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Summary
Cytotoxic chemotherapy for acute myeloid leukemia (AML) usually produces only temporary
remissions, at the cost of significant toxicity and risk for death. One fundamental reason for
treatment failure is that it is designed to activate apoptosis genes (eg., TP53) that may be
unavailable because of mutation or deletion. Unlike deletion of apoptosis genes, genes that
mediate cell cycle exit by differentiation are present in myelodysplastic syndrome (MDS) and
AML cells but are epigenetically repressed: MDS/AML cells express high levels of key lineage-
specifying transcription factors (TF). Mutation in these TF (eg., CEBPA) or their cofactors (eg.,
RUNX1) affect transactivation function and produce epigenetic repression of late-differentiation
genes that antagonize MYC. Importantly, this aberrant epigenetic repression can be redressed
clinically by depleting DNA methyltransferase 1 (DNMT1, a central component of the epigenetic
network that mediates transcription repression) using the deoxycytidine analogue decitabine
(DAC) at non-cytotoxic concentrations. The DNMT1 depletion is sufficient to trigger upregulation
of late-differentiation genes and irreversible cell cycle exit by p53-independent differentiation
mechanisms. Fortuitously, the same treatment maintains or increases self-renewal of normal
hematopoietic stem cells (HSC), which do not express high levels of lineage-specifying TF. The
biological rationale for this approach to therapy appears to apply to cancers other than MDS/AML
also. DAC or 5-azacytidine dose and schedule can be rationalized to emphasize this mechanism of
action, as an alternative or complement to conventional apoptosis-based oncotherapy.
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The lineage and maturation context of cancer cells
A major goal of cancer research is to find differences between normal stem cells and cancer
cells that can be used to selectively destroy cancer cells. One difference is frequent mutation
or deletion of key apoptosis genes (e.g., TP53, p16/CDKN2A) in cancer cells1-7. However,
this feature of cancer cells works against the objectives of conventional apoptosis-based
chemo- or radiation therapy, contributing to treatment resistance and toxicity.

Instead of increasing cancer cell apoptosis/death as the primary treatment objective, an
alternative is to identify and target pathways of cancer cell proliferation8. Since these
pathways may be differentiation-context dependent, it is useful to understand the lineage and
maturation stage of cancer cells. Examination of cancer cell morphology and surface
phenotype usually reveals lineage-commitment. Indeed, lineage-markers (morphologic and
immunohistochemical) underpin classification of malignancy, and lineage-commitment is an
implicit component of some oncotherapy, for example, hormonal blockade to treat breast
and prostate cancer.

The expression pattern of key DNA binding transcription factors that drive lineage-
commitment and progressive maturation provide further valuable insight into differentiation
context: lineage-commitment and progressive maturation absolutely requires and is driven
by coordinated expression of key transcription factors9-11. Missense mutations in genes for
these factors, for example CEBPA and GATA1, are known initiating events in acute
myeloid leukemia (AML) pathogenesis12;13. These genes are expressed at high levels only
with lineage-commitment. Indeed, AML cells express high levels of these factors (Figure
1)14. Despite the high expression of CEBPA, AML cells express relatively low levels of the
key late-differentiation driver transcription factor CEBPE (Figure 1)15;16 (expression levels
of CEBPE increase during the transition from proliferating pro-myelocytes to non-
proliferating myelocytes11, and CEBPE terminates proliferation in myeloid and AML
cells10;17-22).

The identity and gene expression profiles of key transcription factors that drive progressive
maturation of solid tissues are not as well characterized as for hematopoiesis23. Nonetheless,
where the identity of these transcription factors is known, the solid tumors that arise from
these tissues express high levels of lineage-commitment transcription factors, and low levels
of key late-differentiation genes: malignant melanoma cells express high levels of the
melanocyte commitment factor MITF, and point mutations in melanoma target MITF and
another key driver of melanocyte commitment and early differentiation, SOX1024;25.
However, melanocyte late-differentiation driver genes, eg., SOX9, are epigenetically
repressed26;27. Medulloblastoma cells express high levels of genes that are expressed early
in cerebellar development/differentiation, but relatively low levels of late cerebellar
differentiation genes28 (the medulloblastoma gene expression profile corresponds to the
normal maturation stage with the highest rate of proliferation and migration28). Squamous
cell lung carcinoma cells demonstrate a gene expression profile of an intermediate stage of
normal lung development/differentiation28. Rhabdomyosarcomas express high levels of the
lineage-specifying transcription factor MYOD29, however, disruptions to the usual
interactions between MYOD and E-proteins results in repression rather than activation of
late-differentiation target genes29. Chromosome translocations target the master regulator of
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differentiation ETV6 in breast cancer and sarcoma30;31, PAX8 in follicular thyroid cancer32,
PAX3 and PAX7 in rhabdomyosarcoma33;34 and TFE3 in papillary renal cell cancer35.
Evidence for lineage-commitment and lineage-dependency in solid tumors has also been
reviewed elsewhere36.

