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Extensive research on antiviral small molecules starting

in the early 1970s has led to the identification of

10-carboxymethyl-9-acridanone (CMA) as a potent type I

interferon (IFN) inducer. Up to date, the mode of action of

this antiviral molecule has remained elusive. Here we

demonstrate that CMA mediates a cell-intrinsic type I IFN

response, depending on the ER-resident protein STING.

CMA directly binds to STING and triggers a strong anti-

viral response through the TBK1/IRF3 route. Interestingly,

while CMA displays extraordinary activity in phosphory-

lating IRF3 in the murine system, CMA fails to activate

human cells that are otherwise responsive to STING

ligands. This failure to activate human STING can be

ascribed to its inability to bind to the C-terminal ligand-

binding domain of human STING. Crystallographic studies

show that two CMA molecules bind to the central Cyclic

diguanylate (c-diGMP)-binding pocket of the STING dimer

and fold the lid region in a fashion similar, but partially

distinct, to c-diGMP. Altogether, these results provide

novel insight into ligand-sensing properties of STING

and, furthermore, unravel unexpected species-specific

differences of this innate sensor.
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Introduction

The innate immune system operates to sense microbial

infection. To this effect, it expresses a variety of so-called

pattern-recognition receptors (PRRs) that are able to sense

certain highly conserved microbial patterns, known as mi-

crobe-associated molecular patterns (MAMPs). Upon MAMP

sensing, cells of the innate immune system elicit certain

effector functions that are geared at eliminating the invading

pathogen. As such, cytokines play an important role in

orchestrating subsequent cellular immune responses or by

inducing antimicrobial effector functions in non-immune

cells. In this regard, cytokines of the type I interferon (IFN)

family play a pivotal role in eliciting antiviral, but also

antibacterial, effector functions. Soon after the discovery of

type I IFNs by Isaacs and Lindenmann (1957), many research

groups tried to delineate the mechanisms of its induction.

Early on, it was already noted that nucleic acid preparations

derived from viruses or enzymatic preparations were able to

trigger potent type I IFN responses. One of the most potent

triggers that emerged from these studies was the double-

stranded RNA polynucleotide mimic poly(I:C) (Isaacs et al,

1963; Rotem et al, 1963), but other polynucleotide

preparations, including double-stranded DNA (dsDNA),

were also reported to initiate antiviral immunity by eliciting

type I IFN responses. Moreover, in the early 1970s, several

groups tried to develop small-molecule compounds with

oral bioavailability that were able to trigger type I IFN

responses, thereby blocking viral replication. In the

course of these studies, the first small-molecule compound

reported was the tricyclic compound tilorone (2,7-bis(2-

diethylaminoethoxy)fluoren-9-one), which exhibited broad

antiviral activities against many viruses (Krueger and

Mayer, 1970; Mayer and Krueger, 1970). Subsequently,

additional heterocyclic compounds were reported to induce

type I IFNs, including various quinoline, anthraquinone

and acridine derivatives. Another structurally related

molecule that even surpassed most of these compounds in

antiviral activity was 10-carboxymethyl-9-acridanone (CMA),

discovered by Grunberg and colleagues, 1976. CMA was

shown to harbour potent antiviral activity and this could be

mainly ascribed to its ability to induce type I IFN production

(Taylor et al, 1980b; Kramer et al, 1981; Storch and Kirchner,

1982; Brehm et al, 1986; Storch et al, 1986).

However, while most of these small-molecule compounds

showed excellent type I IFN induction and antiviral activities

in rodents (Kramer et al, 1976; Taylor et al, 1980a,b), these

promising results failed to translate into the human system.

Tilorone, for example, showed no type I IFN induction in the

human system, both upon systemic or topic administration

(Kaufman et al, 1971), and at the same time, research

on CMA was abandoned by most groups. Nevertheless,

CMA is currently widely distributed and applied in Russia

for antiviral therapy, including hepatitis B virus, hepatitis C

virus, HIVor herpes simplex virus infection (Silin et al, 2009).

Three independent research approaches have led to the

discovery of STING as a protein that strongly induced type I

IFN production upon overexpression (Ishikawa and Barber,

2008; Zhong et al, 2008; Sun et al, 2009). Through its

N-terminal four-pass transmembrane region STING is

tethered to the ER, whereas its C-terminal region faces the

cytoplasmic lumen. STING-deficient cells show a profound

defect in sensing DNA viruses, and also synthetic DNA

ligands are strongly blunted in their capacity to induce
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pro-inflammatory gene expression in STING-deficient cells

(Ishikawa et al, 2009). At the same time, bacteria that

replicate in the cytoplasm, such as Listeria monocytogenes,

trigger type I IFN production in a STING-dependent manner

(Ishikawa et al, 2009). This finding was initially explained by

bacterial DNA being sensed in the cytoplasm in a STING-

dependent fashion. However, it turned out that type I IFN

production by L. monocytogenes could be mainly ascribed to

the cytoplasmic presence of the bacterial quorum-sensing

molecule cyclic diadenylate (c-diAMPs; Woodward

et al, 2010). Indeed, bacteria-derived c-diAMP or cyclic

diguanylate (c-diGMP) had already been described as

potent triggers of innate immune responses (Karaolis et al,

2007a,b; McWhirter et al, 2009). Both c-diAMP and c-diGMP

function as quorum-sensing molecules in bacteria, regulating

cell motility, biofilm formation and bacterial growth.

