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Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B
Streptococci, Escherichia coli, Listeriamonocytogenes, and Staphylococcus aureus, secrete toxins of differentmolecular nature, which
are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to
engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is
not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial
barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also
contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole
factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of
neonatal sepsis manifestation.

1. Introduction

The birth canal, that is, the area between the fully dilated
uterus and the outside of the vagina, harbours a polymicrobial
community that may fulfil the definition of a biofilm [1]. Next
to apathogenic species, such as Lactobacillus spp., potentially
pathogenic bacteria including group B streptococci (GBS),
Escherichia coli (E. coli), Listeria monocytogenes (L. monocy-
togenes), and Staphylococcus aureus (S. aureus) are found in
the vagina of up to 20% of women. During birth, the fetus
needs to pass from the sterile uterus through these bacteria.
Accordingly, aspiration of bacteria during birth is regarded
as a major cause of neonatal sepsis in the first three to seven
days of life (early-onset sepsis). In line with this model,
early-onset sepsis is predominantly caused by GBS, E. coli, L.
monocytogenes, and S. aureus. Yet most infants successfully
control the bacteria at the mucocutaneous surfaces.

Subsequent to aspiration, bacteria likeGBS can proliferate
to striking densities in the neonatal lung, as shown in
newborn primates with neonatal GBS pneumonia (109–1011
colony-forming units (CFUs)/g lung tissue, [2]). The antimi-
crobial quality of the local pulmonary environment, for
example, the concentration of surfactant, may be important

for the metabolic activity in the bacterial community and
therefore for the expression of bacterial virulence factors such
as bacterial toxins [3].

Sepsis imposes a major threat to newborn infants. It
is estimated that sepsis causes over half a million neona-
tal deaths annually, thereby accounting for about 15% of
all neonatal deaths worldwide [4]. Whereas sepsis causes
approximately 2.5% of infant deaths in developed countries, it
is responsible for up to 50% of neonatal deaths in developing
countries [5, 6]. Moreover, neonatal sepsis often occurs as
meningoencephalitis, which leaves almost 50% of affected
patients with lifelong disabilities [7]. On the other hand,
GBS, E. coli, and S. aureus are normal components of the
mucocutaneous microbiome, and it is impossible to predict
the risk to an individual baby.

2. Bacterial Membrane-Damaging Toxins

The first membrane-damaging bacterial toxin was described
by Paul Ehrlich in 1898 [8], who found that Clostridium
tetani extracts lyse erythrocytes. Today, three different mech-
anisms of membrane damage by proteinaceous agents can
be delineated. First, toxins can solubilise target membranes
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Figure 1: Ways to damage a lipid membrane. There are various mechanisms of membrane damage by protein toxins. Amphiphilic toxins
can integrate into the membrane and essentially solubilise the lipid membrane like a detergent (structure: S. aureus 𝛿-toxin, PDB ID 2KAM).
Similarly, themembrane lipids can be hydrolysed by phospholipases also resulting in the destruction of themembrane (structure:Clostridium,
perfringens 𝛼-toxin, PDB ID 1KHO, [165]). By far the largest class of membrane damaging toxins is that of the pore-forming toxins (structure:
𝛼-toxin from S. aureus, PDB ID 7AHL, [100]). These toxins integrate as stable channels into the lipid bilayer, thus creating an aqueous
connection between the cytosol and the extracellular space of the target cell.
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Figure 2: Pore formation is a dynamic process with structurally and functionally distinct states. Distinct molecular states exist on the path
to membrane pore formation by PFTs. The toxin is secreted by the bacterial pathogen into the extracellular medium in a water-soluble form,
usually as a monomer. Upon engagement of the membrane via binding to a receptor (step 1), for example, a membrane lipid or protein, the
monomers assemble to a prepore oligomer (step 2). The membrane beneath the prepore oligomer remains intact and is only punctured once
the prepore refolds to themembrane-inserted pore oligomer (step 3).This step usually goes alongwith considerable structural rearrangements.

acting essentially as amphiphilic surfactants. 𝛿-Toxins from
various staphylococcal species [9, 10] and the cyclolipopep-
tides from Bacillus subtilis are prominent examples [11] (see
Figure 1). Second, toxins can act as phospholipases and
damagemembranes by enzymatic hydrolysis of phospholipid
ester bonds. 𝛽-Hemolysin from S. aureus, for instance, is
a sphingomyelin-specific phospholipase, which cleaves sph-
ingomyelin to ceramide and phosphorylcholine. However,
the large majority of membrane damaging proteins belong
to the class of pore-forming proteins/toxins (PFTs). PFTs,
which make up approximately 30% of all protein toxins in
pathogenic bacteria [12], have evolved in all domains of life.
They are secreted as water-soluble proteins and subsequently
integrate into foreign membranes.