Is lineage-commitment a feature of cancer ‘stem cells’ or cancer initiating
cells?

Surface phenotype can be used to sort cancer cell populations into subsets. These subsets
can then be xeno-transplanted into immunocompromised mice for evaluation of cancer
initiating efficiency (as a measurement of self-renewal capacity). The earliest studies
suggested that AML cells with leukemia-initiating capacity had a surface phenotype
resembling that of normal hematopoietic stem cells (CD34+38-)37;38. This suggested that
AML cell populations might recapitulate the hierarchical structure of normal hematopoiesis,
with only cells with a stem cell phenotype having the self-renewal capacity to sustain the
bulk AML cell population38. Recently, it has been reported that technical factors may have
biased results from the earliest studies39. Accordingly, in numerous recent studies, AML
initiating cells had a surface phenotype suggesting lineage-commitment (progenitor
phenotype) (CD34+38+, CLL-1+, CD71+, CD90 -, c-Kit -)39-46. Also, with use of more
immunocompromised mice as recipients, AML initiating cell surface-phenotypes are not
stem cell restricted47-50. Even AML cells with a stem cell surface phenotype
(CD34+CD38-) express high levels of the lineage-specifying transcription factor CEBPA,
low levels of the late-differentiation driver CEBPE, and low levels of stem cell genes such
as HOXB4, when compared to normal CD34+38- cells (Figure 1)15.

In solid cancers, surface markers that identify cancer cell subsets with the highest cancer
initiating efficiency, such as CD133, are surface markers of both progenitors and stem
cells51-54, and therefore, provide limited information regarding stem versus progenitor
context. Similar to the experience with AML cells, use of more immunocompromised mice
in these assays suggests cancer-initiating capacity is less restricted than early estimates, with
a similar frequency of cancer initiating capacity in the CD133 positive and negative
compartments55.

Gene expression profiles of cancer cells and embryonic stem cells can overlap42. Recently,
it has been shown that the overlapping gene expression signatures can be attributed, in large
part, to the activity of MYC, a driver of cell proliferation56. Importantly, MYC upregulation
is a feature of, and required for, the active proliferation that occurs with lineage-commitment
by stem cells57;58. In other words, the MYC module that is associated with cancer is a
normal feature of early progenitors.

Progressive epigenetic repression of late-differentiation genes during
neoplastic evolution

Coactivator protein complexes recruited by DNA binding transcription factors contain
chromatin modifying enzymes that create activation marks on histones, and also assist in
recruitment of the basal transcription factor complex. Conversely, corepressor protein
complexes that can be alternatively recruited by transcription factors contain chromatin-
modifying enzymes that create repression marks on histones and DNA. As discussed earlier,
mutations or translocations in lineage-commitment/early-differentiation transcription factors
(or their cofactors) affect corepressor/coactivator recruitment decisions59 and produce
epigenetic repression of late-differentiation genes that would otherwise terminate active
MYC-driven proliferation10;16-22;59;60.
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Typically, evolution and progression of cancer is accompanied by increasing impairment of
maturation, illustrated for example during myelodysplastic syndrome (MDS) progression
into AML (Figure 2). Conceivably, this progressive impairment of maturation is caused by
further imbalance in corepressor/coactivator recruitment by transcription factors that
regulate expression of late-differentiation genes. Supporting this possibility, genetic
abnormalities that target chromatin modifying enzymes (e.g., ASXL1) accompany MDS
progression to AML61-63 (Figure 2). A high rate of mutation or amplification in chromatin
modifying enzymes is also observed in solid tumors64 (comprehensively reviewed
elsewhere65-69). One net consequence of these abnormalities is an increase in repression
marks on histones and in gene promoters that have correlated with disease aggression in
multi-variate analyses of multiple malignancies including AML, ALL, and multiple solid
tumors70-76. Indeed, repressive chromosome marks can be observed over large chromosome
regions in cancer cells (reviewed in77).