Surprisingly, STING turned out to be the direct sensor for

c-diGMP and c-diAMP, with its C-terminal part harbouring

the binding domain (Burdette et al, 2011). In addition, most

recently, it was discovered that cytosolic DNA sensing

triggers the formation of a novel second messenger, cyclic

GMP–AMP, which in turn binds to and activates STING (Sun

et al, 2013; Wu et al, 2013). This finding reconciles the

puzzling concept of STING serving as a sensor for

microbial cyclic dinucleotides and DNA at the same time.

Several groups have recently been able to solve the crystal

structure of c-diGMP binding to the C-terminal domain of

STING (Huang et al, 2012; Ouyang et al, 2012; Shang et al,

2012; Shu et al, 2012; Yin et al, 2012). These studies have

shown that the ligand-binding domain (LBD) of STING is

present as a preformed dimer that forms a V-shaped structure

harbouring a binding pocket for one c-diGMP molecule.

While ligand-binding does not induce a major confor-

mational change of the LBD of STING, a plausible model

of activation suggests that the C-terminal tail (CTT) of STING

is displaced from the pocket upon binding, so that it can

interact with TBK1 (Yin et al, 2012). TBK1 subsequently leads

to the phosphorylation of IRF3 and thereby induces

transcription of antiviral genes.

In this study, we elucidate the molecular mechanism of

CMA, a long-known small-molecule inducer of antiviral

responses. In the murine system, CMA was found to be a

potent activator of type I IFN production, yet in the human

system it failed to elicit detectable antiviral responses. CMA

activity depends on STING, and non-responsive human cells

can be conferred responsive by overexpressing murine

STING or a chimeric version of human STING that contains

the LBD of murine STING. Differential scanning fluorimetry

(DSF) studies using the LBDs of murine and human

STING furthermore indicate that unresponsiveness of

human STING to CMA is due to a lack of ligand binding.

The crystal structure of CMA bound to murine STING shows

that two CMA molecules bind the central c-diGMP-binding

cavity in a fashion representing the inherent c-diGMP

molecule symmetry, whereas differences are found in the

folding of the lid region. While the structural studies

cannot explain the species specificity in CMA detection, we

provide additional data that suggest a differential involve-

ment of the STING ‘lid region’ in CMA versus c-diGMP

recognition. Altogether, these data reveal important insight

into the species-specific recognition of a novel class of STING

ligands.

Results

CMA is a potent trigger of the type I IFN response

in murine macrophages

Intrigued by earlier publications on the antiviral activity of

CMA (Figure 1A), we were interested in the molecular

mechanisms of its activation, especially its putative receptor

and associated signalling routes. We first assessed its ability

to induce type I IFN production in macrophages in compar-

ison to defined ligands for various PRR systems. To this

effect, LPS (TLR4), transfected poly(I:C) (TLR3 and MDA5),

transfected 50triphosphate RNA (pppRNA/RIG-I) and trans-

fected 45mer dsDNA (ISD/STING) were used. All ligands

were tested at their previously determined optimal concen-

trations, and as readouts we assessed phosphorylation of

IRF3, transcription of Ifnb mRNA, IFNb protein levels

and transactivation of the IFNb promoter, using pIFNb-Luc

reporter mouse macrophages (Lienenklaus et al, 2009).

Indeed, CMA induced robust IRF3 phosphorylation that was

followed by strong Ifnb mRNA induction and translation

(Figure 1B–E). CMA-mediated IFNb production reached

peak levels already 4 h after stimulation, even exceeding

LPS in its readiness to trigger IFNb synthesis (Figure 1F).

Of note, for the various ligands studied, IRF3 phosphoryla-

tion, Ifnb mRNA induction and its translation did not go in

parallel, which is attributable to the fact that additional

ligand properties can play important roles in regulating

transcription and translation of this key cytokine. Assessing

other IRF3-dependent targets, such as IP-10, corroborated the

notion of CMA being a potent trigger of antiviral immunity,

yet NF-kB target cytokines (e.g., IL-6) were induced to a

lesser degree in CMA-stimulated cells (Figure 1G,H). In line

with this observation, assessing IRF3, MAPK and NF-kB

activation following CMA stimulation showed that CMA led

to synchronous and rapid activation of all these signalling

cascades, with a predominant IRF3 signature. LPS, on the

other hand, showed stronger NF-kB and MAPK activation,

with a slight delay in IRF3 phosphorylation (Figure 1I). At the

functional level, CMA blocked viral gene expression of

VSV-based replicon particles in a dose-dependent manner

(Supplementary Figure S1; Berger Rentsch and Zimmer,

2011). Altogether, these studies indicated that CMA is a

rapid and potent inducer of antiviral immune responses in

murine macrophages.