3. Mechanism of Membrane Pore Formation
by Pore-Forming Toxins

Common structural themes of protein/membrane associa-
tion are insertion of transmembrane 𝛼-helices or 𝛽-sheet
barrel arrangements, anchoring by prosthetic glycolipids, or

direct linkage to hydrophobic lipid tails, such as myristic or
palmitic acid. Most pores or channels allowing for commu-
nication across biological membranes are formed by integral
membrane proteins spanning the lipid bilayer. However, PFTs
form pores by acting initially extraneously of the lipid bilayer.
They start out as soluble molecules and then turn themselves
into integralmembrane proteins, with amembrane-spanning
region that defines the pore. Pore formation is a dynamic
process with structurally and functionally distinct states (see
Figure 2). Initial binding to the membrane, for example, to a
membrane lipid or protein receptor, is followed by homotypic
oligomerisation to a prepore state on the membrane surface
(Figure 2, arrows 1 and 2). In this state, the protomer configu-
ration resembles that of the soluble monomer, and the whole
oligomer still stands prone to the membrane with an intact
lipid bilayer beneath the assembled ring. In Figure 3(a1), this
is depicted for pneumolysin from Streptococcus pneumoniae,
a close homologue of listeriolysin from L. monocytogenes
and, interestingly, also of perforin secreted by cytotoxic T
cells [13], and of the complement membrane attack complex
[14, 15], which indicates that bacterial attack and immune
defence employ the same mechanisms. This prepore state
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Figure 3: Structures of PFTs that are important for neonatal sepsis. Panel (a) shows available structures of cholesterol-dependent cytolysins
to illustrate listeriolysins’ mechanism of pore formation. (a1) displays the crystal structure of the soluble, monomeric form of perfringolysin
from Clostridium perfringens (left, PDB ID 1PFO, [57]). The cryo-electron microscopy (cryo-EM) reconstruction of the prepore (EM
databank: 1106) of the listeriolysin homologue pneumolysin from Streptococcus pneumoniae displayed on the right revealed that the protomer
configuration in the prepore resembles that of the soluble monomer [16]. Lipid membrane is coloured yellow. Molecular modeling of
the protomer fitted into the cryo-EM pore structure below (EM databank: 1107) revealed the considerable structural rearrangements that
accompany membrane pore formation. The 𝛼-helices that refold into 𝛽-sheets are coloured in red. Panel (b) shows the different structures
available for ClyA from E. coli, (b1) the soluble state (PDDid 1QOY, [148]) monomer and (b2) a protomer from the dodecameric pore state,
which is shown as side and top view on the right (PDB ID 2WCD, [149]). Pore-lining 𝛼-helices are in red and the 𝛽-tongue in yellow. Panel
(c) shows the PFTs from S. aureus. (c1) shows from top to bottom LukF (PDB ID 1LKF, [113]), LukF-PV (PDB ID 1PVL, [114]), and LukS-PV
(PDB ID 1T5R, [115]). (c2) shows the octameric pore structure of 𝛾-hemolysin (PDB ID 3B07, [116]), protomer on the left, side and top views
on the right. (c3) displays the heptameric pore structure of the AFT pore (PDB ID 7AHL, [100]), individual protomer, side and tops views.
The 𝛽-stem that unfolds into the membrane lining, extended 𝛽-hairpin is shown in red.

then undergoes drastic conformational rearrangements to be
inserted as a stable pore into the membrane (see Figure 2,
arrow 3). This rearrangement can even involve the refold-
ing of 𝛼-helices in the soluble state to 𝛽-sheets in the
membrane-inserted form [16].While this generalmechanism
of pore formation can be proposed for nearly all PFTs, the
structural changes, which the individual proteins undergo,
remain largely elusive. Detailed mechanistic models on how
hydrophilic proteins can suddenly change their solubility and
integrate into biological membranes are available only for
a few PFTs involved in neonatal sepsis (see Figure 3). Not
surprising when considering that one not only needs to be
able to study the solution state in sufficient structural detail,
for example, viaX-ray crystallography, but the structure of the
membrane state also needs to be resolved. PFTs are classically
divided into two main groups based on the structural motifs
that form the pore [17–19]. Pores can be formed by 𝛼-helices,
𝛼-PFTs or by 𝛽-sheets, 𝛽-PFTs. For certain pore-forming
proteins, it was recently proposed that lipids might play a
direct role in pore formation, but our understanding of how
this can be achieved is limited by the available structural data
to date [20–22]. The structures, where known, of the soluble
and membrane states of the PFTs discussed in this review are
displayed in Figure 3. However, not all membrane pores are
equal. The pore diameter, for instance, of the 𝛼-hemolysin