The model suggested by these observations
The preceding observations suggest the following model of MDS/AML and possibly other
cancers:

Adult stem cells are quiescent (reviewed in78). However, daughter cells that lineage-commit
proliferate actively (a MYC-driven process57;58). This proliferation is usually self-limited by
the activation of late-differentiation genes that antagonize MYC16;22;60;79. However,
mutation or translocation in early-differentiation driving transcription factors produces
aberrant epigenetic repression of these late-differentiation genes. In other words, the MYC
activation may be physiologic, having occurred as a consequence of lineage-commitment by
stem cells; the pathologic event is failure to activate late-differentiation genes that
antagonize MYC. Since the repression of late-differentiation genes is epigenetic and not
genetic, it is potentially reversible. Furthermore, the key DNA-binding factors that usually
drive expression of the late-differentiation genes are expressed at high levels in the lineage-
committed malignant cells. The fundamental problem is an imbalance in corepressor versus
coactivator recruitment at late-differentiation genes59.

This model is readily tested: treating MDS/AML or other cancer cells with conditions or
drugs that antagonize corepressor function should restore late-differentiation gene
expression and terminate proliferation. This has indeed been observed, with a number of
different strategies to relax chromatin, and in a spectrum of cancer histologies and
genotypes: aggressive, differentiation-impaired melanoma and breast cancer cells resumed
differentiation and exited cell cycle when exposed to an embryonic cell micro-environment
that opens chromatin80;81. Similarly, oocyte extracts, another micro-environment that
induces DNA hypomethylation and removes repressive histone marks, terminated
tumorigenicity of breast cancer cells82. Drugs that inhibit histone deacetylases (chromatin
modifying enzymes that create repressive histone marks) induce terminal differentiation in a
spectrum of leukemia and cancer primary cells and cell lines83-89. Similarly, the
deoxycytidine analogue decitabine, which depletes DNA methyl-transferase 1 (DNMT1)
(DNMT1 creates the methyl-CpG DNA repression mark) and relaxes chromatin90;91

terminates proliferation of various AML and cancer primary cells and cell lines85;88;92-95.

Irreversible cell cycle exit by epigenetic-differentiation does not require
functional p53 or p16/CDKN2A

p53 and p16/CDKN2A-null mice, although cancer-prone, demonstrate essentially normal
development96;97, suggesting that cell cycle exit by differentiation may not require these
master regulators of apoptosis. Evaluating this possibility using clinically available drugs is
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particularly relevant from a translational perspective. One confounding factor in the
interpretation of such studies is that drug therapy can have non-epigenetic effects, including
antimetabolite or DNA damaging effects that cause apoptosis, that may contribute to cell
cycle exit98. To address this issue, we have conducted experiments focused on the drug
decitabine14-16;27: unlike the cytidine analogues cytarabine or gemcitabine, the sugar moiety
of decitabine is unmodified. Therefore, at low concentrations, DNA-incorporated decitabine
does not terminate DNA chain elongation99;100. Accordingly, decitabine can be
administered at doses that deplete DNMT1 without causing significant DNA damage or
cytotoxicity, both in vitro and in vivo92;99-103.