CMA-dependent type I IFN production requires STING

While most immortalized cell lines did not respond to CMA

(e.g., immortalized murine embryonic fibroblasts (MEFs),

HEK 293T cells, HeLa cells), early-passage MEFs could

be stimulated with CMA. This allowed us to use MEFs

from TBK1/IKKe-deficient mice, to determine the role of

these canonical kinases in IRF3 phosphorylation. As

expected, IRF3 phosphorylation was completed blunted in

MEFs deficient for TBK1 and IKKe (Supplementary Figure

S2A). We next assessed the role of TLR signalling pathways

using macrophages from mice deficient in MyD88 or TRIF.

Neither MyD88 nor TRIF were required for CMA sensing,

which ruled out an involvement of TLRs (Supplementary

Figure S2B–D). At the same time, absence of MAVS, the

shared signalling adapter of RIG-I and MDA5, had no impact

on CMA-mediated antiviral immunity (Supplementary

Figure S2E,F). We next went on to study the role of STING
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in CMA-triggered type I IFN production. To this effect, we

used macrophages from a mutant mouse strain, Goldenticket,

that harbours a missense mutation (I199N) in STING

(Sauer et al, 2011). Indeed, macrophages from these mice

showed no detectable activation of IRF3 or NF-kB (Figure 2A)

and also a complete absence of cytokine production

(Figure 2B). In addition, the antiviral activity elicited by

CMA treatment was completely abolished when STING-

deficient macrophages were stimulated (Supplementary

Figure S3). In line with the critical requirement of STING in

CMA sensing, a human HEK 293T cell line engineered to

stably express murine STING responded to CMA, with a

strong increase in pIFNb or pELAM reporter activity

(Supplementary Figure S4). As expected, this cell line also

showed a strong gain-of-function signal with regards to

c-diGMP sensing, which is usually non-functional in unmo-

dified HEK 293T cells. Altogether, these results indicated that

STING was required and also sufficient for CMA recognition.

CMA fails to activate human STING

Despite the fact that CMA had been reported to induce type I

IFN responses in human cells (Silin et al, 2009), we were

unable to elicit type I IFN production in various cell types of

the human system. Human PBMCs readily responded to

50pppRNA, poly(I:C), DNA, c-diGMP and LPS stimulation,

yet CMA failed to induce detectable cytokine responses, even

at high doses (Figure 3A–C). A similar picture was seen when

primary human fibroblasts were used (Figure 3 D,E).

In line with this finding, when we transiently transfected

HEK 293T cells with a human STING construct, no CMA

response could be detected, despite the fact that overexpres-

sion of human STING rendered 293T cells sensitive to

c-diGMP (Figure 4A). At the same time, transient overexpres-

sion of murine STING made HEK 293T cells responsive

towards both c-diGMP and CMA (Figure 4B). The fact that

human STING displayed c-diGMP-dependent signalling

capacity in HEK 293T cells suggested that the C-terminal
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Figure 1 CMA strongly induces type I IFN in primary mouse macrophages. (A) The chemical structure of CMA is depicted. (B–E and G–H)
Bone marrow-derived macrophages were transfected with poly(I:C), pppRNA and ISD, or stimulated with LPS or CMA (500mg/ml). (B) After
2 h, cells were collected and subjected to SDS–PAGE, and western blotting for phospho-IRF3 (P-IRF3) was performed. (C) Four hours after
stimulation, transcription of the IFNb gene (Ifnb) was assessed by quantitative RT–PCR, with normalization to HPRT1. (D) Eighteen hours
after stimulation, IFNb was measured in the supernatants by enzyme-linked immunosorbent assay (ELISA). (E) pIFNb-firefly-luciferase
(pIFNb-FFLuc) macrophages were stimulated as indicated. After 18 h, cells were lysed with passive lysis buffer, and FFLuc activity was
measured in the lysates. (F) pIFNb-FFLuc macrophages were stimulated with LPS or CMA (500mg/ml). Luciferase activity was assessed at the
indicated time points (in hours). (G,H) Eighteen hours after stimulation, IP-10 (G) and IL-6 (H) were measured in the supernatants by ELISA.
(I) Bone marrow-derived macrophages were stimulated with LPS or CMA (500mg/ml). Total protein was collected at indicated time points
(in minutes) after stimulation and was assessed for P-IRF3, phospho-NF-kB-p65 (P-NF-kB p65), IkBa, phospho-p38 (P-p38) or phospho-SAPK/
JNK (P-SAPK/JNK). Representative results out of three independent experiments are depicted. Source data for this figure is available on the
online supplementary information page.
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LBD of STING could be held responsible for the insen-