membrane heptamer is considerably smaller than that of
listeriolysin with up to 50 protomers (cf. Figures 3(a) and
3(c)). Clearly, the size of the membrane pore has important
consequences for the targeted cell, as a large pore diameter
is not selective for what it can conduct across a membrane,
potentially mediating diffusion of larger molecules, such as
ATP or even small proteins.

Interestingly, clearing of toxin pores from host mem-
branes, a mechanism that is of marked importance when
considering the amounts of toxin that are produced dur-
ing sepsis, seems also to be size dependent. Cholesterol-
dependent cytolysins, such as listeriolysin, can induce Ca2+-
dependent resealing of membrane pores by induction of
endocytosis [23–25] but 𝛼-hemolysin from S. aureus cannot
[26]. This is counterintuitive, as van der Goot and coworkers
nicely state [27] that small pores are harder to repair than
larger ones.

4. Bacterial Pore-Forming Toxins in
Pathogens Causing Neonatal Sepsis

In the major pathogens isolated from newborn infants
with sepsis, PFTs are key virulence factors. They initiate a
multitude of events ranging from direct necrotic cell deaths
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to the induction of signalling cascades, for instance, Ca2+-
mediated signalling [27]. Prominent PFTs in the context of
neonatal sepsis are listeriolysin O from L. monocytogenes, 𝛽-
hemolysin/cytolysin from GBS (Streptococcus agalactiae), 𝛼-
hemolysin and cytolysin A from E. coli, and 𝛼-hemolysin,
𝛾-hemolysin, and the leukocidins from S. aureus. It has
long been appreciated that PFTs are especially important
during initiation of bacterial infections through induction of
necrosis and apoptosis of host epithelial and endothelial cells,
which promotes microbial invasion and subverts defence
mechanisms. However, PFTs may also contribute to sepsis by
receptor mediated or membrane damaging mechanisms in
immune cells, which respond with the formation of inflam-
matory mediators, as was shown for 𝛽-hemolysin/cytolysin
from GBS [28] and listeriolysin O [29, 30] and 𝛼-hemolysin
and Panton-Valentine leukocidins from S. aureus [31, 32].

5. 𝛽-Hemolysin/Cytolysin from
Group B Streptococci

Streptococcus agalactiae (group B streptococci, GBS) are the
major cause of sepsis and meningitis in newborn infants
without underlying disease in the western world. In addition,
they are a significant cause of invasive infections in pregnant
woman and immuneocompromised patients [33, 34]. The
pore-forming toxin 𝛽-hemolysin/cytolysin is one of the main
virulence factors of GBS. It has been implicated in the
pathogenesis of early- [35] and late-onset neonatal sepsis,
although its role in both cases remains controversial. Rabbits
infectedwithwild-typeGBShad significantly higher bacterial
blood counts than those infected with GBS mutants lack-
ing the 𝛽-hemolysin/cytolysin [35]; mortality also increased
dramatically. Similarly, in a neonatal rat model of meningitis
wild-type GBS induced more neuronal damage in the cortex
and the hippocampus than cytolysin-deficient mutants [36].
The clinical outcome score, assessed in this study by weighted
changes and motor activity, decreased profoundly upon
presence of the cytolysin. The 𝛽-hemolysin/cytolysin lytic
protein agent is thought to be encoded by the cylE gene
of the cyl operon [37], since expression of cylE induces 𝛽-
hemolytic activity in nonhemolyticE. coli. However, the exact
molecular nature of the protein component responsible for
hemolysis and pore formation remains obscure, as it has
evaded purification to homogeneity as of yet. Interestingly,
𝛽-hemolysin/cytolysin is also necessary for the synthesis
of an orange carotenoid pigment [38], with which it also
associates [39]. Hemolytic activity of partially purified 𝛽-
hemolytic activity containing the carotenoid pigment could
be inhibited by addition of the lipid dipalmitoylphosphatidyl-
choline (DPPC), the major component of surfactant in the
lung. Accordingly, surfactant deficiency may explain in part
the particular susceptibility of preterm infants to GBS sepsis
and meningitis [40, 41]. As outlined above, breaching of
epithelial barriers by GBS is the first step in sepsis patho-
genesis. Accordingly, it appears to be important that 𝛽-
hemolysin/cytolysin mediates not only injury of lung epithe-
lial [40] and of lung microvascular endothelial cells [42] and
invasion of brain endothelial cells [43] but also injury of

