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Cryptococcal meningitis is a disease that
afflicts approximately 1 million human
immunodeficiency virus (HIV)–infected
individuals annually, with >600 000
deaths, predominantly in the developing
world, where antiretroviral therapy is less
available [1]. Therapy of cryptococcal
meningitis has been poorly effective in
resource-limited settings, where 10-week
mortality rates have averaged 25%–30%,
even when treatment conditions were opti-
mized under experimental protocols [2, 3],
and >50% in routine practice, where
access to diagnostic tests and medications
is difficult [4]. A rational approach to im-
proving these outcomes has sought to
understand microbial and host factors
that distinguish favorable from adverse
outcomes. Recent work on the microbial
side of the equation has successfully
demonstrated that rates of fungal clear-
ance from the cerebrospinal fluid are an
important prognostic marker in crypto-
coccal meningitis [5, 6]. However, under-
standing host factors associated with
successful outcomes has been more

problematic. The majority of our under-
standing of the host response to Crypto-
coccus neoformans comes from animal
data [7]. Such studies have laid important
foundations, such as the role of T-helper
1 (Th1)–type T cell responses [8, 9] and
the associated cytokines interferon γ

(IFN-γ) and tumor necrosis factor α

(TNF-α) [10] in the successful activation
of macrophages and microbial killing. In
contrast, T-helper 2 (Th2) mechanisms,
associated with interleukin 4 and inter-
leukin 10, are detrimental [11]. However,
translation of these immunological prin-
cipals into efficacious treatments for
human cryptococcal meningitis infec-
tions has been difficult, as exemplified by
the lack of mortality benefit to immuno-
therapy with the “protective” cytokine in-
terferon gamma [12], as well as by the
“Cryptococcal Optimal ART Timing”
(COAT) study, which sought to improve
effective immune responses to the fungus
but was stopped prematurely because of
excess deaths in the early antiviral treat-
ment arm [13]. The outcome of the
COAT study was particularly vexing as
recent studies have shown benefit of early
antiretroviral therapy in other opportunis-
tic infections, including pneumocystis
pneumonia [14] and tuberculosis [15–17].
Thus, to explore the human host re-

sponse in HIV-associated cryptococcal
meningitis, Jarvis et al [18], as reported
in this issue of the Journal, undertook a

detailed study of cryptococcal-specific
peripheral CD4 T-cell responses and se-
lected cerebrospinal fluid cytokines in 44
HIV-infected patients with cryptococcal
meningitis. Samples were collected at
baseline and during follow-up from pa-
tients in the trial of interferon gamma
therapy, cited above, that was performed
in Cape Town, South Africa, between
2007 and 2010 [12]. A partially purified
mixture of T-cell–activating cryptococcal
mannoproteins was used as the stimulant
of peripheral blood cells. Cryptococ-
cal mannoproteins are extensively O-
mannosylated and facilitate recognition
by mannose receptors on antigen-pre-
senting cells, particularly dendritic cells,
resulting in efficient antigen uptake
and presentation to T cells [19]. These
C. neoformans mannoprotein–induced
responses were compared with responses
to Mycobacterium tuberculosis or cyto-
megalovirus (CMV), using specific anti-
gens, since over half of the patients were
either being treated for tuberculosis or
had a history of tuberculosis; CMV expo-
sure is widespread among individuals in
Africa, as it is in most regions of the
world [20].

These studies demonstrated that
C. neoformans–specific CD4 T-cell res-
ponses were characterized by the produc-
tion of CCL3/macrophage inflammatory
protein 1α (MIP-1α), IFN-γ, and TNF-α.
Interestingly, using a newly developed
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statistical platform for comparing mea-
surement distributions among groups of
multicomponent data samples [21], the
investigators showed an overall difference
in patterns of T-cell response between
patients who survived 2 weeks versus
those who died during this period. Al-
though it was difficult to attribute a spe-
cific cytokine response to these patterns
because of insufficient statistical power, a
trend appeared to separate outcomes into
2 groups, one with high IFN-γ/TNF-α
production, better survival, and lower
fungal burdens and another with higher
MIP-1α responses and poor outcomes.
Such a relationship is biologically plausi-
ble, as IFN-γ and TNF-α are protective
against cryptococcal infections in mice
and could also have been responsible
for increased CSF cell counts in the sur-
viving arm, owing to more effective cell
recruitment. This is an important hy-
pothesis to develop for future validation,
as it may help to target subgroups more
precisely for immune-based therapies.
For example, there was also a positive
trend in response to adjuvant interferon
gamma therapy in patients who had low
production of IFN-γ/TNF-α by CD4 T
cells versus those expressing high levels
of these protective cytokines.

