nitrating agent24, 110.

Each cell contains hundreds to thousands of mitochondria and each mitochondrion contains
5 – 10 copies of maternally inherited mtDNA. The mammalian mtDNA encodes 13
polypeptides, two rRNAs (12S and 16S) and 22 tRNAs that are essential for OXPHOS and
proper cell function (Figure 2). The nucleus encodes all the remaining mitochondrial
proteins for the organelle. Interestingly, the mtDNA retained key structural subunits required
for the catalytic activity for four of the five OXPHOS enzyme complexes (I, III, IV and V).
Consequently, mutations in these mtDNA encoded subunits could alter features in
mitochondrial metabolism or economy (bioenergetic function).

MITOCHONDRIAL ECONOMY
Mitochondrial economy describes how the organelle utilizes the oxygen it consumes in
terms of molecular (ATP) and thermal energy production, plus oxidant generation. This
economy is therefore dependent upon a myriad of factors including local concentrations of
both reactive nitrogen and oxygen species, mitochondrial antioxidants, cytokines, electron
transport efficiency, metabolic reducing equivalent availability (NADH, FADH2, and those
from β-oxidation of fatty acids), cellular energetic demand, uncoupling protein (UCP)
activities, and overall organelle integrity (damage to membranes, DNA, and proteins).
Among these factors, electron transport efficiency as it relates to overall “mitochondrial
economy” has received limited attention and has not been considered seriously in relation to
CVD development. Mitochondria that utilize less oxygen to generate the same amount of
ATP compared to mitochondria that use more oxygen for ATP production are, relatively
speaking, more economical. Hence, economical mitochondria will have a higher ATP/O2
compared to those that are relatively less economical. Under conditions of excess substrate
and low energetic demand (positive energy balance), mitochondria with high ATP/O2 will
have a greater proportion of electron carriers in a reduced state (occupied by electrons)
compared to those with lower ATP/O2 and thus, will be more prone to donate electrons to
oxygen to form oxidants and are suggested to include African haplotypes (Figure 3, higher
mitochondrial economy). However, under chronic conditions of substrate excess and low
energetic demand even mitochondria that are less economical will generate increased
oxidants. Mitochondria with low ATP/O2 utilize more electrons and O2 to generate ATP,
resulting in greater energy loss in the form of heat compared to those with higher ATP/O2
and are suggested to include Eurasian and northern migratory haplotypes (Figure 3, lower
mitochondrial economy).

PREHISTORIC SELECTION, MITOCHONDRIAL ECONOMY AND EVOLUTION
As humans migrated from Africa, they encountered changes in climate and diet as they
moved northward111, 112. To successfully survive and reach reproductive age, it was
necessary to develop a biological system to deal with these challenges. Consequently,
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selective pressures on prehistoric humans were exclusively related to reproductive success
and survival of their offspring to reproductive age. Post-reproductive challenges beyond the
successful rearing of offspring to reproductive age, were not major selective pressures in a
genetically adaptive sense. As our ancestors moved northward, they accumulated a greater
frequency of mtDNA missense mutations relative to silent substitutions100, 113. It has been
proposed that these mutations altered aspects of mitochondrial economy that enabled these
northern migrants to generate more heat/calorie consumed99, 100, 113. These changes were
tolerated because the diet of these migrants changed from a low protein, low fat vegetarian
diet to a high protein, high fat diet consisting of animal fats111, 112; hence, the decreased
ATP generation/calorie (due to increased heat production) associated with these mtDNAs
may have been offset by higher caloric intake. Consequently, by changing aspects of
mitochondrial function in settings of warm climates and vegetarian diets to a system
designed to be more thermogenic in a setting of cold climates with increased caloric intake,
these changes in mitochondrial function may have contributed to increased probability for
survival of the young to reproductive age.