professional phagocytes [39] and neurons [36]. Moreover,
GBS mutants lacking clyE were more readily cleared from
mouse and human blood [39]. Interestingly, Rubens and
colleagues initially proposed that 𝛽-hemolysin/cytolysin was
no longer needed for systemic disease manifestation once the
epithelial barriers have been breached [44]. However, pro-
and anti-inflammatory activity of 𝛽-hemolysin/cytolysin in
macrophages was demonstrated, indicating more profound
immunomodulatory functions of the cytolysin [45, 46].
One direct or indirect molecular 𝛽-hemolysin/cytolysin tar-
get with important implications for mononuclear phago-
cyte activation is the NLPRP3 inflammasome. Activation
of the NLRP3 inflammasome requires GBS expressing 𝛽-
hemolysin/cytolysin. This pathway is essential in a mouse
model of GBS sepsis, where deficiency in NLRP3 or its sig-
nalling partners apoptosis-associated speck-like protein and
caspase-1 increases lethality and bacterial dissemination [28].
Yet direct evidence for binding, engagement, and activation
of TLRs by the 𝛽-hemolysin/cytolysin is not available.

A second pore-forming toxin of GBS is the CAMP factor
that has long been used for microbiological identification
of GBS, since it characteristically synergizes with secreted
sphingomyelinase of S. aureus to lyse erythrocytes on blood
agar plates [47–49]. However, its role in neonatal sepsis is not
clear, as it was not required for systemic infection in a mouse
model of GBS infection [50].

6. Listeriolysin O from
Listeria monocytogenes

Listeriamonocytogenes (L.monocytogenes) is aGram-positive
bacterium that causes early- and late-onset neonatal sep-
sis and meningitis. L. monocytogenes has the capacity to
breach the intestinal barrier, thereby causing food-borne
listeriosis, the blood-brain barrier, causing meningitis, and
the maternal-placental barrier, causing early-onset listerio-
sis. Listeriolysin O (LLO), a member of the PFT class of
cholesterol-dependent cytolysins (CDCs), is a major viru-
lence factor of L. monocytogenes with multivalent functions
[51]. In the late 1980s, Kathariou et al. and Portnoy et
al. reported that L. monocytogenes mutants lacking func-
tional LLO were avirulent in mice [52, 53]. Furthermore,
LLO mutants did not induce secretion of cytokines such
as TNF-𝛼, IL-1𝛽, or IFN-𝛾, when injected intravenously
into C57BL/6 mice [54]. Recently, a single-gene signature-
tag-based approach was used to assess the contribution of
individual amino acids of LLOs to its virulence in mice [55].

Based on structural homology with other toxins such as
pneumolysin from Streptococcus pneumoniae [56] and per-
fringolysin fromClostridium perfringens [57], common pore-
forming properties can be proposed [58] (see Figure 3(a)).
LLO engages cholesterol as a native membrane receptor
in dependence on the two amino acids threonine 515 and
leucine 516, oligomerises to a prepore complex of up to
50 monomers, and forms a membrane pore in a concerted
refolding step with each protomer contributing two beta-
hairpins to the membrane-spanning 𝛽-barrel, which origi-
nates from five 𝛼-helices in the soluble state [16, 59–61]. The
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allosteric monomer assembly and prepore refolding process
were recently shown to rely on an undecapeptide sequence
(483-ECTGLAWEWWR-493), which was originally thought
to be soley responsible for cholesterol binding [62]. The
exact nature of the membrane pore remains controversial,
as arciform pores, that is, membrane pores with a seemingly
incomplete protein ring lining the aqueous membrane hole,
are often observed in electron microscopic and atomic force
microscopic imaging of various CDCs [22, 63–65].Moreover,
LLO does not lose its membrane targeting properties after
incubation with cholesterol [66].