sitivity towards CMA. To address this question, we

constructed chimeric STING constructs, in which the

N- and C-terminal domains of the murine or human STING

were exchanged: mmSTING(1-137)-hSTING(139-379) or

hSTING(1-138)-mmSTING(138-378) (Figure 4C,D). Testing

these constructs in HEK 293T cells revealed that as long as

the murine LBD was present (hSTING(1-138)-mmSTING

(138-378); Figure 4D), CMA was able to trigger type I IFN

production. Altogether, these results indicated that unrespon-

siveness of human cells towards CMA could be explained

by species-dependent differences in the LBD of STING.

Using the murine STING construct, we next wanted to

address the role of functionally relevant point mutations for

the recognition of CMA. The previously described null-

mutant I199N most likely perturbs the structure of STING

and thereby abolishes c-diGMP binding and signalling

(Burdette et al, 2011). In line with this notion,

overexpression of mmSTING-I199N showed no pIFNb-Luc

transactivation upon CMA- or c-diGMP-mediated stimulation

(Supplementary Figure S5A,B). Interestingly, mmSTING-

R231A, a mutant that has previously been described to

completely blunt c-diGMP-mediated STING activation despite

binding, showed normal activity upon CMA stimulation

(Supplementary Figure S5C). These data demonstrated that

c-diGMP sensing could be dissociated from CMA recognition

at the receptor level.

CMA does not bind the human STING LBD

The failure of CMA to activate human STING could be

explained by several scenarios. Foremost, we wanted

to rule out the possibility that human STING does not bind

to CMA. To address this question, we expressed and purified

the LBD of murine and human STING in E. coli and tested its

ability to associate with various ligands, using DSF. DSF

indirectly assesses the association of a low molecular weight

compound to a purified protein by measuring the stability of

a protein–compound complex as a function of temperature

(Niesen et al, 2007). As indicated by a robust thermal shift,

the LBD of murine STING associated with its known ligands

c-diGMP and c-diAMP, and also binding to CMA, could

be observed (Figure 5A). At the same time, also the LBD of

human STING displayed association with c-diGMP and

c-diAMP, as indicated by a dose-dependent shift in thermal

stability. However, addition of CMA had no detectable impact

on the thermal stability of human STING, indicating that

CMA does not bind human STING (Figure 5B). Despite high

homology, murine and human STING show least conserva-

tion in their CTT region. As such, we additionally wanted to

rule out that this part of STING was required for CMA

binding. To this effect, we generated truncated versions of

the murine STING LBD lacking the CTT. However, testing this

variant showed similar binding properties as the full-length

LBD, indicating that the CTT is not required for ligand

binding by STING (Supplementary Figure S6).

The crystal structure shows a c-diGMP-like STING

interaction for CMA

Recently, five independent groups determined the crystal

structure of the LBD of human STING bound to c-diGMP

(Huang et al, 2012; Ouyang et al, 2012; Shang et al, 2012; Shu

et al, 2012; Yin et al, 2012). In these studies it was shown that

the LBD of STING constitutes a preformed dimer that is

stabilized through homotypic interaction at a hydrophobic

interface. This STING dimer forms a V-shaped pocket, in

which one c-diGMP molecule is buried at its bottom. To see

how CMA binds murine STING, we crystallized murine

STING LBD in the presence of CMA and determined the

crystal structure to 2.75 Å resolution (Supplementary Table

S1). The final model comprises two STING LBDs along with

two well-resolved CMA molecules (Figure 6A,B). Murine

STING LBD forms a dimer with high overall structural

similarity to the previously determined human STING LBDs

(Supplementary Figure S7). Two CMA molecules are located

in the deep central c-diGMP-binding pocket at the dimer

interface. The acridone ring moieties of both CMAs partially

stack to each other (B4 Å distance) in a parallel, laterally

shifted orientation, resembling the twofold symmetry

of c-diGMP. They are situated near the phosphate–ribose
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binding site for c-diGMP, but due to the flat shape can wedge

deep into the helical bundle core of the LBD dimer. As a

result, CMA binds directly to Thr226 at the bottom of the

ligand-binding pocket, whereas c-diGMP binds via a water

molecule (Figure 6C,D).

