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Abstract
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at
10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size
from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly
oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous
recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions
and five with duplications have additional copy number changes. Detailed clinical evaluation of
20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/
or intellectual disability (ID) as the only features common to a majority of individuals. We suggest
that some of the other features present in more than one patient with deletion, including hypotonia,
sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia,
dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline
acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding
vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in
apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may
exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional
genetic and nongenetic modifiers.
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Introduction
Segmental duplications comprise approximately 5% of the human genome [Bailey et al.,
2002]. Misalignment of segmental duplications during meiosis can cause genomic instability
through nonallelic homologous recombination (NAHR) [Lupski, 1998; Mefford and Eichler,
2009; Shaffer et al., 2001; Stankiewicz and Lupski, 2002]. In NAHR, improper crossing-
over between nonallelic, yet homologous, segments (such as low-copy repeats [LCRs]) on
sister chromatids or on homologous chromosomes produces microdeletions,
microduplications, and inversions of the intervening genomic sequence, depending on the
orientation of the segmental duplications [Koolen et al., 2006; Shaffer and Lupski, 2000;
Sharp et al., 2006; Shaw-Smith et al., 2006; Stankiewicz and Lupski, 2002; Mefford and
Eichler, 2009]. Chromosomal rearrangements associated with segmental duplications
include deletions at 3q29 (MIM# 609425) [Willatt et al., 2005] and their reciprocal
duplications (MIM# 611936) [Ballif et al., 2008a]; Williams-Beuren syndrome (MIM#
194050) and deletions at 7q11.23 and their reciprocal duplications (MIM# 609757) [Berg et
al., 2007; Somerville et al., 2005]; Angelman (MIM# 105830) and Prader-Willi syndromes
(MIM# 176270) and maternally and paternally derived deletions, respectively, of 15q11q13;
deletions at 16p11.2p12.2 (MIM# 613604) and the reciprocal duplications [Ballif et al.,
2007]; Smith-Magenis syndrome (MIM# 182290) and deletions at 17p11.2 and their
reciprocal Potocki-Lupski syndrome duplications (MIM# 610883) [Potocki et al., 2007,
2000]; and duplication at 17p12 in Charcot-Marie-Tooth disease type 1A (MIM# 118220)
and the reciprocal deletion causing hereditary neuropathy with liability to pressure palsies
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(MIM# 162500) [reviewed in Stankiewicz and Lupski, 2002]. Such recurrent syndromes are
termed “genomic disorders” and usually meet several criteria: the rearrangement has
breakpoints in flanking segmental duplications, is usually de novo in affected individuals
and rarely observed in controls, and patients with the same rearrangement have similar,
consistent phenotypes [Lupski, 1998; Mefford and Eichler, 2009]. The underlying genomic
architecture in each of the genomic disorders identified to date is similar: a stretch of unique
sequence (50–10 Mb) flanked by large (>10 kb), highly homologous (>95%) segmental
duplications that provide the substrate for NAHR.

To date, interstitial deletions involving 10q11.2 have been reported in over 10 patients with
variable abnormal phenotypes, individuals with a normal phenotype, and two prenatal cases,
one with a normal and the other with an abnormal phenotype [Bisgaard et al., 2007; Fewtrell
et al., 1994; Fryns et al., 1991; Ghai et al., 2011; Holden and MacDonald, 1985; Kirchhoff et
al., 2005; Lobo et al., 1992; Shapiro et al., 1985; Zenger-Hain et al., 1993]. The only clinical
feature common to a majority of subjects was intellectual disability (ID)/developmental
delay (DD); whereas epilepsy, ataxia, clinodactyly, and bowel obstruction were all reported
in one subject. However, because all but three of these individuals were identified by
standard G-banded chromosome analysis, the precise deletion intervals are unknown.

Here, we report the clinical and molecular characterization of 24 individuals with deletion at
10q11.21q21.1 and 17 individuals with duplications of the same region.