Listeria are classical intracellular pathogens [67] and LLO
pore formation was traditionally thought to only mediate
escape of Listeria from the phagolysosome [68].This concept
was based on the finding that LLO was active only at acidic
and not at neutral pH, which is found in the maturing
phagolysosome [58]. However, host factors also play an
important part in regulating the activity of LLO in the
phagolysosome. LLO hijacks the reductive capacity of the
𝛾-interferon-inducible lysosomal thiol reductase GILT to
maintain cysteine 484 of LLO in its reduced thiol state [69],
thus greatly increasing bacterial escape from the phagolyso-
some. Intriguingly, CDCs were originally, that is, before
the identification of cholesterol as a membrane receptor,
termed sulfhydryl-activated [70] or thiol-activated, oxygen-
labile cytolysins [71], as chemical reduction activated the
toxins towards hemolysis of red blood cells. Additionally,
the cystic fibrosis transmembrane conductance regulator
(CFTR), which transports chloride not only across the apical
plasma membrane of epithelial cells in the lung but also
into the phagolysosomes of macrophages, potentiates LLO
oligomerisation on the phagosomal membrane and its lytic
activity and phagolysosomal escape of L. monocytogenes [72].
However, the role of LLO extends beyond mediating phago-
somal escape. LLO reduces formation of reactive oxygen
species (ROS) by inhibiting the NADPH oxidase NOX2
in RAW 264.7 macrophages [73]. This activity seems to
rely on pore formation in the phagosomal membrane and
prevents degradation of bacteria inside the phagosome. Pore
formation at the plasma membrane of target cells induces
the dynamin-/F-actin-dependent but clathrin-independent
uptake of L. monocytogenes into HepG2 cells [74]. This
finding questions the traditional model of LLO pore-forming
activity being strictly dependent on the low phagosomal pH
[58], whereby premature lysis of target cells by (secreted)
LLO is prevented [75]. Residual lytic activity and structural
integrity of LLO at neutral pH [74, 76, 77] are in line with
LLO-mediated calcium influx into epithelial Hep-2 [78] and
HEK 293 cells [79] along with concomitant L. monocytogenes
uptake. Indeed LLO seems to form pores at neutral pH
in the plasma membrane, which do not result in lysis of
the target cell but rather in uptake of the pathogen [74].
As pneumolysin from S. pneumoniae can replace LLO in
the uptake of L. monocytogenes into HepG2 cells, CDCs
from other bacterial pathogens may similarly induce cellular
uptake. The contribution of TLR signalling in response
to CDC has been subject of several studies. As examples,
the LLO homologues anthrolysin (Bacillus anthracis) and
pneumolysin can signal via TLR4 [80, 81]. On the other

hand, LLO induces an inflammatory cellular response in a
TLR-independent fashion [82]. Moreover, LLO activity at
the plasma membrane induces clustering of lipid rafts [83],
suppression of antigen-inducedT-cell activation [84], inflam-
masome activation, and histone H3 dephosphorylation [30],
all of which might contribute to sepsis progression either at
the stage of heightened inflammation or at later stages of
immune suppression.

7. 𝛼-Hemolysin, 𝛾-Hemolysin, and Leukocidins
from Staphylococcus aureus

Staphylococcus aureus (S. aureus) is well recognised as a
significant cause of neonatal sepsis [85]. Around ten bacteria
are sufficient to colonise the umbilical cord. After birth, S.
aureus can colonise the upper respiratory tract in up to 40%
of infants [86]. S. aureus produces a number of PFTs with
distinct specificity for target cell membranes. Although most
clinical isolates produce the PFTs 𝛼-hemolysin, bicomponent
𝛾-hemolysins, and bicomponent leukocidins, none of these
toxins was found to be a necessary and sufficient virulence
determinant of neonatal sepsis. In contrast, other factors such
as the antigenic, peptidoglycan-associated protein A [87],
superantigens [88], and sphingomyelinase C (𝛽-hemolysin,
[89]) contribute to host invasion, subversion of the immune
system, and sepsis manifestation. However, there is evidence
that pore formation by 𝛼-hemolysin (𝛼-toxin, AFT) con-
tributes to the pathogenesis of sepsis [90]. As an example,
erythrocyte lysis by AFT could be directly imaged [91].
Downregulation of AFT expression in vivo clearly reduces
virulence of S. aureus [92, 93]. In a model using C57BL/6J
mice, AFT activates the NLRP3 inflammasome, thereby pro-
moting necrotising pneumonia [94]. Moreover, monoclonal
antibodies toAFT are protective against staphylococcal pneu-
monia [95]. Indeed, a nonhemolytic variant of AFT was used
to vaccinate rabbits, and antisera could be used to passively
immunize mice against an otherwise lethal challenge with
wild-type S. aureus [96]. In a mouse model of mastitis,
coagulase and AFT proved to be the primary virulence deter-
minants [97]. Heat-inactivated S. aureus and an AFT mutant
greatly reduced the bacterial burdens in a mouse brain
abscessmodel and attenuated the expression of inflammatory
mediators [98]. In an in vivomodel of corneal virulence, AFT
also proved to be a decisive virulence factor [99].

