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Abstract
Cancer is not merely a cell-intrinsic genetic disease, but also the result of complex cell-extrinsic
interactions with host components, including immune cells. For example, effector T lymphocytes
and NK cells are thought to participate in an immunosurveillance process which eliminates
neoplastic cells, whereas regulatory T lymphocytes and some myeloid cells, including
macrophages, can create a milieu that prevents anti-tumor activity, supports tumor growth and
reduces survival of the host. Increasing evidence supports the notion that carcinoma cells
communicate with immune cells directly, both within and away from the tumor stroma, and that
this process fosters suppression of immunosurveillance and promotes tumor outgrowth. An
important mode of communication between carcinoma cells and immune cells may involve tumor-
derived microvesicles (tMVs), also known as exosomes, ectosomes, or microparticles. These
microvesicles carry lipids, proteins, mRNAs and miRNAs, and travel short or long distances to
deliver undegraded and undiluted material to other cells. Here we consider the capacity of tMVs to
control tumor-associated immune responses, and highlight the known and unknown tMV’s actions
in vivo. We also discuss why microvesicles may play a role in cancer diagnostics and prognostics,
and how they could be harnessed for anti-cancer therapy.

Background
A mode of communication between cells in the body is thought to involve extracellular
microvesicles (MVs), which incorporate donor cell-derived material (membrane-bound and
intracellular) and can be delivered to acceptor/recipient cells. This process, when altered or
amplified, is thought to profoundly affect cell biological activities and, consequently, foster
pathophysiological processes. Donor and recipient cells may reside in the same
microenvironment, in which case MVs regulate local cell-to-cell communication. MVs may
also be distributed systemically, for example via lymph and blood vessels (1), and operate as
long-range communication signals between organs.

At present, pressing questions include: i) do tMVs target specific components of their
immediate micro-environments and do some of these interactions control tumor
progression?; ii) which distant organs come in contact with tMVs?; iii) what defines the
‘specificity’, if any, of tMVs’ recipient cells in vivo?; iv) do tMVs control host cells that are
away from the tumor stroma ? v) what is the relative impact of tMVs on the host response
when compared to all other modes of tumor cell/host cell communication?; and vi) can we
exploit the accumulating knowledge on tMV biology to identify new vantage points for anti-
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cancer therapy? Some of these questions are being investigated experimentally and are
discussed thereafter (see also Fig 1).

MV biogenesis
Extracellular MVs are cell-derived particles that contain a cytosol and are surrounded by a
lipid bilayer. Donor cells and their MVs always share the same membrane orientation,
though MVs can have different origins (endosomal versus plasma membranes) and vary
largely in size (<100nm and >1um). Exosomes (2, 3), typically <100nm in diameter, are
MVs that form inside endosomes following intraluminal budding of endosomal membranes.
This process creates multi-vesicular bodies that must fuse with the cell surface to secrete
their cargo in the extracellular space. Ectosomes (4), typically 100nm–1μm in diameter, are
MVs that bud directly from the plasma membrane into the extracellular space. Other MVs
have been characterized; they include exosome-like vesicles (5) (<100 nm), which may also
bud from the plasma membrane (6), and apoptotic bodies which are produced following cell
death (7).

Exosome biogenesis involves the Rab family of small GTPases, which recruit specific
effector proteins onto endosomal membranes and drive vesicle docking and fusion (8).
Instead, ectosome development depends on arrestins, which promote endocytosis of plasma
membrane receptors (9). However, production of both ectosomes (9) and exosomes (10) is
thought to require ESCRT (endosomal sorting complex required for transport), a machinery
known to be required for sorting of cargo proteins into internal vesicles of multivesicular
bodies. There is a stricking convergence between budding of enveloped viruses and MV
biogenesis (11).

MV cargo is made of proteins, lipids, mRNAs and microRNAs. The mechanisms that
control material inclusion (or exclusion) in MVs remain largely unknown, yet it is well
established that different MVs can carry extensively different cargo repertoires.
Consequently, MV preparations are often characterized based on the presence (or absence)
of molecular pathway components that generate MVs (e.g., Rab27, Tsg101 and Alix) (2),
factors produced by MV producing cells (e.g., MHC molecules, CD61 and CD14) (12),
proteins involved in target cell selection (e.g., tetraspanins, integrins and selectins) (13), and
molecules associated with MVs’ biological significance (e.g., Tissue Factor, matrix
metalloproteinases, microRNAs) (14).

