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TFIIF is considered to be a general 
transcription factor, based on the 

fact that it is essential for assembly of 
RNA polymerase II preinitiation com-
plexes on fully double-stranded tem-
plates in vitro. Existing models assign 
various tasks to TFIIF during pre-initi-
ation complex formation and transcript 
initiation. Recent results do not support 
all aspects of those models but they do 
emphasize the significance of the interac-
tion of TFIIF and TFIIB. Other recent 
findings raise the possibility that a frac-
tion of RNA polymerase II transcription 
complex assembly proceeds through a 
pathway that is independent of TFIIF.

The Role of TFIIF within the  
Pre-Initiation Complex

It has long been appreciated that RNA 
polymerase II (RNP II) requires numerous 
additional factors to recognize promoters 
and initiate RNA synthesis.1-3 The canoni-
cal minimal set of general transcription 
factors (GTFs) for pre-initiation complex 
(PIC) assembly at promoters containing a 
TATA box includes the TATA box binding 
protein TBP, TFIIB, TFIIF, TFIIE and 
TFIIH. The assembly pathway begins with 
binding of TBP and TFIIB to the tem-
plate, followed by loading of RNP II along 
with TFIIF. The TFIIE and TFIIH factors 
complete the PIC,1-3 which can convert to 
an open complex through the XPB helicase 
subunit of TFIIH.4,5 Many reports link 
TFIIB to transcript initiation.6-9 TFIIF is 
also thought to be important for the initia-
tion step itself.10-12 The role of mammalian 
TFIIF in initiation is emphasized by exper-
iments employing pre-melted (bubble) 
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templates. Such templates support tran-
scription with TBP and TFIIB alone but 
RNA synthesis is very strongly stimulated 
by TFIIF.13,14 Results using yeast RNP II 
and GTFs do not fully agree with findings 
in the mammalian system;15 this point will 
be discussed further below.

Structural studies of yeast TFIIB-RNP 
II complexes show that a segment of TFIIB 
reaches into the active center of the poly-
merase, consistent with the importance of 
TFIIB in transcript initiation.16,17 TFIIF 
was originally identified as a factor with 
very high affinity for RNP II.18 Recent 
structural results place TFIIF and TFIIB 
adjacent to one another within the yeast 
PIC, bound to the Rpb2 subunit of RNP 
II.15,19,20 This agrees with studies in yeast 
showing that TFIIF can influence start 
site selection through interactions with 
TFIIB.12,21-24 The presence of TFIIF within 
a yeast open complex significantly alters the 
location of TFIIB within that complex.15 It 
has also been reported that TFIIF causes 
human RNP II to assume a particular 
orientation in complexes with Mediator.25 
Thus, TFIIF may provide an important 
connection between the core transcrip-
tional machinery and regulatory compo-
nents. Metazoan TFIIF can also strongly 
stimulate transcript elongation,26-29 a prop-
erty which is unique among the GTFs.

The Use of Phosphorylated TFIIF 
Provides Surprising Insights into 

TFIIF Function and the  
Connection between TFIIF  

and TFIIB

TFIIF assembled from its recombinant 
RAP74 and RAP30 subunits is fully 
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which P-IIF was used, in comparison with 
otherwise-identical reactions containing 
U-IIF.38 Thus, TFIIF’s apparent role as 
an initiation factor in studies with bubble 
templates may reflect the importance of 
TFIIF in the recruitment and retention of 
TFIIB.

Is the Functional Relationship 
between TFIIF and TFIIB the Same 

for All Eukaryotes?

A recent report indicates that there are 
some differences in the functional rela-
tionship of TFIIF and TFIIB in yeast 
and mammalian PICs. Fishburn and 
Hahn15 studied transcription with puri-
fied yeast RNP II and GTFs using a 
series of templates with 12 bp denatured 
regions located from 30 to 80 bp down-
stream of the TATA element of the HIS4 
promoter. Their findings varied with 
choice of location for the bubble, but it is 
particularly instructive to compare their 
results with a bubble 30 bp downstream 
of TATA (which is the normal TATA to 
+1 distance for a mammalian promoter) 
vs. a bubble 80 bp downstream of TATA 
(which encompasses a normal start site 
for HIS4). On the +80 bubble template, 
a strong transcription signal was obtained 
with TBP and TFIIB alone and transcrip-
tion was only modestly stimulated by 
TFIIF.15 While there is no initiation on 
double-stranded HIS4 templates 30 bp 
downstream of TATA with the yeast tran-
scriptional machinery, the +30 bubble was 
transcribed using TBP and TFIIB alone. 
However, the addition of TFIIF actually 
inhibited transcription on the +30 bubble 
template.15 This last result is in strong 
contrast to findings with mammalian 
RNP II and GTFs on bubble templates, 
where transcription in the presence of 
TBP and TFIIB is very strongly stimu-
lated by TFIIF.13,14 This difference may 
be based in the different architectures of 
yeast and mammalian TATA box promot-
ers. Initiation at mammalian TATA box 
promoters only occurs in a narrow range 
of 34 to 29 bp downstream of the TATA 
element (counting from the upstream T of 
TATA—see ref. 39) while in yeast initia-
tion typically occurs farther downstream 
and with a much broader range of permis-
sible distances from TATA (from 40 to 