AFT is one of the best-studied PFTs to date. It was the
first toxin of which the membrane structure was solved by
X-ray crystallography (see Figure 3(c3), [100]). AFT consists
of 293 amino acids and oligomerises on the plasma mem-
brane of target cells to a heptamer (potentially a hexamer)
prior to membrane insertion and pore formation. It was
shown to have an important role in bacterial pathogenesis,
especially by its ability to induce necrotic cell death [90],
by which it can cause vascular leakage when perfused into
the lung [101]. Recently the metalloprotease ADAM10 was
identified as the membrane receptor of AFT [102]. At low
toxin concentrations, ADAM10 is required to mediate the
cytotoxic effects of AFT. Interestingly, binding of AFT to
ADAM10 resulted in the upregulation of ADAM10 in alveolar
epithelial cells and concomitant cleavage of E-cadherin. This
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leads to epithelial barrier disruption thereby aggravating
staphylococcal pneumonia in mice [103]. Moreover, activa-
tion of the NLRP3-inflammasome by AFT might contribute
to later stages of sepsis, although the molecular mechanism
underlying inflammasome activation remains elusive at this
stage [31]. In this respect, it is interesting to note that, whereas
direct TLR activation has not been demonstrated for AFT,
NOD2-dependent sensing of S. aureus was dependent on
AFT [104].

Next to AFT, S. aureus expresses the bicomponent cyto-
toxins leukocidins (Luk) and the 𝛾-hemolysins (Hlg). Bicom-
ponent implies that class S toxins (LukS-PV, LukE, HlgA,
HlgC, and LukS) have to associate with class F toxins (LukF,
LukD, LukF-PV, and HlgB) in a 1 : 1 stoichiometric ratio to
form a functional oligomer before insertion into the mem-
brane (see Figure 3(c)). Pathogenic S. aureus can produce
several different bicomponent toxin pores, among the most
prominent are LukE/LukD [105], Panton-Valentine leuko-
cidin LukS-PV/LukF-PV, 𝛾-hemolysins LukF/HlgA [106],
HlgA/HlgB, HlgB/HlgC, and the M/F-PV-like leukocidins,
all of which might be expressed at different stages during
sepsis. The Panton-Valentine leukocidin (PVL), which was
first isolated from furuncles in 1936 [107], is probably themost
widely studiedmember. In amousemodel, secreted PVL pro-
motes tissue invasion and causes necrotizing pneumonia, via
mechanisms including upregulation of protein A and other
adhesins [108]. PVL is an important factor in the early stages
of skin infection, as shown in a rabbit skin infection model
[109]. Association of pvl and spa (protein A) genes seems
to be an important virulence determinant in methicillin-
resistant S. aureus (MRSA). Moreover, PVL was reported to
directly bind to TLR2 and induce inflammation in the mouse
lung [110]. LukE/LukDpromotes systemic bacterial growth in
vivo by specifically targeting neutrophils [111]. Interestingly,
via engagement of their native receptor CCR5 (CC-motif-
chemokine-receptor type 5), LukE/LukD toxin pores clear
antigen-presenting cells (macrophages and dendritic cells)
and S. aureus-specific CCR5-positive Th1/Th17 cells [112],
thus greatly contributing to the spread of S. aureus in the host.

AFT, Hlg, and the leukocidins belong to the class of 𝛽-
pore-forming toxins [17]. Despite their moderate sequence
identity (around 30% for the pairwise alignment with AFT),
they share a common structural fold (see Figure 3(c)). The
structures of the soluble, monomeric LukF (Figure 3(c1),
top, [113]), LukF-PV (Figure 3(c1), middle, [114]), LukS-PV
(Figure 3(c1), bottom, [115]), and the octameric, membrane
complex ofHlg (LukF/HlgA, Figure 3(c2), [116]) are available.
A common molecular mechanism could be proposed in
which a prestem, triple stranded 𝛽-sheet in the soluble
monomer, refolds to a double, stranded, membrane-inserted
𝛽-sheet (Figures 3(c2) and 3(c3), left), resulting in a hexadeca-
or tetradecastranded 𝛽-barrel that penetrates the membrane.

The target membrane specificities of S. aureus PFTs hint
towards their role in neonatal sepsis. Whereas AFT has a
broad specificity and might thus be involved at the initial
stages of sepsis manifestation, where the lung epithelium
needs to be breached, bicomponent leukocidins and Hlgs
mainly attack polymorphonuclear neutrophils, macrophages
and lymphocytes [117, 118]. Bearing in mind that PVL does

not attack lymphocytes and Hlg can be hemolytic, at least
in vitro, their restricted but highly directed mode of attack
predisposes the bicomponent leukocidins to be important
factors for the subversion of the immune system once the
initial barrier has been breached.