Changes in mitochondrial function and/or protein levels associated with specific animal
adaptations in vertebrates have been previously noted. For example, hibernating 13-lined
ground squirrels (Spermophilus lateralis) demonstrate upregulated nad2 (mitochondrial-
encoded ETC complex I subunit) mRNA in heart, liver, and skeletal muscle during
hibernation114 coincidental with 95% decreased metabolic rate compared to resting levels
and decreased core body temperature maintained below 10°C115. Smaller mtDNA-encoded
cytochrome b and c spectra in S. lateralis liver mitochondria have also been reported during
hibernation, which may decrease the capacity of complex III116 affecting ROS formation
and CVD117, mtDNA damage, and retrograde signaling (discussed below in “THE
IMPLICATIONS OF THE MITOCHONDRIAL PARADIGM…AND DISEASE
DEVELOPMENT”). In an avian model, the bar-headed goose (Anser indicus) that migrates
over the Himalayas (altitudes up to 9000 meters) must sustain high metabolic rates in the
context of severe hypoxia. A. indicus has evolved more subsarcolemmal mitochondria
bordering capillaries with increased densities within increased numbers of oxidative fibers,
enabling them to sustain high metabolic rates for flight under hypoxic conditions compared
to low altitude birds118. This evolutionary adaptation to hypoxia has more recently been
shown to involve decreased maximal cytochrome c oxidase (COX) activity, a higher affinity
of COX for reduced cytochrome c, and proportional decreases in COX3/COX1 and COX4/
COX3 protein expression. The decreased COX3 subunit (mtDNA encoded) in the bar-
headed goose also has a nonsynonymous substitution at a conserved site in vertebrates,
which based on structural modeling suggests it would alter the interactions of COX3 and
COX1 accounting for the increased economy and evolutionary mechanisms of high-altitude
adaptation119. Finally, although not extensively studied, aspects of adaptive evolution of the
mtDNA encoded subunits across placental mammals has been examined, potentially
providing a framework for future characterization of mtDNA mutations in regard to their
impact on cellular function and physiology120.

MITOCHONDRIAL OXIDANT PRODUCTION
The perception that mitochondrial oxidant production is analogous to “pollution” or an
unnecessary by-product of electron transport is inaccurate. While many reports have
implicated mitochondrial oxidant generation as an important form of cellular stress that
contributes to disease development, which is certainly a correct
interpretation65, 66, 121–13765, 66, 68, 70, 72, 138–145, it also reflects a contemporary viewpoint.
Mitochondrial produced oxidants most likely originally served as a signaling system for the
benefit of the host (the eukaryotic cell), a concept that has not been widely contemplated.
From an evolutionary perspective, the cellular functions of the mitochondrion developed
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over millions of years of endosymbiosis with its nucleated host. Because it is possible that
our proto-eukaryotic ancestors spent a significant amount of time during their evolutionary
existence under conditions of limited caloric availability, they likely evolved systems of
mitochondrial – nuclear interactions designed for increased survival and reproductive
success under conditions of punctuated caloric restriction. Consequently, selection for a
system that had a rapid feedback/signaling mechanism (production of oxidants) linked to
energy production that would induce caloric storage when energetic demands were met
would be strong. This notion would suggest that mitochondrial oxidants may have originally
served as stimuli for i) insulin production and ii) signaling molecules for insulin signaling
pathways in non-insulin producing tissues. Hence, the mitochondrial oxidants may have
initially served as a means for regulating caloric utilization and storage. Under conditions of
excess substrate and low cellular energetic requirements (positive energy balance),
mitochondria would increase oxidant production, triggering signaling pathways that would
have led to storage of calories146–150. As energy demand increased or food availability
became low, mitochondrial oxidant production would decrease, as would caloric storage
pathways. In this regard, studies have shown that mitochondrial oxidant generation or the
alteration of mitochondrial UCP levels can impact insulin secretion and also affect aspects
of insulin sensitivity68, 147, 151, 152. While many studies have also shown that mitochondrial
oxidant production inhibits insulin production and sensitivity, these studies are often
performed under chronic conditions of hyperglycemia and therefore represent contemporary
stress factors rather than prehistoric. Regardless, studies have shown that a connection exists
between mitochondrial oxidant production and insulin secretion153, 154, and more recent
work suggests that oxidants impact insulin signaling pathways in non-insulin producing
tissues146, 155, 156. A final consideration is that these systems were designed to increase
survival for reproductive purposes and hence, may function more robustly in the young (by
virtue of their importance for survival and from a gene pool perspective). This concept is
supported by the observation that insulin sensitivity is higher in the young compared to
old157.