(along with TBP) prior to the loading of 
RNP II and TFIIF.1,2

The reduced recruitment of TFIIB 
on the 8g2D promoter in the presence of 
P-IIF suggested the possibility that P-IIF 
itself might not load effectively on that 
promoter. When we tested this idea, the 
results were quite surprising: we found 
that regardless of the spacing of the 
TATA box and transcription start, PICs 
assembled with P-IIF retain no P-IIF after 
rinsing.37 It should be stressed that in our 
system, PIC assembly is absolutely depen-
dent on TFIIF in some form. However, 
when P-IIF is used to support assembly, 
P-IIF does not remain stably associated 
with the resulting complexes. We found 
no difference in the amount of RNA syn-
thesis obtained with PICs which retained 
TFIIF (originally assembled with U-IIF 
and rinsed) or which lacked TFIIF (origi-
nally assembled with P-IIF and rinsed). 
This was true when we measured tran-
scription at initiation itself (in first bond 
formation assays) or at promoter escape.37 
Thus, TFIIF is not required for initiation 
or for promoter clearance by mammalian 
RNP II.

It is important to note that earlier 
findings in both mammalian and yeast 
systems11,12 suggested a major role for 
TFIIF at initiation, which would appear 
to contradict our recent observations. One 
key point in reconciling our study and 
the earlier work is the difference in the 
type of template employed. The previous 
studies used bubble templates in order 
to study transcription with and without 
TFIIF (recall that TFIIF is required for 
any RNA synthesis by RNP II with con-
ventional double-stranded templates). As 
noted, PICs assembled with P-IIF do not 
retain TFIIF. We showed that complexes 
lacking TFIIF lose TFIIB at open complex 
formation.37 In contrast, when transcrip-
tion initiates from PICs made with U-IIF, 
TFIIB is retained until +12 to +13.37 
Thus, if TFIIB is essential for initiation 
and TFIIF is critical to retain TFIIB once 
the template is opened, TFIIF would be 
expected to be essential for initiation with 
pre-melted templates. In agreement with 
this prediction (and in contrast to our 
results with double-stranded templates37)
we obtained much less RNA synthesis in 
bubble template transcription reactions in 

functional in PIC assembly and stimula-
tion of transcript elongation in vitro.10 
However, TFIIF purified from mamma-
lian cells can be extensively phosphory-
lated.18,30-34 There is no consensus on the 
function of these modifications.33-35 At 
least some of the phosphorylation seen 
on TFIIF purified from nuclear extracts 
appears to result from casein kinase 2 
(CK2),34 consistent with the fact that 
among the GTFs, TFIIF is a preferred 
CK2 substrate in vitro.35

Our studies on the effects of CK2 
phosphorylation of human TFIIF have 
demonstrated that this modification is a 
useful tool to probe TFIIF’s various func-
tions.36-38 To facilitate discussion, I will 
refer to CK2-phosphorylated TFIIF as 
P-IIF and unmodified TFIIF as U-IIF. 
P-IIF remains competent to support PIC 
assembly and binds as well to free RNP II 
as U-IIF does.36 However, P-IIF does not 
bind to RNP II elongation complexes and 
it has minimal effect on elongation rates.36 
The failure of P-IIF to bind to elongation 
complexes (without loss of affinity for free 
RNP II) raises interesting questions about 
how TFIIF is actually oriented in the 
elongation complex. Models of the yeast 
RNP II-TFIIF interaction in both the PIC 
and open complex15,19,20 do not suggest an 
obvious basis for this difference, but it is 
important to note that a significant por-
tion of the RAP74 subunit of TFIIF can-
not be localized in those models.

Although P-IIF does support PIC for-
mation, a closer examination revealed sev-
eral unanticipated observations. We found 
that P-IIF and U-IIF support equal levels 
of transcription from a TATA box pro-
moter with optimal spacing.37 However, 
on the 8g2D template, where the TATA to 
+1 spacing is shorter than optimal,39 P-IIF 
supports only half as much transcription 
compared with U-IIF.37 The basis for this 
difference apparently resides in differing 
levels of TFIIB: PICs assembled on the 
8g2D template with P-IIF contain about 
half as much TFIIB in comparison with 
complexes assembled with U-IIF.37 Thus, 
TFIIF is important in either recruiting or 
retaining TFIIB as a function of promoter 
architecture. This is consistent with recent 
structural work15,19,20 but this result is not 
predicted by the conventional model, in 
which TFIIB is recruited to the template 
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very small number of promoters with well-
defined consensus elements, principally 
the TATA box. However, the large major-
ity of mammalian RNP II promoters do 
not have TATA sequences and a substan-
tial fraction have no known promoter 
elements.39,46,47 Even more unsettling is 
the fact that most of these non-consensus 
promoters support bidirectional initia-
tion of transcription (reviewed in ref. 48). 
A major challenge for the future will 
be determining the applicability of the 
known set of GTFs and the current mod-
els of PIC assembly to the most common 
class of RNP II promoters.
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