Significantly, we find two well-ordered lid domains in a

four-stranded antiparallel b-sheet that closes the CMA/

c-diGMP-binding pocket (Figure 6A,B). The lids are generally

in a similar conformation than the folded lids in the human

STING–c-diGMP complex reported by Huang et al (2012)

(PDB-code: 4F5D), but there are also differences. The

carboxymethyl groups of the CMA moieties face and

stabilize the conformation of the lid by forming salt bridges

to both Arg237 residues. The equivalent human Arg238

residues stack between the two c-diGMP guanine moieties,

thereby stabilizing the lid. The space of the guanine moieties

is unoccupied by CMA. As a result, murine Arg237 and

Tyr167, plus Tyr240, directly stack instead of sandwiching

guanine as observed in the human c-diGMP complex. The

direct stacking induces or enables further closure of the

V-shaped binding cleft compared to the c-diGMP-bound

conformation, which may contribute to active signalling.

However, the tips of the lids fold differently in the presence

of CMA and c-diGMP. In particular, Arg231 (human Arg232),

which binds the phosphates of c-diGMP via a magnesium ion

or water molecule (Huang et al, 2012), is pushed to the

surface due to steric hindrance from the acridone ring. In

summary, CMA binds to the c-diGMP-binding pocket, with

two stacked CMA molecules mimicking the symmetric

c-diGMP. CMA induces a conformation in the LBD dimer

that is similar, if not more pronounced than the proposed

signalling conformation of human LBD, with folded lids in

the presence of c-diGMP, but also results in a somewhat

altered lid conformation. Altogether, the structure can explain

why CMA activates murine STING.

Discussion

In line with early reports on the antiviral activity of CMA

(Storch and Kirchner, 1982; Storch et al, 1986), our data

confirm the extraordinary type I IFN-inducing capacity of

CMA in the murine system. Further analysis of signalling

cascades involved in IFNb transactivation show a quick and

strong phosphorylation of IRF3, whereas the activation of the

NF-kB and MAPK pathways is slightly delayed and less

prominent compared to TLR signalling. This observation is

also reflected by the cytokine profile, as CMA induces high

levels of IFNb as opposed to IL-6. Studies using knockout

cells revealed that CMA triggers antiviral immunity cells

through the STING–TBK1–IRF3 route, which could be further

corroborated by gain-of-function experiments in cells devoid

of functional mmSTING.

Unexpectedly, human cells showed complete unrespon-

siveness towards CMA, although c-diGMP-dependent STING

activity was observed. We could ascribe this to species-

dependent differences within the C-terminal LBD of STING,

as HEK 293T cells expressing a chimeric STING protein

equipped with the murine LBD readily responded towards

CMA. Further studies could pinpoint the failure of human

STING to respond to CMA, to the inability of the human LBD

to form a stable complex. Of note, these experiments do not

formally proof that human STING cannot bind to CMA, yet in

light of the functional data this appears to be the most likely

scenario. The species-specific activation of murine STING by
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CMA is surprising, especially given the fact that several

reports on antiviral activity in the human system both

in vitro and in vivo exist (Vershinina et al, 2002; Zarubaev

et al, 2003). One possibility is that these antiviral activities

are due to direct inhibition of viral replication, independent

of the innate immune response (e.g., inhibition of viral
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Figure 4 Species-specificity CMA activity is determined by the C-terminal LBD of STING. (A–D) 293T cells were transiently transfected with
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polymerases). At the same time, it is conceivable that higher

local concentrations of CMA can be achieved during systemic

application or that other cell types are activated, both leading

to a STING-dependent type I IFN response. Nevertheless,

our results clearly question a predominant role for type I

IFN induction by CMA in the human system.

FAA (flavone-8-acetic acid) and DMXAA (5,6-dimethyl-9-

oxo-9H-xanthen-4-yl)-acetic acid) are two additional tricyclic

small-molecule compounds that have been reported to trigger

potent type I IFN responses in the murine system (Hornung

et al, 1988; Futami et al, 1991; Perera et al, 1994; Roberts

et al, 2007). Both compounds have been pursued for their

potent antitumour activity in murine tumour models, and for

both compounds it was shown that activation of the immune

system plays a pivotal role in therapeutic activity (Ching and

Baguley, 1987; Hornung et al, 1988; Pang et al, 1998). FAA,

however, failed to induce type I IFN responses in human

cells (Futami et al, 1991) and, moreover, it failed to

display antitumour activity in clinical trials (Bibby and

Double, 1993). In parallel, despite strong activity in the

murine system, DMXAA by itself also showed limited

immunostimulatory capacity in human cells (Patel et al,

1997; Philpott et al, 2001; Gobbi et al, 2006). At the same

time, DMXAA in combination with a platinum-based

chemotherapy did not show any efficacy in a large phase III

clinical trial for the treatment of non-small cell lung cancer

(Lara et al, 2011). Most recently, it has been reported that

DMXAA triggers type I IFN responses in a STING-dependent

fashion (Brunette et al, 2012; Prantner et al, 2012). In these

reports, only murine cells were tested and direct binding of

DMXAA to STING was not assessed. Nevertheless, given

the similarity of CMA and DMXAA at the molecular level,

we would expect that DMXAA also directly engages STING in

a species-specific manner. As such, it appears likely that the

failure of DMXAA in the human system can be attributed

to its inability to trigger STING activation.