Treatment of AML, renal cell cancer and melanoma cells with these concentrations of
decitabine allowed one or two cell divisions, upregulated key drivers of late myeloid
(CEBPE), epithelial (HNF4A) and melanocyte (SOX9) differentiation respectively, and
induced cell cycle exit accompanied by upregulation of p27/CDKN1B, the cyclin dependent
kinase inhibitor that mediates cell cycle exit by differentiation104-107. Further underlining
the p53-independence of the differentiation-mediated cell cycle exit, many of the cells used
in these experiments were p16/CDKN2A and/or p53 null15;16;27;108. In vitro observations
were readily recapitulated in murine xenotransplantation models of AML, renal cell cancer
and melanoma, by using a dose and schedule of decitabine that depleted DNMT1 without in
vivo myelotoxicity15;16;27;108. Fortuitously, p27/CDKN1B is rarely deleted from cancer
cells, unlike p16/CDKN2A and p53: in 770 cell lines analyzed by the Cancer Genome
Project (Wellcome Trust Sanger Institute), there was homozygous deletion of p16/CDKN2A
in 218 cell lines, loss of heterozygosity in 278 cell lines, and mutation in 276 cell lines.
There was homozygous deletion of TP53 in 5 cell lines, loss of hetrozygosity in 482 cell
lines, and mutation in 482 cell lines. In contrast, there was p27/CDKN1B loss of
heterozygosity in 161 cell lines but no mutations or homozygous deletions in any of the 770
cell lines analyzed.

Why self-renewal of normal stem cells is maintained with this treatment
approach

Hematopoietic stem cell genes, such as HOXB4 and c-Kit, are rapidly repressed during the
process of hematopoietic lineage commitment and differentiation109. Since DNMT1 is a
central component of the epigenetic network that mediates transcription repression110,
DNMT1 depletion by shRNA or decitabine prevented stem cell gene repression by
differentiation stimuli and maintained stem cell phenotype109. These observations also
explain why other drugs that antagonize transcription repression, such as histone deacetylase
inhibitors and 5-azacytidine, also increase hematopoietic stem cell self-renewal111-118.
However, decitabine treatment after the stem cell gene repression phase of the
differentiation process augmented differentiation109. Therefore, the cell fate consequences
of depleting DNMT1 with decitabine depend on baseline maturation stage (Figure 3). In
other words, differences in maturation stage/lineage-commitment underlie the contrasting
effects of chromatin-relaxing drugs on self-renewal and differentiation of malignant and
normal stem cells.

Towards effective clinical translation
The idea of using differentiation to terminate malignant cell proliferation (differentiation
therapy) was mooted more than 50 years ago119-121. However, as a primary objective of
clinical therapy, it is currently limited to all-trans retinoic acid (ATRA) treatment of acute
promyelocytic leukemia (APL)122.
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One reason has been that the biological model or pathway basis for pursuing epigenetic-
differentiation therapy has not been clear. Indeed, the model of cancer as being sustained by
self-renewing cancer ‘stem cells’, does not provide a rationale for this mode of therapy,
since in the stem cell model, differentiation-impairment is presumably a consequence rather
than a cause of malignant self-renewal36;38;123. However, recent data, as outlined above,
challenge the stem cell model, and provide a biologic and mechanistic rationale for
epigenetic-differentiation therapy.

Another important reason for limited translation is pharmacologic and mechanism of action
complexity and limitations of compounds that differentiate AML or cancer cells in vitro:
ATRA targets leukemia fusion proteins containing RARA, which are present only in APL.
Low dose cytosine arabinoside (cytarabine, AraC) may induce differentiation but is
predominantly cytotoxic120. Histone deacetylase inhibitor drugs may induce differentiation
but also have cytotoxic effects, and it is difficult to separate epigenetic effects of these drugs
from DNA damage and apoptosis induction124-126. Similarly, decitabine that depletes
DNMT1 can induce both apoptosis and epigenetic/differentiation effects. Indeed, decitabine
was originally developed as a DNA-damaging agent for cytotoxic therapy127. Therefore,
doses to treat AML were escalated to maximum tolerated levels in traditional phase 1
studies128. Although the regimen in common use to treat MDS has de-escalated doses with
an epigenetic mechanism of action in mind129;130, therapy continues to resemble pulse-
cycled cytotoxic therapy, and the potential or actual cytotoxicity of current regimens has
resulted in controversy regarding the relative importance of differentiation to the clinical
mechanism of action98. Although cytotoxicity can contribute to tumor kill in vitro and in
vivo, cytotoxicity also impairs treatment eligibility, tolerance and feasible exposure, and
destroys normal hematopoietic stem cells required for relief of cytopenia and durable
remission of myeloid cancers. Furthermore, mutagenicity and micro-environmental insult
from anti-metabolite actions can potentially accelerate malignant evolution and
resistance131;132.

