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Long-term potentiation (LTP) of synaptic transmission has

received widespread attention because it is thought to

form the physiological basis of learning and memory. A

new paper in The EMBO Journal identifies the atypical

PKC family member PKCl as an important contributor to

the strengthening of the postsynaptic response in LTP.

Synaptic transmission in the brain is largely mediated by

presynaptic glutamate release and postsynaptic activation of

AMPA-type glutamate receptors (AMPARs). LTP is a perma-

nent increase in synaptic transmission at individual synapses

following a brief period of strongly enhanced synchronous

activity of the very synapses and of the neurons the synapses

connect (Lisman and Hell, 2008). LTP is typically mediated

by an increase in postsynaptic AMPAR activity and requires

Ca2þ flux through NMDA-type glutamate receptors

(NMDARs) and the ensuing stimulation of CaMKII and, at

least in certain cases, of PKC (Lisman and Hell, 2008).

The PKC family consists of ‘conventional’ PKCa, b, and g,

which are activated by Ca2þ -induced binding of anionic

phospholipid to their C2 domains and by binding of diacyl-

glyerol (DAG) to their C1 domains, ‘novel’ PKCd and e, which

are activated by DAG, and ‘atypical’ PKCz and rodent PKCl/

human PKCi, which are activated by lipids such as PIP3 or

ceramide via binding to their unorthodox C1 domains

(Steinberg, 2008). Proteolytic processing as well as

differential splicing can give rise to constitutively active

PKC isoforms (PKMs) that lack the regulatory domain

including their inhibitory pseudosubstrate segments.

Expression of PKMz, which is formed by translation of an

alternative transcript of the PKCz gene, is induced by LTP

whereas the full-length PKCz gene product is usually

undetectable in the hippocampus (Hernandez et al, 2003).

PKMz has been implicated in the maintenance of LTP and

memory (e.g., Ling et al, 2002; Pastalkova et al, 2006). Part of

this evidence stems from the inhibition of LTP by the

membrane-permeant myristoylated peptide ZIP that is

derived from the autoinhibitory pseudosubstrate segment of

PKCz. However, the pseudosubstrate segment of PKCz is

identical to that of PKCl raising the possibility that ZIP

might also inhibit PKCl and exert some of its effects by

antagonizing PKCl rather than PKCz. In fact, pursuing this

notion, the new work by Ren et al (2013) shows that 2mM

ZIP, which they call Myr-aPKC-PS, blocks not only PKMz
but also PKCl. Application of ZIP/Myr-aPKC-PS resulted in

short-lived LTP that decayed to baseline within 20 min

after its induction in CA1 pyramidal cells. Knockdown (KD)

of PKCl also rendered LTP short-lived. Direct stimulation

of PI3K, which generates PIP3, increased PKCl activity,

postsynaptic AMPAR content, and mEPSC and EPSC

magnitude (mimicking LTP), all of which were blocked by

Myr-aPKC-PS and PKCl KD. PI3K activation also increased

phosphorylation of the AMPAR GluA1 subunit on its PKC

site S818. Phosphorylation of S818 by PKC is important for

LTP under certain (Boehm et al, 2006) but not all conditions

(Granger et al, 2013). It is possible that S818 phos-

phorylation plays a more important role in postsynaptic

targeting of homomeric AMPAR that are formed by four

GluA1 subunits rather than that of the more prevalent
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Figure 1 The PI3K–PKCl–AMPAR signalling pathway. The centre
of the figure depicts a GluA1/A2 heterotetrameric AMPAR, which
accounts for B80% of hippocampal AMPARs. PI3K binds to
residues 833–853 in the cytosolic C terminus of the AMPAR
GluA2 subunit for localized postsynaptic signalling (Man et al,
2003). p62 binds with its atypical PKC interaction domain (AID)
to the N-terminal regulatory region of PKCl and with its Zn finger
domain to the second intracellular loop of GluA1 (Jiang et al, 2009).
Ca2þ influx via the NMDAR during high-frequency synaptic
transmission can activate PIP3K via calmodulin (CaM) (Joyal
et al, 1997). The consequent production of PIP3,4,5 stimulates
PKCl, which might act in part by phosphorylating S818 on
GluA1. How high-frequency activity augments the p62/PKCl–
AMPAR interaction is unclear.
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GluA1/GluA2 heterotetrameric receptors, with GluA1 homo-

mers being important for LTP at certain but not all ages in

rodents (Lu et al, 2007).

LTP is synapse specific. In fact, the following interactions are

well suited to restrict PIP3–PKCl signalling to activated post-

synaptic sites. PI3K directly binds to GluA2 (Man et al, 2003)

and the protein p62 links PKCl to AMPARs (Jiang et al, 2009).

Ren et al (2013) found that activation of PI3K increased the

interaction of p62 and PKCl with AMPARs, which was blocked

by ZIP/Myr-aPKC-PS. Furthermore, KD of p62 blocked LTP.

Acute application of membrane-permeant peptides derived

from either the p62-binding site on GluA1 or the PKC-binding

site on p62 displaced p62/PKCl from GluA1 and PKCl from p62,

respectively, and abrogated upregulation of postsynaptic AMPAR

content and EPSC magnitude by PIK3 activation and pairing-

induced LTP. The emerging model for localized signalling via the

Ca2þ–PI3K–p62/PKCl–AMPAR pathway is illustrated in

Figure 1. The activity-driven increase in p62/PKCl–AMPAR

association might serve to recruit PKCl to synapses that are

undergoing LTP for prolonged signalling by PKCl at these

synapses to contribute to synapse specificity of LTP.

PKMz lacks a p62-binding region and full-length PKCz is

not expressed in the brain (Hernandez et al, 2003), leaving

PKCl as the only known candidate that matches the criteria

for upregulating AMPAR by atypical PKCs in this p62-

dependent manner. Recent work shows that knockout of

the PKCz/PKMz-coding gene does not affect memory and

that ZIP/Myr-aPKC-PS still reverses LTP in these mice

(Lee et al, 2013; Volk et al, 2013). With the findings of Ren

et al (2013), it is conceivable that PKCl is an alternative target

for this peptide in the maintenance of LTP and memory.

However, given the strong run down of basal synaptic

transmission in unpotentiated slices, it is also quite possible

that ZIP/Myr-aPKC-PS affects yet other targets (Volk et al,

2013). The work by Ren et al (2013) will certainly inspire and

guide further work on the potential complementary roles of

PKCl and PKMz in LTP and memory, and stimulate the search

for further PKC targets.
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