MV production and release require energy input, RNA synthesis and protein translation
(15). The process can be enhanced by exogenous factors including ATP (16), phorbol ester-
activated protein kinase C (17), low pH (18), and hypoxic conditions (19), which are all
commonly altered in the stroma of growing tumors. However, it remains to be determined
whether exosomes and ectosomes have either distinct or overlapping effects on host cell
components and tumor development.

tMVs’ biological relevance: in vitro findings
MV transfer into, and impact on, recipient cells has been mostly analyzed in co-culture
systems. These studies have shown that MVs can engage specific receptor/ligand
interactions with recipient cells (20–23). MVs can further transfer cell surface receptors (24)
and deliver intracellular proteins (25), mRNAs, miRNAs (14, 26, 27) and reporter genes (28,
29) into cells. MVs are thought to change the recipient cells’ makeup and thus to influence
cellular functions and fate.

The motivation to address whether tMVs affect the immune system comes from
experimental and clinical evidence that neoplastic diseases control various immune cell
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types (30). Evidence exists that effector T lymphocytes and NK cells can exhibit anti-tumor
activity in the tumor stroma; that the presence of tumor-infiltrated T cells increase patients’
survival (31); and that regulatory T lymphocytes (Tregs) (32) and myeloid cells, including
macrophages (33), however, can generate an immunosuppressive milieu that counteracts
anti-tumor immunity, promotes tumor progression and decreases patients’ survival. The
precise mechanisms of interactions that occur between tumor and immune cells remain
largely unknown; nevertheless, recent data suggest that tMVs are involved in promoting
tumor outgrowth by controlling the fate of all the immune cell types mentioned above. MVs
may induce apoptosis of effector T cells (34–39); switch off NK cell mediated cytotoxicity
(40, 41); activate immunosuppressive functions within myeloid cells (21, 42–44); impair
dendritic cell production (45); and induce Treg responses (46, 47). Local
immunosuppression may also be promoted by extracellular adenosine, which can be
released from MVs (48).

In addition to their impact on immune cells MVs may promote tumor outgrowth through
other mechanisms, which include degradation of extracellular matrix components (49),
acceleration of tumor angiogenesis (29, 50), modulation of stromal cell differentiation (51),
transfer of oncogenic activity to other cancer cells (52) and resistance to therapy via
sequestration and expulsion of drugs out of tumor cells (53, 54). However, conclusions
derived from in vitro data alone should be considered with some caution because contacts
between MVs and recipient cells in these studies were artificially enforced and the amount
of MVs used in vitro may be higher than that found in vivo (55). The fate of recipient cells
in vivo may also be dictated by local factors (anatomical features, pH, oxygenation, forces
of fluid flow, various cell types and cytokines), which often cannot be reproduced fully in
vitro (56).

tMVs’ biological relevance: analysis in context
Human and mouse carcinomas can produce elevated amounts of MVs. At least some of
these vesicles enter circulation (57) and may have biological effects far away from their
production sites. Remarkably, Peinado et al. recently reported that mouse bone marrow
(BM), which was pre-conditioned with tMVs derived from highly metastatic B16-F10
melanoma cells and then used to reconstitute lethally irradiated subjets, not only promoted
tumor infiltration by BM cells, but also accelerated primary and metastatic cancer growth
(58). Adoptive tMV transfer experiments further indicated that tMVs could increase
vascular permeability at pre-metastatic sites and expand BM progenitors expressing c-Kit,
Tie2 and Met. The phenotype of these cells may be functionally relevant because Tie2 can
promote tumor angiogenic activity (59), whereas MET is associated with tumor cell invasion
(60) and BM cell mobilization (61). Co-culture of tMVs with recipient cells suggested that
MET was transferred from tumor cells to bone marrow progenitors via exosomes. Also,
reduction of tMV production in vivo, through inhibition of Rab27a in tumor cells, reduced
BM cell recruitment to tumors and delayed tumor outgrowth.

This in vivo investigation suggests that tMVs can enhance tumor outgrowth in mice by
programming bone marrow progenitor cells with tumor-promoting functions. Nevertheless,
the capacity of tMVs to educate BM cells permanently will require further study. It is
formally possible that the BM pre-conditioning protocol employed in this study did only
skew the hematopoietic repertoire toward the myeloid lineage, which is a process that favors
primary and metastatic cancer growth (62, 63). It will also be interesting to define whether
tMVs communicate with BM cells through horizontal transfer of information or more
simply by surface binding. Finally, Rab27a knockdown–mediated inhibition of tMV
production also reduced secretion of soluble factors that were previously shown to elicit
tumor-promoting host responses (e.g. Ospeopontin (64), PlGF-2 (65, 66) and PDGF-AA

Pucci and Pittet Page 3

Clin Cancer Res. Author manuscript; available in PMC 2014 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(67)). In general, identifying the relative impact of tMVs and soluble factors (68) as long
range signals between tumor cells and BM progenitor cells will require more examination.