At the structural level, the species-specific recognition of

CMA is unlikely to be attributable to the binding pocket itself.

This region, which is mainly formed by a-helices, a1 and a3,

is more or less invariant between the human and the murine

system, with all direct interactors of CMA being identical.

It is possible that more subtle structural differences prevent
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Figure 5 DSF implicates direct binding of CMA to murine, but not to human STING. (A,B) The interaction of STING with c-diGMP, c-diAMP
and CMA were analysed by thermal shift assay. Purified murine STING (A) and human STING (B) were tested with different concentrations
of c-diGMP/c-diAMP/CMA; (i) Schematic views of the protein domains used for binding studies are shown; (ii) thermal shifts of (iii)
fluorescence intensity versus temperature are shown. Representative results out of two independent experiments are depicted for the
temperature curves (ii), whereas mean valuesþ s.e.m. out of two independent experiments are depicted for the thermal shift graphs (iii).
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binding of CMA to human STING. An alternative, probably

more likely, explanation concerns loops b2 and b3 of the

LBD, which are critically involved in the coordination of

c-diGMP. While flexible in the apo form of human STING,

this loop region undergoes a conformational rearrangement

upon c-diGMP binding, thereby functioning as a ‘lid’ that

keeps c-diGMP within the binding pocket (Huang et al, 2012).

Two conserved residues within the tip of this loop (human:

Arg238, Tyr240) have been shown to interact with c-diGMP,

and point mutagenesis data support the critical role of the

loop region in c-diGMP recognition. In support of a similar

activation mechanism, CMA binds Arg237 of murine STING.

Interestingly, the previously reported R231A mutation within

this loop region impairs c-diGMP-mediated IFN induction

even though DNA- and CMA-dependent IFN induction are

not affected (Burdette et al, 2011). These data suggest that

the loop region is differently involved in CMA sensing,

as opposed to c-diGMP recognition. Consistent with the

mutational data, Arg231 is not involved in recognition of

CMA, and the tip of the lid, where this conserved residue is

located, is folded differently compared to the human STING

bound to c-diGMP (Figure 6C). As such, species-dependent

differences that may stabilize or allow this altered conforma-

tion could account for the observed unresponsiveness

of hSTING towards CMA. Yet, additional studies will be

required to pinpoint this phenomenon to an exact structural

determinant.

This is the first report of a direct STING ligand that is not a

cyclic dinucleotide. Most intriguingly, CMA is not sensed

as a monomeric ligand within the ligand-binding pocket of

the STING dimer; yet, two molecules positioned in a

rotational symmetry are required to activate STING. We

assume that other reported tricyclic small-molecule antivirals

(e.g., tilorone, DMXAA, etc) are also sensed as a dimeric

ligand in a fashion similar to CMA. Moreover, it is tempting to

speculate that beyond these synthetic compounds, natural

ligands exist that also follow a CMA-like recognition mode.

In this regard, several bioflavonoids reported to exert

antiviral activity might be interesting candidates. At the

same time, the novel class of STING ligands described here

might open novel avenues to develop compounds that block

STING activation, with favorable drug-like properties. Given

the likely involvement of STING in sensing endogenous DNA

in the course of sterile inflammatory conditions (Ahn et al,

2012; Gall et al, 2012), pharmacological targeting of STING

might constitute a reasonable therapeutic venture.

Materials and methods

Reagents
Poly(I:C) and CMA were purchased from Sigma Aldrich. Ultra-pure
LPS from E. coli was purchased from Invivogen. c-diGMP and
c-diAMP were from BioLog. GeneJuice Transfection Reagent was
from Novagen. Lipofectamine 2000 was from Life Technologies.
Goat anti-rabbit-IgG-HRP, goat-anti-mouse-IgG-HRP and anti-
b-actin-IgG-HRP were from Santa Cruz Biotechnology. Passive
lysis buffer was purchased from Promega.