There is ample pre-clinical evidence that decitabine, at non-cytotoxic but DNMT1 depleting
concentrations, can induce cancer cell cycle exit by differentiation pathways14-16;27. Indeed,
in the earliest cell biology studies the in vitro differentiation modifying effects of decitabine
were most potent at low, non-cytotoxic concentrations92. Therefore, a DNMT1 depleting,
but not necessarily cytotoxic dose, administered frequently, should be safer and more
effective than a higher, cytotoxic dose administered infrequently, since exposure timings and
distribution are critical considerations for S-phase specific depletion of DNMT1101.
Furthermore, maximizing cell cycle exit by epigenetic-differentiation would offer a true
p53/p16-independent alternative or complement to conventional apoptosis-based therapy.
We are currently testing this approach in a National Institutes of Health sponsored clinical
trial in MDS, administering decitabine 0.1-0.2 mg/kg (3.5-7 mg/m2) (a dose lower than in
previous studies130;133-135, since even these low doses are sufficient to deplete DNMT1), by
the subcutaneous route (to avoid high peak drug levels that can cause apoptosis),
administered from 1-3X/week (to produce greater exposure than with previous clinical trials,
and to distribute exposure and capture MDS cells entering cell cycle asynchronously at
different points in time). This type of decitabine dose and schedule has been used to treat
non-malignant disease103;136, demonstrating its clinical safety and noncytotoxic epigenetic
and differentiation modifying actions103;136.

In parallel, we are developing an approach to oral therapy that combines decitabine with
tetrahydrouridine, an inhibitor of cytidine deaminase, the enzyme which rapidly metabolizes
decitabine in vivo (because of cytidine deaminase activity, the in vivo half-life of decitabine
is <20 minutes137 in contrast to an in vitro half-life at 37°C of approximately 9 hours). Oral
administration of tetrahydrouridine-decitabine is more likely to produce the desired
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pharmacologic profile of low peak drug levels (~0.005-0.2 μM) to avoid cytotoxicity, but
extended half-life (hours rather than minutes) to increase depletion of DNMT1, and could
decrease inter-individual variability in decitabine pharmacokinetics that arises from
pharmacogenetic variation in cytidine deamianse (Lavelle et al., submitted manuscript). In
addition, an oral formulation will provide major cost, logistical and accessibility advantages
for long-term outpatient therapy. Finally, inhibition of cytidine deaminase may address a
mechanism of cancer cell resistance, and sanctuary from the effects of decitabine that can
occur in organs that express high levels of cytidine deaminase, for example, the liver and
intestines138-146.

Currently, decitabine (~10% of the related compound 5-azacytidine is converted to
decitabine by ribonucleotide reductase in vivo) is the only drug that can be repurposed
clinically for non-cytotoxic, p53/p16-independent epigenetic-differentiation therapy (since it
is difficult to separate the chromatin-modifying effects of histone deacetylase inhibitor drugs
from cytotoxicity). Other compounds that can inhibit components of the chromatin
modifying network without inducing apoptosis have been identified or will be
identified69;147. The maturation and epigenetic context of cancer cells suggests that these
agents can also be developed for the purpose of p53/p16-independent, normal stem cell
sparing epigenetic-differentiation oncotherapy.