THE IMPLICATIONS OF THE MITOCHONDRIAL PARADIGM FOR
CONTEMPORARY SOCIETY AND CONCEPTS OF DISEASE DEVELOPMENT

As previously discussed, it has been hypothesized that mtDNA mutations fixed into
prehistoric populations altered aspects of mitochondrial economy that enabled our ancestors
to survive and reproduce at different geographic latitudes and diets100. Today, these variants
in mitochondrial function may influence individual disease susceptibility due to differences
in mitochondrial oxidant production related to mtDNA haplotype100, 158. With the
development of greater physical inactivity, increased lifespan and excessive caloric intake
seen in Western societies, these variants in mitochondrial function and genetics may
influence predisposition towards disease development. Individuals with greater
mitochondrial economy will have increased basal levels of endogenous mitochondrial
oxidant stress under conditions of excessive caloric intake, physical inactivity (positive
energy balance, Figure 3) and exposure to CVD risk factors compared to those with less
economy and thus, will appear more susceptible to diseases related to oxidative stress such
as CVD. Furthermore, those individuals with less mitochondrial economy will appear less
susceptible to diseases related to oxidative stress, yet will not be completely immune to such
disease under conditions of high caloric intake and/or physical inactivity (Figure 3).
Chronic, excessive caloric intake and low energetic demands will still result in sustained
mitochondrial oxidant generation over time that will induce cellular damage; hence even
those individuals with lower mitochondrial economy will potentially develop CVD or
cardiometabolic diseases with persistent exposure to these stressors. Conversely, individuals
harboring mitochondria with greater economy will be more tolerant towards caloric
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restriction compared to those having less economy (Figure 3, negative energy balance). This
of course, sets up the dilemma that individuals more prone for weight gain under conditions
of positive energy balance will be also more resistant to weight loss under conditions of
negative energy balance although it has been shown that regular steady exercise may prevent
or diminish the influence of mtDNA haplotype on some physiologic measures including
aerobic capacity159 and ROS-induced damage to skeletal muscle160.

Evidence supporting these concepts is becoming recognized; several studies have shown that
specific mtDNA mutations and haplotypes are associated with differences in oxygen
consumption, increased risk for diseases thought or known to have an environmental
component (e.g., deafness, blindness, Alzheimer’s disease, diabetes and cancer)104, 160–181.
Similarly, studies have shown that the mtDNA haplotype can influence tumor growth and
age-related deafness in mice182, 183. It has also been suggested that human longevity
significantly co-segregates with mtDNA haplotypes that have temperate and arctic
origins174, 175, yet they may have increased predilection for clinical illnesses associated with
energetic insufficiencies such as blindness and CNS defects100. Alternatively, mitochondrial
haplotypes thought to be associated with increased mitochondrial economy may be more
prone to certain types of cancer and age-related diseases associated with oxidative stress
and/or somatic mutation100, 182. More recent studies suggest a link between mtDNA
haplotypes and CVD in certain populations184. While studies in cybrid culture have
provided conflicting results regarding the concept that the mtDNA influences cellular
bioenergetics158, 185–187, studies in conplastic strains of mice suggest that mtDNA
background influences aspects of cognition, behavior, reproductive behavior, and
susceptibility to autoimmune disease188–191. An extension of the concept that the mtDNA
alters organelle economy (bioenergetics) which influences disease susceptibility is that it
may also play a role in modulating nuclear gene expression since the majority of proteins
functioning within the mitochondrion are encoded by the nucleus. If this is the case, it would
represent another historical clue regarding the evolution of the eukaryotic cell and
endosymbiosis, and thus, provide the basis for an additional paradigm in that the mtDNA
influences the selection of certain nuclear – mitochondrial gene combinations and
mitochondrial retrograde signaling192–194. If true, this would have serious implications
regarding the use of transgenics derived from different strains of mice (e.g., backcrossing
one strain on the background of another) and there are likely to be tissue-specific effects on
mitochondrial-nuclear signaling195–197 influenced by energy balance, ROS, exercise, and
diet.