Plasmids
Expression plasmids coding for human or murine STING were
cloned into pEFBOS coding for an N-terminal GFP or an N-terminal
mCherry tag. Chimeric STING constructs, human STING (AA1–
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Figure 6 Structural basis for CMA recognition. (A) Ribbon model of the mouse STING dimer (light and dark brown) with highlighted
secondary structure. The two bound CMA molecules are shown as magenta stick models. (B) Close-up view of the CMA-binding site with
superimposed 2mFo-DFc electron density (blue; contoured at 1.4). One STING protomer is shown in light brown. For the other protomer
(brown), only the lid is displayed. Folding of the lid via hydrogen bonds to Arg237 and Tyr239 suggests how CMA activates mouse STING.
(C,D) Side-by-side comparison of CMA bound to mouse STING (C) and c-diGMP bound to human STING (D) showing selected interactions.
CMA folds the lid differently from c-diGMP, due to steric clash with Arg231 (human Arg232), which binds c-diGMP via a magnesium ion/water
molecule.
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138)–murine STING (AA138–378) and murine STING (AA1–137)–
human STING (AA139–379) were generated by ligation-indepen-
dent cloning (Aslanidis and de Jong, 1990; Schmid-Burgk et al,
2012). The STING mutants (I199N, R231A in pEFBOS-mCherry)
were generated by point mutagenesis PCR. pCI-empty was used as a
stuffer. All primer sequences used for cloning are available upon
request.

Cell culture
PBMCs were isolated from whole blood of healthy donors. After
Ficoll density-gradient centrifugation (Biochrom), red blood cells
were lysed using lysing buffer (BD Biosciences). PBMCs were
seeded with a density of 4�106 per ml at 100ml in a 96-well plate
containing RPMI supplemented with 10% (v/v) FCS, sodium pyr-
uvate, penicillin and streptomycin (all from Life Technologies).
293T and primary human fibroblasts were cultured in DMEM
supplemented with 10% (v/v) FCS, sodium pyruvate (all from
Life technologies) and Ciprofloxacin (Bayer Schering Pharma).
Primary macrophages were generated from mouse bone marrow
cells that were cultured for 7 days in DMEM with the same additives
as described above and 30% (v/v) L929 supernatant.

Immunoblotting
Primary macrophages were lysed in 1� Laemmli buffer and
denatured at 951C for 5 min. Probes were separated by 10% SDS–
PAGE and transferred onto nitrocellulose membranes. Blots were
incubated with anti-Phospho-IRF3 (number 4947), anti-Phospho-
NF-kappaB-p65 (number 3033), anti-Phospho-p38 (number 4511),
anti-IkappaB-alpha (number 4814) or anti-Phospho-SAPK/JNK
(number 9255) from Cell Signaling Technology.

Transfection
For transfection experiments, primary macrophages were seeded
with a density of 1�105 per ml. Cells were transfected with poly
(I:C) (2mg/ml), pppRNA (1.33mg/ml), ISD (2mg/ml) and c-diGMP
(8.66mg/ml) using Lipofectamine 2000 (Life Technologies), accord-
ing to the manufacturer’s instructions. LPS (200 ng/ml) and CMA
were directly added to the medium. Human PBMCs were trans-
fected as described above, at a density of 4�106 per ml, human
fibroblasts at a density of 1.5�105 per ml. For western blot experi-
ments, cells were lysed after 2 h, if not indicated otherwise. For
cytokine assays, supernatants were collected after 18–20 h. For RNA
isolation, cells were lysed after 4 h.

Enzyme-linked immunosorbent assay
Cell culture supernatants were assayed for human IP-10 (BD
Biosciences), human IL-6 (BD Biosciences), human IFNa
(eBioscience), mouse IFNb (BioLegend), mouse IP-10 (R&D
Systems) or mouse IL-6 (BD Biosciences), according to the manu-
facturer’s instructions.

Quantitative real-time PCR analysis
RNA from macrophages was reverse transcribed using the
RevertAid First Strand cDNA Synthesis kit (Fermentas) and quanti-
tative PCR analysis was performed on an ABI 7900HT. All murine
gene expression data are presented as relative expression to HPRT1.
Primer sequences are available upon request.

Luminescence assays
pIFNb-FFLuc macrophages (Lienenklaus et al, 2009) were
stimulated as indicated and were lysed with passive lysis
buffer 18–20 h after stimulation, to determine luminescence. For
VSV*DG(Luc) replicon assays, macrophages were treated with
ligands or supernatants as indicated and subsequently infected at
an MOI of 10 with the VSV*DG(Luc) replicon virus particles. Firefly-
luciferase activity was measured in the lysates using a 2104
EnVision Multilabel reader from Perkin-Elmer.

Plasmid overexpression experiments
293Tcells were seeded with a density of 2�105 cells per ml at 100ml
96-well plate. IFNb (12.5 ng) promoter–reporter plasmid pIFNb–
GLuc or pELAM-GLuc, and STING constructs were transfected using
GeneJuice according to the manufacturer’s instructions. For
titration experiments, empty pCI vector was used as a stuffer.
After 24 h, the cells were transfected with c-diGMP or were stimu-

lated with CMA. After further 20 h, GLuc activity was measured in
the supernatants using coelenterazine as a substrate.

Cell viability assays
Cell viability was assessed using CellTiter-Blue (Promega)
according to the manufacturer’s instructions. The assay was per-
formed immediately after (Gaussia) or before (Firefly) luciferase
measurement.