8. 𝛼-Hemolysin and Cytolysin A from
Escherichia coli

Pathogenic Escherichia coli (E. coli) cause around 25% of
invasive neonatal sepsis [119], and antibiotic resistance is
an emerging threat in this context [120]. Generally, E. coli
can persist in the intestine as a normal constituent of the
intestinal microbiota. However, extraintestinal pathogenic E.
coli (ExPECs) are the most common gram-negative bacterial
species isolated from neonates with bacterial infections, and
neonatal mortality from gram-negative sepsis remains high
[121]. Urinary tract infections of pregnant women can lead
to aspiration of ExPECs during partition with subsequent
uncontrolled growth in the lung of the newborn and potential
progression to a systemic infection. Pathogenic E. coli often
secrete the pore-forming toxin 𝛼-hemolysin (HlyA, CylA), a
107 kDa member of the RTX class of toxins [122], which is
usually associated with strains causing uropathogenic infec-
tions [123]. Deletion ofHlyA inE. coli greatly reducedmortal-
ity and cytokine production as compared to the isogenic wild
type bacteria in an intravenous infection model [124]. HlyA
furthermore induced hemorrhagic bleeding of bladder tissue
and exfoliation of urotheliumwhen pathogenic bacteria were
administered into the urethra [125]. HlyA is encoded by at
least 50% of all ExPEC clinical isolates [126]. Around 80%
of meningitis- and sepsis-associated E. coli belong to the K1
serotype [127, 128]. The E. coli K1 strain RS218 expressed
HlyA in a zebrafish model of systemic infection [126] and
the hlyA gene was present in more than 40% of E. coli from
the genital tracts of pregnant women [129]. As a member of
the repeats in toxin (RTX) family of hemolysins, the hlyA
gene is part of the chromosomal hlyCABD operon, which
also encodes a type 1 ABC transporter for secretion of the
PFT.The amino acid toxin repeats, which are located in theC-
terminal portion of the protein, are composed of the sequence
GGXGCDXUX (with U being a large hydrophobic residue).
These repeats are responsible for Ca2+ binding, which is a
prerequisite for membrane association and pore formation
by the N-terminal, hydrophobic, and acylated domain of
HlyA [130]. Interestingly, other pore-forming proteins, such
as the human cytotoxic lymphocyte encoded perforin, also
require binding of Ca2+ for membrane association and pore
formation [131]. HlyA oligomerises on the plasmamembrane
of target cells, where it accumulates in cholesterol-rich
microdomains [132, 133]. However, rather than cholesterol
being a direct, lipid membrane receptor as in the case of
the CDCs listeriolysin or pneumolysin, cholesterol seems to
contribute to the physicochemical environment necessary
for HlyA membrane engagement. The exact nature of the
pore formation mechanism is under considerable debate. It
seems now accepted that HlyA forms membrane pores as an
oligomer, at least in artificial membrane mimics [134–136],
albeit possibly heterogeneous in size [137]. In this respect,
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it is intriguing that the P2X7 receptor and pannexin 1 were
found to mediate HlyA-dependent pore formation [138, 139].
Sublytic doses of HlyA initiate degradation of paxillin and
proteolytic cascades inside epithelial cells and macrophages,
thus attenuating the inflammatory host response and pro-
moting epithelial exfoliation [140]. Similarly, HlyA inhibits
epithelial cytokine production potentially promoting epithe-
lial invasion of E. coli [141].

Another PFT of E. coli is ClyA (also termed hemolysin-
E or SheA), which is expressed by various pathogenic
and nonpathogenic E. coli including K12 strains, that are
also found in clinical isolates of neonatal meningitis [142],
bacteremia [143, 144], and neonatal sepsis [145]. However,
three neonatal meningitis K1 strains isolated by Ludwig
and colleagues harboured deletion mutations at the clyA
gene locus [146]. Nevertheless, a synergistic enhancement
of extraintestinal infection was recently reported between
nonpathogenic E. coli K12 and pathogenic ExPEC strains in
a mouse model of septicaemia [147], which hints towards
a potential involvement of ClyA. ClyA is a 34 kDa protein
belonging to the class of 𝛼-PFTs. The mechanism of pore
formation is well understood, as crystal structures for the
soluble [148] and membrane state [149] are available (see
Figure 3(b)). Upon association with the membrane, insertion
of the so-called 𝛽-tongue induces a series of substantial
structural rearrangements in the now membrane-anchored
monomer, resulting in a perpendicular position tomembrane
with the amphiphatic helix a1 now lying along its surface.
After oligomerisation to a dodecamer, helices a1 become
inserted into the membrane forming a 130 Å hollow cylinder
with a 30 Å aperture protruding through the membrane.