THE ROLE OF DIET AND MITOCHONDRIAL FUNCTION
The composition and caloric content of the diet likely influence mitochondrial and cellular
interactions. Excessive caloric intake without increased energy expenditure (a net positive
energy balance), will result in increased weight gain, oxidant stress and disease risk. Whilst
the effects of positive energy balance on mitochondrial function are a matter of debate
concerning the question of whether mitochondrial dysfunction or positive energy balance
drives the development of insulin resistance, diabetes, and cardiometabolic diseases198–202,
it is evident that caloric restriction decreases mitochondrial oxidant production and
cardiovascular risk203–205. Interestingly, it has also been shown that methionine restriction
without caloric restriction can decrease mitochondrial oxidant production and mtDNA
damage in rodents206–208, while the same percent of carbohydrate does not209, 210. In
contrast, methionine supplementation in rats has been shown to increase ROS production
and mtDNA damage in rat liver but not the heart211. Diets with higher unsaturated/
polyunsaturated fat content (ie. fats from natural vegetable oils, nuts, and fish) compared to
those with higher saturated fat (pork, beef, chicken, dairy, eggs, coconut oil, and some
seafood) have been shown to decrease CVD212–215, and decrease mitochondrial ROS
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production216. Polyphenols such as resveratrol contained in red grapes, red wine, and
peanuts have been shown to induce mitochondrial biogenesis through activation of sirtuin 1
(NAD-dependent deacetylase sirtuin-1 or SIRT1) and peroxisome proliferator-activated
receptor γ coactivator 1-α (PGC-1α)217, improving health, survival and decreasing diabetic
complications218, 219. Coincidental with dietary and mitochondrial interactions are
conflicting reports regarding low-carbohydrate versus low-fat diets and their effects on
disease progression. Ketogenic diets, high-fat with adequate protein and low-carbohydrates,
mimic caloric restriction by forcing the body to burn fats rather than carbohydrates and have
been shown to decrease mitochondrial ROS production through increased NADH
oxidation220. Ketogenic diets are clinically used to treat many acute and chronic
neurological diseases such as stroke221, epilepsy222, 223, mitochondrial myopathy224 and
cardiovascular disease225.

The interaction of diet on mitochondrial function and bioenergetics in general involves the
capability of the mitochondria to effectively and rapidly signal to the cell that excess
reducing equivalents exist (high cytosolic NADH/NAD+ and ATP/AMP). This has been
shown to occur in both rodents and humans through low level mitochondrial ROS
generation146, 226. Hoehn et. al. also demonstrated increased MnSOD expression improved
glucose and insulin tolerance in mice fed high fat diets compared to controls146. Further,
evidence from that study suggests that mitochondrial ROS production (which would be
higher under conditions of excess reducing equivalent availability and low ATP demand)
may serve as a cell signal that decreases GLUT4 translocation to the cellular plasma
membrane and induces temporary insulin resistance (by limiting cellular glucose uptake) in
adipocytes and myotubes146. Decreased influx of glucose would decrease NADH/NAD+,
increase AMP/ATP, stimulate increased flux of electrons through the electron transport
chain (ETC), decrease membrane potential and decrease ROS formation. However, under
conditions of persistent positive energy balance, individuals with increased adiposity would
also supply reducing equivalents via β-oxidation, and chronic ROS formation would ensue,
contributing to post-translational oxidation of lipids, proteins and mtDNA, down regulation
of metabolism, and vicious cycle of ROS-mediated mitochondrial dysfunction.

Under positive energy balance, excess reduced carbohydrates, fats and other foodstuffs lead
to a chronic cellular redox shift toward an overload of reduced cytosolic NADH creating a
‘reductive stress’227. Elevated levels of these high energy electron carriers, NADH and the
reduced form of flavin adenine dinucleotide, FADH2, would come from glycolysis and the
Krebs cycle. Under these circumstances, most dehydrogenases and all NAD+-dependent
enzymes would function abnormally because of the relative deficiency of NAD+ and
inhibitory feedback mechanisms well described in most biochemistry text books. The
NADH/NAD varies in response to changes in metabolism228–230 and is often used as a
measure of the intracellular redox or metabolic state of the organism231. Since NADH
cannot penetrate the inner mitochondrial membrane directly, various shuttling mechanisms
exist to transport the NADH reducing equivalents into the mitochondria for oxidation. The
malate-aspartate shuttle is required in yeast for increased life span mediated through calorie
restriction232. Mitochondrial glycerol-3-phosphate shuttle also helps to funnel cytosolic
reducing equivalents to the mitochondria for respiration233 and when knocked out in plants
has been shown to increase the NADH/NAD ratio234.