Conclusion
Conventional therapy focuses on inducing irreversible cell cycle exit in cancer cells by DNA
damage or metabolic insult that activates apoptosis pathways (cytotoxicity). This approach
to therapy has a major limitation: malignant cells frequently mutate or delete key apoptosis
genes. Hence, the goal of activating apoptosis genes may be futile, since these genes may
not be present, yet treatment destroys normal stem cells which have intact apoptosis
pathways. This manifests clinically as short-term improvement but frequent relapse with
more aggressive, apoptosis-resistant disease. Unlike apoptosis genes, genes that mediate cell
cycle exit by differentiation are typically present, but are aberrantly repressed by epigenetic
means. Furthermore, cancer cells express high levels of lineage-specifying transcription
factors. Because of this epigenetic and maturation context of cancer cells, non-cytotoxic
antagonism of chromatin-modifying enzymes that mediate transcription repression
terminates proliferation by differentiation104-107. Normal stem cells, which do not express
high levels of lineage-specifying transcription factors, are spared109-118. Using
differentiation to terminate cancer cell proliferation was first described more than 50 years
ago119-121, but is not a major component of current clinical therapy. The biological and
translational insights that have accrued in the intervening five decades renew the importance
and promise of this approach, not just for the myeloid malignancies, but for cancer in
general.
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Figure 1.
The pattern of expression of key lineage-specifying and late differentiation factors in AML
cells suggests impaired differentiation in lineage-committed cells. A) CEBPA (lineage-
specifying factor) and CEBPE (late differentiation factor) expression in AML myeloblasts
(n=318) compared with normal CD34+ cells, bone marrow and peripheral blood (n=38), and
normal myeloblasts (n=3) (p-values Wilcoxon Two-sample test. Raw data extracted from
GEO Datasets 148;149, gene expression measured by microarray). B) CD34+CD38- cells
from AML patient bone marrow (n=9) express higher levels of CEBPA, and a higher
CEBPA/HOXB4 ratio, than CD34+CD38- cells from normal bone marrow (n=4). p-values
Median Two-Sample test. Raw data extracted from GEO Datasets 150. C) Similar findings in
CD34+ AML cells (n=10) and normal CD34+ cells (n=11) analyzed by gene-expression
microarray. Expression levels represented by heat-map. p-values Wilcoxon Two-sample
test. Raw data extracted from GEO Datasets 151;152D) CD34+CD38- cells from AML
patient bone marrow (n=9) express higher levels of CEBPα, and a higher CEBPα/HOXB4
ratio, than CD34+CD38- cells from normal bone marrow (n=4) 150. p-values Median Two-
Sample test. Raw data extracted from GEO Datasets 150.
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Figure 2.
Progression of myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML). A)
Normal hematopoiesis: Hematopoietic stem cells (HSC) can self-renew or give rise to
lineage-committed daughter cells (progenitors). Progenitors actively divide (transit-
amplification) until mature cells are formed. B) The initial abnormality (first hit) in multi-hit
neoplastic evolution may occur in an HSC (the cell of origin is an HSC). However, the
growth advantage is conferred to progenitors, by epigenetic repression of late differentiation
genes. Early in the disease process, the differentiation impairment produced by the initiating
abnormality may not be severe enough to decrease mature cell numbers. However, a left-
shift in the marrow compartment may be noted, as differentiation impaired precursors
accumulate. C) Mature cell numbers decrease, and there is a progressive left-shift, with
additional hits that cause progressive epigenetic repression of late differentiation genes in
the progenitor compartment, conferring the property of self-renewal to lineage-committed
cells (producing leukemia-initiating cells, LIC, and evolution of MDS into AML).
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Figure 3.
Maturation context explains why non-cytotoxic, DNA methyl-transferase 1 (DNMT1)
depleting concentrations of decitabine increase normal hematopoietic stem cell self-renewal
but induce terminal differentiation of AML cells. A) DNMT1 plays a central role in the
network of chromatin-modifying enzymes that are implicated in transcription repression. B)
In normal hematopoietic stem cells (HSC), decitabine (DAC) to deplete DNMT1 and
antagonize transcription repression prevents a necessary first step in lineage-commitment,
which is repression of stem cell gene expression. Therefore, DAC treatment maintains HSC
self-renewal, even in differentiation promoting conditions 109;111-118. If DAC is added
shortly after the differentiation-inducing stimulus (after the phase of stem cell gene
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repression), it does not prevent and may even increase differentiation 109. C) Leukemia-
initiating events, such as RUNX1 mutation, can originate in the germ-line or in
hematopoietic stem cells, however, RUNX1 deficient stem cells can lineage-commit in
response to a differentiation stimulus, with intact repression of stem cell genes. Instead,
RUNX1 cooperation with lineage-specifying transcription factor to active late-
differentiation genes is impaired, by coactivator/corepressor imbalance at late-differentiation
genes, producing aberrant self-renewal (proliferation at the same level of differentiation) in
lineage-committed cells. In these cells, primed to differentiate with high levels of lineage-
specifying factors, and in which repression of late differentiation genes is by epigenetic
means, DAC can resume differentiation and differentiation-mediated cell cycle exit.
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