Despite a lack of statistical power in
comparing such extensive multiple com-
parisons by means of modestly sized
cohorts, it is important to report such
discovery studies prior to their complete
validation because they can help generate
hypotheses. They can also help refine
future studies and conserve valuable re-
sources that might otherwise have been
used in less promising investigations. For
example, future studies assessing immuno-
logical modifiers may profit from inclusion
of a select subgroup of markers from these
studies that may help to both validate the
markers and provide secondary end points
for outcome analysis. The challenge, of
course, is to translate such sophisticated
immunologic analyses into resource-ap-
propriate allocation algorithms.

An additional benefit of such studies
is the generation of models of infection

that reflect conditions in the human host,
compared with those derived from mouse
studies alone. Mouse models have limita-
tions; for example, mice elicit a significant
pulmonary neutrophilic response to
C. neoformans, and some mouse strains,
such as C57BL/6J, produce prominent
pulmonary eosinophilia, neither of which
is typical of human infections, which
tend to elicit histiocytic responses with a
spectrum of giant cell formation, de-
pending on the degree of retained cellular
immunity in the infected patient [22, 23].
Human data concerning the host re-
sponse to C. neoformans is not as exten-
sive. Epidemiologic data have defined a
role in HIV-infected individuals for
CD4 T-cell depletion in the acquisition
of cryptococcal meningitis, and ex vivo
stimulation studies of cells isolated from
these individuals have demonstrated
reduced C. neoformans killing by macro-
phages [24] with retained stimulation
of β-chemokines such as MIP-1α/CCL3
[25]. Thus, the present, more-detailed
studies provide additional data regarding
human HIV-associated cryptococcal
meningitis and suggest differences with
data from prior mouse studies. For
example, in the present study, higher
mannoprotein-dependent MIP-1α/CCL3
CD4 T-cell responses were prominent
among the group with higher mortality
and higher fungal burdens. In mice,
MIP-1α/CCL3 is protective, and deple-
tion results in reduced cellular recruit-
ment and higher fungal burdens [26]
with markedly reduced survival [27].
This difference may be due to species-
related responses or to confounding
effects from coinfections in the human
cohort. MIP-1α has been implicated in
the induction of lymphotropic HIV that
typically accompanies late-stage infec-
tions [25], but viral loads were equivalent
between the 2 outcome groups. Antibod-
ies to C. neoformans were not measured
in the 2 groups, which have been shown
to have a variety of protective and non-
protective effects in cryptococcal menin-
gitis [28] and have been associated with
β-chemokine induction, including MIP-

1α /CCL3 [29, 30]. A surprising finding
was the lack of an observable Th2 bias in
patients with poor clinical responses,
which was anticipated by mouse studies
showing that poor outcomes were associ-
ated with an elevated Th2 response. The
lack of a Th2 bias in human T-cell re-
sponses could have been due either to a
Th1-bias in the mannoprotein stimulant
[19] or to an overall Th1 bias in the
human response to C. neoformans infec-
tions versus that of the mouse. While
such studies will clearly require further
validation of T-cell response profiles and
specific cytokines, the study by Jarvis
et al provides an important first look into
detailed immunophenotyping of this im-
portant disease. As Wolff suggested in an
editorial about clinical immunology
almost 40 years ago in this journal [31],
“major challenges await the clinical in-
vestigator who can turn his attention to
the problems of developing countries.”
Despite such challenges, these efforts
offer the promise to push back the global
burden of infectious diseases.
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