A role for tMVs in regulating immune suppression has also been proposed by Chalmin et al.
using in vitro and in vivo approaches (21). In this study, tMVs isolated from different mouse
cell lines were shown to enhance the immunosuppressive activity of myeloid cells. The
process did not involve horizontal material transfer but instead required direct surface
receptor binding between HSP72 on tMVs and TLR2 on myeloid cells. Inhibition of HSP72
expression in tMVs reduced the myeloid cells’ capacity to foster metastatic progression.
Injections of dimethyl amiloride—used to interfere with tMV secretion in vivo—also
delayed tumor outgrowth and further enhanced the efficacy of cyclophosphamide therapy in
various mouse models (21).

The authors went on to measure the effects of amiloride (an analogue of dimethyl amiloride
that is used for the treatment of edema and high blood pressure) in patients suffering from
colorectal invasive cancer. Myloid cells prepared from the patients’ peripheral blood showed
that amiloride treatment decreased suppressor activity (21). These data suggest that
interfering with tMV secretion may serve to enhance the efficacy of chemotherapies.

The same study identified that tMV-myeloid cell interaction controlled STAT3 activation
and downstream suppressive activities within the sensitized cells. tMVs did not control
myeloid cell expansion; this process was instead selectively controlled by tumor-derived
soluble factors. Thus MVs and soluble factors may differentially regulate immune cell
function and proliferation during tumor progression. Nevertheless adoptive tMV transfer
was shown to induce myeloid cell accumulation in the spleen in another study (45),
suggesting that tMV’s actions may be context-dependent.

It should also be noted that experimental approaches used for in vivo studies have
limitations. First, the capacity to interfere selectively with tMV production and/or transfer in
vivo is an unmet need. Diannexin (50), neutral sphingomyelinase 2 inhibitors (69), the H+/
Na+ and Na+/Ca2+ channel inhibitor dimethyl amiloride (21), the K+/H+ ATPase inhibitor
Omeprazole (70), and the Na(+)/K(+)-ATPase inhibitor Ouabain (71) have been used to
control MV biogenesis or binding; however, these agents may also affect non-neoplastic
cells. Another challenge imposed by in vivo studies is related to difficulties in achieving
selective modulation of tMV production or transfer without compromising tumor cell
viability. RNAi technology may be used to selectively target tMVs and thus represents a
potentially useful tool to establish causal relationships between tMVs and host responses,
when properly employed (72). This type of approach should benefit from a better
understanding of the molecular players involved in MV biogenesis.

Second, fluorescently labeled tMVs used in adoptive transfer experiments may not fully
recapitulate the tropism and impact of endogenous tMVs. Limitations include the existence
of various tMV isolation protocols that may enrich vesicles with distinct functions (73); the
necessity to transfer MVs as a bolus, which is distinct from uninterrupted tMV production in
vivo; the fact that MV concentrations observed immediately after transfer may be non-
physiological; and the choice of the MV labeling agent. Reagents commonly used to mark
MVs are highly lipophilic membrane dyes such as PKH26 (45, 58); these molecules tend to
aggregate in micelles, which co-purify with MVs by membrane filtration (100kDa cut off)
and ultracentrifugation (unpublished observations) and can contaminate MV preparations.
Thus, proper controls should be performed when using membrane dyes in vivo. MV
marking with membrane-bound fluorescent proteins (e.g., CD63-EGFP (57)), rather than
membrane dyes, may allow one to prevent the contamination of MV preparations with
unbound fluorescent material, even though the fusion protein may not be present in all MV
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types (74). Finally, detection of membrane dyes on recipient cells, either by conventional
flow cytometry or immunofluorescence, should not be used to prove transfer of intracellular
molecules because MVs may only bind the surface of recipient cells (75). Discrimination
between MV surface binding and fusion requires specific experimental settings (76). New
technological advances in flow cytometry allow real time imaging at subcellular resolution
and may help to discriminate between these possibilities (77). As the details of MV
biogenesis become unravelled, new genetic approaches may permit more selective targeting
of MV cargo and/or marking of distinct MV types.