Carbohydrate metabolism generates a ratio of 5 NADH/FADH2 (per pyruvate), while fat
metabolism generates a ratio of 2 NADH/FADH2 (per acetyl CoA) which feed into the ETC
at complex I for NADH and succinate dehydrogenase (complex II) for FADH2. These
reducing equivalents converge on coenzyme Q and complex III. Mitochondrial oxidant
production has been shown to originate from complexes I and III of the electron transport
chain (ETC)235–239 through both forward and reverse electron flux240, 241. Hence, under
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conditions of excess reducing equivalents and low energy demand (positive energy balance),
a “bottleneck” can occur at coenzyme Q and complex III that increases cytosolic NADH/
NAD+, mitochondrial membrane potential, and ROS formation242. Moreover, it is possible
that these effects are compounded in overweight individuals by virtue of their increased
adiposity which further contributes to reducing equivalent availability through β-oxidation.
Consistent with the notion that coenzyme Q may play an important role in modulating the
effects of excess reducing equivalent availability are reports that mitochondrially-targeted
coenzyme Q supplementation protects against endogenous oxidative stress243 and that
supplementation of Co-Q has helped alleviate myopathic symptoms244. Interestingly,
coenzyme Q deficiency may exacerbate cardiometabolic245, neurological246, and other
diseases including diabetes and cancer247. It has also been reported that coenzyme Q
deficiency induces mitochondrial degradation by mitophagy248.

SUMMARY
While there has been significant progress in understanding the pathological processes
involved in CVD progression and development, the continuing status of CVD as the leading
cause of death and morbidity in the Western world for the past century implies a lack of
understanding regarding the basis of individual CVD susceptibility. Numerous studies have
delineated important CVD risk factors, and although there is general agreement that they
share a common feature of increasing vascular oxidant stress, the actual mechanistic basis of
how they initiate or promote CVD development in some individuals and not in others with
identical risk profiles, is not clearly understood. It is widely thought that CVD development
is influenced by a combination of genetic, environmental, and behavioral factors that
influence an individual’s biological response to known disease risk factors. A consideration
currently lacking from these analyses is the potential role for mitochondrial genetics and
function in determining CVD susceptibility. The mitochondrion is directly involved in the
inter-relative aspects of caloric conversion to energy, thermogenic output, and oxidant
production, and has been previously shown in numerous studies to be associated with
cardiovascular dysfunction. Another aspect not commonly considered is that mitochondrial-
nuclear relationships were established millions of years ago and were likely refined during
prehistoric environmental selection events that today, are largely absent. By contrast,
contemporary risk factors that influence our susceptibility to a variety of age-related
diseases, including CVD were probably not part of the “equation” so to speak, that defined
the processes of mitochondrial – nuclear interaction. Consequently, these diseases which are
mostly post-reproductive are the by-product of our rapidly changing environment induced
by technology; an environment for which our eukaryotic system was not designed. In this
regard, the selective conditions that contributed to cellular functionality and evolution
should be given more consideration when interpreting and designing experimental data and
strategies. Finally, future studies that probe beyond epidemiologic/molecular epidemiologic
associations are required. These studies will serve as the initial steps for addressing the
provocative concept that contemporary human disease susceptibility is the result of selection
events for mitochondrial function that increased chances for prehistoric human survival and
reproductive success.
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Figure 1.
A) Fundamental aspects of mitochondrial function. Caloric energy (carbohydrates and fats)
are converted into molecular (ATP) and thermal (heat, energy lost during electron transport)
energy and oxidants (reactive oxygen species-ROS). While ATP is utilized for energy
requiring cell functions, mitochondrial generated ROS influence redox cell signaling
processes, including induction of nuclear gene expression (via redox sensitive transcription
factors) which contribute to cell function. Differences in mtDNA sequences are proposed to
influence mitochondrial oxygen utilization (economy) and ROS production that impact cell
function. The conversion of caloric energy into these respective components is dependent on
overall organelle economy (influenced by the mtDNA encoded subunits), degree of positive
or negative energy balance and uncoupling proteins. ATP and ROS are utilized for cellular
functions (energy requiring processes and redox signaling); mitochondrial ROS also serve as
a means for communication to the nuclear compartment and regulation of certain nuclear
genes. B) Carbohydrates are metabolized to glucose that is further converted to pyruvate
(glycolysis) in the cytoplasm and transported into the mitochondrion. Acetyl CoA is formed
from pyruvate via oxidative decarboxylation (pyruvate dehydrogenase), where it enters the
citric acid cycle that yields reducing equivalents (NADH and FADH2) for electron transport
located within the mitochondrial inner membrane. NADH is oxidized at complex I
(NADH:Coenzyme Q oxidoreductase or NADH dehydrogenase) of the transport chain while
FADH is oxidized at complex II (Succinate:Coenzyme Q oxidoreductase or Succinate
dehydrogenase, part of the citric acid cycle). Electrons are next passed to Coenzyme Q (Q).
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Complex III (Coenzyme Q:Cytochrome c oxidoreductase or Cytochrome bc1 complex)
passes electrons from reduced coenzyme Q (Q) to cytochrome c (c), a peripheral membrane
protein that alternately binds cytochrome c1 (of complex III) and to complex IV
(Cytochrome c oxidase). Complex IV catalyzes the one electron oxidations of four
consecutive reduced cytochrome c molecules and the concomitant four electron reduction of
one O2 molecule to yield H2O. During electron transport, protons are pumped across the
inner membrane from the matrix into the intermembrane space, creating an electrochemical
gradient. The free energy resulting from this gradient is utilized to condense a molecule of
inorganic phosphate (Pi) with ADP at complex V (ATP synthase or F1F0 – ATPase) to yield
ATP. ATP is subsequently transported out of the matrix by the inner membrane bound
adenine nucleotide translocase (ANT) with the exchange of ADP. Fats bypass glycolytic
metabolism in the cytoplasm and undergo β-oxidation in the mitochondrion to yield acetyl
CoA (plus NADH and FADH2 per cycle of oxidation), which enters the citric acid cycle to
generate substrates for electron transport. During electron transport, superoxide (O2˙−) is
generated when electrons are added to O2; O2˙− is converted to hydrogen peroxide (H2O2)
in the mitochondrion by manganese superoxide dismutase (MnSOD or SOD2). H2O2 (which
is freely diffusible) can participate in cell signaling processes (H2O2 levels are regulated by
a number of antioxidants within the mitochondrion and the cell, not illustrated).
Alternatively, O2˙− reacts with nitric oxide (˙NO) to form peroxynitrite (ONOO−), an
oxidant, which in the presence of carbon dioxide (CO2) forms nitrosoperoxycarbonate
(ONOOCO2