Differential scanning fluorimetry
Thermal shift assays were carried out using a CFX 96TM Real-Time
System (Biorad) for recording the fluorescence signal (HEX: Ex/Em:
450–490/560–580 nm) as a function of temperature. The tempera-
ture gradient was set from 15 to 801C, with an increment of 0.51C
and incubation steps of 15 s. Each 20 ml reaction (buffer: 20 mM
Tris, 150 mM NaCl, (10% DMSO for reactions with CMA), pH 7.5),
with or without 2 mM/1 mM/0.5 mM of c-diGMP/c-diAMP/CMA
contained 1 mg/ml of STING and a dilution of 1:500 of SYPRO
Orange dye (Invitrogen).

Cloning of human and mouse STING constructs for protein
expression
Human STING AA139–379 (R220HþH232R) was cloned from a
human macrophage cDNA library into pET28-SUMO1-eGFP vector
via BamHI and NotI restriction sites. The mouse STING constructs
AA138–378 and AA138–341 were cloned from a mouse lung tissue
cDNA library into pET28-SUMO1-eGFP vector via AgeI and NotI
restriction sites. These plasmids were used to transform
E. coli Rosetta (DE3) protein expression strain cells (Novagen).

Expression and purification of human and mouse STING
constructs
For all used STING constructs, the expression and purification
procedure was the following: E. coli Rosetta (DE3) cells were
grown in 3 l of LB media supplemented with Kanamycin (50 mg/l)
and Chloramphenicol (34 mg/l) at 371C for 3 h, to OD600¼ 0.8.
Expression of N-terminal His6-SUMO1-tagged STING was induced
by adding IPTG (Roth) to a final concentration of 0.2 mM.
Expression was done overnight at 181C. Cells were collected by
centrifugation and were resuspended in lysis buffer (50 mM Tris,
500 mM NaCl, 10 mM imidazole, 5% glycerol, 2 mM b-mercap-
toethanol, pH 7.5) and lysed by sonication. The soluble His6-
SUMO1-STING was purified by Ni-affinity chromatography.
The His6-SUMO1-tag was removed by proteolytic cleavage with
SenP2 protease during dialysis overnight (20 mM Tris, 150 mM
NaCl, 3% glycerol, 2 mM b-mercaptoethanol, pH 7.5) and a second
Ni-affinity chromatography step. To remove additional contami-
nants, a HiTrap Q FF (GE Healthcare) purification was applied.
Finally, the STING containing flow-through was used in a HiLoadTM

26/60 Superdex 75 prep grade (GE Healthcare) size-exclusion
chromatography step (20 mM Tris, 150 mM NaCl, pH 7.5).
Purified STING was concentrated (10–15 mg/ml) with a 10 kDa
cut-off centrifugal concentrator device (Millipore) and was flash
frozen in liquid nitrogen for storage (� 801C).

Crystallization of mmSTING AA149–348 with CMA
A protein solution of mmSTING (8 mg/ml) was saturated with CMA
(by adding solid powder due to its low solubility in aqueous
solution) and incubated on ice for 1 h. Prior to crystallization,
the protein solution was centrifugated and filtered to remove solid
CMA. Crystals were grown using the hanging drop vapour diffusion
method with drops of 1:1 ratio protein:reservoir. The reservoir
solution contained 0.1 M HEPES, pH 7, 1.65 M ammonium sulphate,
2% PEG 400 (v/v) and saturating amounts of CMA. mmSTING
crystals appeared after B4 days at 201C. For cryoprotection, the
crystals were soaked in reservoir solution containing 12% (±)-1,3-
butanediol (v/v) before flash freezing in liquid nitrogen.

Data collection and structure determination
X-ray diffraction data were collected at beamline X06SA at the
Swiss Light Source (Villigen, Switzerland). Data processing was
carried out using XDS (Kabsch, 2010). The structure was solved by
molecular replacement with PHASER (McCoy et al, 2007) from the
ccp4 package (Winn et al, 2011), using a mouse search model
created from the human STING structure (4EMT (Shu et al,
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2012)) by ClustalW2 alignment (Goujon et al, 2010; Larkin et al,
2007) and modelling with the SWISS-MODEL structure homology-
modelling server (Peitsch, 1995; Arnold et al, 2006; Kiefer et al,
2009). The structure was refined by rounds of manual model
building carried out with COOT (Emsley and Cowtan, 2004) and
refinement using Phenix (Adams et al, 2010). The final structure
with R/Rfree¼ 21/23.7 shows good stereochemistry and no outliers
in the Ramachandran plot. Figures were created with PyMOL
(Schrödinger, 2010). Coordinates and structure factors have been
deposited with the Protein Data Bank (accession number 4JC5).

Supplementary Data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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