Clinical-Translational advances
Role in diagnostics?

Notwithstanding their capacity to control the host response, tMVs may also be relevant for
screening asymptomatic patients, diagnosing and profiling disease, and predicting treatment
efficacy. At least, initial studies suggest that cancer patients may carry unique circulating
MV signatures that reflect the genetic status of the tumor (78). One analysis reported
significantly increased exosome levels in lung adenocarcinoma patients when compared to
control individuals (79). Another study concluded that circulating tumor-derived (EpCAM+)
exosomes in ovarian cancer patients could potentially be used as surrogate diagnostic
markers for biopsy profiling (80). Also, some glioblastoma patients were identified with
detectable amounts of circulating MVs incorporating a tumor-specific mRNA variant
(EGFRvIII) (29), and thus could be diagnosed noninvasively. Interestingly, EGFRvIII
mRNA was not detected in serum samples drawn two weeks after resection of the tumor,
consistent with this tumor being the source of MVs (29). The diagnostic value of MVs has
been investigated in patients with other cancer types, including bladder cancer (81), prostate
cancer (82), and colorectal cancer (83). Circulating tumor cells (CTCs) are other relevant
candidates for cancer diagnostics, though their low abundance—typically less than one per
ml of blood (84)—may render their analysis more challenging.

In some cases MVs may have a prognostic value. A retrospective analysis of stage IV
melanoma patients suggested a decreased mortality for those patients who contained protein-
poor exosomes in circulation (58). More recently, an analytical technology was reported for
MV quantification and protein profiling directly from blood samples (75). The approach
consists to introduce MVs onto a portable microfluidic chip for labeling with target-specific
magnetic nanoparticles and detection by a miniaturized nuclear magnetic resonance system.
The technology was used to screen MVs from glioblastoma patients and thereby predicted
which patients would clinically respond to treatment with temozolomide (75).
Multiparameter molecular evaluation of MVs should become instrumental in clinical care.
Longitudinal analysis makes it possible to monitor tumor molecular responses to therapeutic
agents, to determine the emergence of drug resistant tumor variants, and to rapidly
phenotype the molecular profile of the emerging cells for adjustment of targeted therapy.

Role in therapy?
More than 10 years ago, MVs isolated from tumor-peptides pulsed, in vitro generated
dendritic cells were shown to elicit a tumor-specific cytotoxic T cell response that eradicated
established, transplanted tumors in mice (12). The same group has reported that vaccination
with dendritic cell-derived MVs is a safe approach for cancer patients (85) and new
combinations are being tested in clinical trials. In vitro manipulation of patient-derived
tumor cells could also be employed to load genetically-encoded adjuvants into tMVs, which
may then be used for reinfusion into the patient as an anti-tumor vaccine. The presence of
bacterial adjuvants, such as flagellin (86), may improve vaccination efficacy. MV removal
from the circulation of cancer patients has also been proposed as a therapeutic intervention

Pucci and Pittet Page 5

Clin Cancer Res. Author manuscript; available in PMC 2014 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(87). Finally, injection of MV biogenesis inhibitors, before or concomitantly with cytotoxic
drugs, may increase, at least temporarily, the drug’s concentration inside tumor cells.
Limiting tMV secretion may also serve to improve anti-tumor immune activity.

Conclusions
Several studies suggest that tMVs control tumor-associated immune responses. The reported
presence of circulating tMVs in both humans and mouse models also hints toward an
endocrine function for these vesicles, although additional investigation is needed to define
their in vivo contributions more precisely. tMVs represent interesting vantage points not
only for uncovering mechanisms of tumor-host cells interactions but also for developing less
invasive diagnostic and prognostic clinical readouts.
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Fig. 1.
A sketch depicting MV tropism in vivo in cancer-bearing hosts. 1: Both tumor and host cells
produce MVs that may affect other cell types locally, either by surface binding (MVs acting
as ligand clustering agents) and/or by transferring bioactive material to target cells
(horizontal transfer of proteins, RNAs and lipids). MVs from host cells may provide trophic
functions by nurturing tumor cells; 2: tMVs can be drained into lymphatics and shape anti-
tumor immune responses; 3: tMVs can circulate to distant organs like bone marrow and alter
hematopoiesis. Blood MVs can be harnessed as surrogate tumor cells for diagnostic/
prognostic purposes.
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