−), a nitrating agent.
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Figure 2.
A) Sequence organization of the mammalian mtDNA. Colors indicate mtDNA encoded
subunits for respective electron transport complexes, ATP synthase, tRNAs and rRNAs.
ATPase 6 and 8 subunits overlap in sequence. The origins of heavy strand (guanosine rich)
and light strand DNA synthesis are indicated by OH and OL, respectively. Transcriptional
promoters for the heavy and light strands are represented by PH and PL, respectively. The D-
loop (displacement loop) is a ~1 kb non-coding region within the mtDNA. The mtDNA
genetic code is highly degenerate, so that only 22 are required for protein translation. When
uridine is in the wobble position, all four members of a codon family can be read by one
mitochondrial tRNA, whereas pairs of codons can be read when guanine or uridine is in the
wobble position. Hence, 8 mitochondrial tRNAs recognize four member codon families,
while 14 tRNAs recognize codon pairs. B) Table presenting the number of mtDNA and
nDNA encoded subunits for each electron transport complex (I–IV) and ATP synthase (V)
in the mammalian mtDNA. C) Table summarizing the known (or putative) function of each
of the mtDNA encoded genes.
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Figure 3.
Table summarizing the anticipated characteristics of cells/tissues/individuals harboring
mitochondria having higher or lower economy in regard to cellular-tissue oxidant generation
and individual propensity for weight gain under positive or negative energy balance. An
asterisk (*) indicates relative to higher economy, however under conditions of persistent
positive energy balance, even cells/tissues/individuals with decreased (lower) mitochondrial
economy will exhibit the same features as those with higher economy due to chronic stress.
It is predicted that these features will be related to specific mtDNA sequences, or shared
mutations between mtDNA haplotypes (representing mtDNA haplogroups).
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