9. Synopsis and Medical Outlook

Neonatal sepsis is a syndrome caused by systemic inflam-
mation and defined by clinical criteria such as tachycardia,
respiratory distress, temperature instability, and unusually
high amount of immature immune cells in the blood.
Pathogenic bacteria that are aspirated by the fetus in the
birth canal during parturition can cause neonatal sepsis if
their infection is not controlled locally by the innate defence
mechanisms of the respiratory and alveolar epithelia. Toxins,
either proteinaceous or of other molecular nature, are impor-
tant factors contributing to neonatal sepsis.While endotoxins
such as the lipopolysaccharide (LPS) from Gram-negative
bacteria contribute to the sepsis phenotype by activating
monocytes andmacrophages via Toll-like receptor 4 binding,
pore-forming proteinaceous exotoxins act by permeabilising
target membranes of host cells. Whereas the membrane
targeting effects of PFTs, that is, engagement of membrane,
oligomerisation, and pore formation, are well defined, their
secondary downstream effects are manifold, owing to the fact
that defined ionic and molecular gradients across cellular
membranes modulate a diverse set of signalling cascades.
Unregulated cell death and its consequences are important
in neonatal sepsis [150]. The PFTs described above can cause
direct necrotic cell death, which in the case of E. coli, GBS,
and S. aureus contributes to overcoming the epithelial and
endothelial barriers in the lung. LLO of L. monocytogenes is

critical for cell invasion and cell-to-cell spread of this intra-
cellular pathogen and thus also contributes to breaching the
epithelial barriers of the host. Necrotic cell death can release
proinflammatory cytokines from leukocytes thus contribut-
ing to the inflammatory storm during sepsis. Interestingly,
several PFTs discussed above can induce the inflammasome:
AFT [31], 𝛽-hemolysin/cytolysin [28], LLO [29, 151], HlyA
[140], and leukocidins [32, 152]. Inflammasome activation
ultimately may contribute to hyperinflammation in newborn
infants similar to what has been shown in GBS and E. coli
sepsis inmice [28, 153]. PFTs can also elicit and alter apoptosis
of host immune cells, that is, AFT via caspase-2 [154, 155],
leukocidins via activation of caspases 3 and 9 [156], LLO
via release of cytochrome C from mitochondria [157], 𝛽-
hemolysin/cytolysin independently of caspase activation [36,
39], HlyA [158], and ClyA [159], thus potentially contributing
to the apparent immunodeficiency of the patient that is char-
acteristic during stages of sepsis [160]. Despite the formation
of hydrophilic channels by all PFTs, the ways in which they
induce the inflammasome are varied, hinting towards the
fact that functions of PFTs at cellular membranes are more
subtle than might be expected from their general mode
of action. In this respect, effects of sublytic concentrations
of PFTs have recently been explored. For instance, sublytic
doses of LLO induce mitochondrial network disorganisation
with transient alteration of the metabolic state of the target
cell, thus weakening the cell for L. monocytogenes entry
without destroying it [161]. Moreover, targeting of organs by
PFTs might also contribute to the septic phenotype. GBS
𝛽-hemolysin/cytolysin, for example, had marked effects on
cardiomyocyte contractility and viability [162].

Due to their role in neonatal sepsis and bacterial infection
in general, PFTs present attractive therapeutic targets. In
cases where membrane receptors have been defined, specific
inhibitors, akin to viral entry inhibitors, might prevent
membrane binding and pore formation. Monoclonal anti-
bodies against PFTs that prevent membrane binding and/or
refolding to the pore state could be a way of neutralising the
toxin, at least in the blood stream. Moreover, vaccines based
on PFTs may be used for immunizing women and thereby
protecting newborn infants through placental transfer of
specific immunoglobulins, given the fact that pneumolysin
from S. pneumoniae is considered a vaccine candidate [163].
Indeed, novel vaccines based onAFT are currently developed
[164]. As PFTs elicit specific cellular responses, it might,
however, also be promising to designing therapeutics based
on the pathways that the toxins induce in the target cell, as
has been proposed for p38MAPK and𝛽-hemolysin/cytolysin
from GBS [45]. In any case, it is exactly these cellular
responses towards PFTs that need to be investigated in the
context of neonatal sepsis in the future to improve therapeutic
strategies.
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