Materials and Methods
Patient Ascertainment

Individuals with 10q11.21q21.1 deletions and duplications reported here were identified
after referral for chromosomal microarray analysis to clinical laboratories, including
Signature Genomic Laboratories (SGL) (patients 8–14, 17, 18, 24, 30–38), Baylor College
of Medicine (BCM) (patients 1–6, 19–23, 25–29), Washington University School of
Medicine (patients 7, 39–41), Children's Hospital of Philadelphia (patient 15), and Service
de Génétique Médicale CHUV, Lausanne, Switzerland (patient 16). Common indications for
study included DD, ID, dysmorphic features, and congenital anomalies. We reevaluated
DNA samples by sequencing for patients 1–7, 11, 15, 16, and 18–20 after obtaining
informed consent via protocols approved by Institutional Review Board (IRB) for Human
Subject Research at BCM and IRB, Spokane.

Initial Microarray Analysis
Deletions and duplications were initially ascertained through microarray-based comparative
genomic hybridization (aCGH) using either BAC-based whole-genome arrays
(SignatureChipWG v1.0.1 [designed and manufactured by SGL; patients 9–10, 13–14, 24,
29, 31–32]) or oligonucleotide-based whole-genome arrays (44K BCM V6 [patients 1–3],
105K BCM V7 [patients 4–6, 21, 22], 180K BCM V8 [patients 19–20, 22, 23, 25–28], 105K
SignatureChip OS v1.0 [SGL, patient 8], 135K SignatureChip OS v2.0 [SGL, patients 11–
12, 17–18, 24, 33–38], or 244K off-the-shelf array [Agilent Technologies, Santa Clara, CA;
patient 16]). The deletion in patients 7 and 15 and duplications in patients 39–41 were
initially identified using the genome-wide human single nucleotide polymorphism (SNP)
array 6.0 (Affymetrix, Santa Clara, CA). DNA samples from both parents of patient 16 were
tested using Agilent oligoNT 180K (Agilent Technologies, Santa Clara CA, USA). The
BCM oligonucleotide arrays and the SignatureChip OS v 1.0 are custom designed by BCM
Medical Genetics Laboratory (MGL) [Lu et al., 2007; Ou et al., 2008] and Signature
Genomics, respectively, and manufactured by Agilent Technologies. The SignatureChip OS
v2.0 is custom designed by SGL and manufactured by Roche NimbleGen (Madison, WI).
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Studies were performed according to the manufacturer's instructions or previously described
methods [Ballif et al., 2008a,b; Cheung et al., 2005; Duker et al., 2010].

High-Resolution Microarray Analysis to Refine the Breakpoints
Patients whose deletions were initially ascertained on BAC array had subsequent higher
resolution studies done on whole-genome oligonucleotide arrays (105K SignatureChip OS
v1.0, patient 9, or 135K SignatureChip OS v2.0, patients 10, 13, 14, and 27). These arrays
have coverage of the unique sequence in the region (proximal to LCR 10q11.2A, between
LCR 10q11.2A and B, between LCR 10q11.2B and C, between LCR 10q11.2C and D,
between LCR 10q11.2D and E, between LCR10q11.2E and F, and distal to LCR10q11.2F).

Custom region-specific high-resolution 72K oligonucleotide arrays (Roche NimbleGen;
median probe spacing 193 bp) were designed to determine the more precise location of the
breakpoints, and DNA samples from patients 2–6 were reanalyzed on this array. Whole-
genome high-resolution oligonucleotide microarray CGH analysis was also performed with
the NimbleGen arrays 385K (patient 1) and 2.1M (patients 2, 3, and 4), in accordance with
the manufacturer's instructions.

Fluorescence in situ Hybridization (FISH) Analysis
FISH was performed using BAC clones RP11-70E21 (patients 1– 4, 6, 20, 22, 25, 26, and
28), RP11-563N6 (patients 5, 19, and 22), RP11-541M12 (patients 7, 40, and 41),
RP11-635L5 (patients 8, 9, 24, 29, and 35), RP11-100M24 (patients 10, 11, 33, and 36),
RP11-140C5 (patients 12, 17, and 18), RP11-1005F22 (patients 13, 14, 30, 31, and 38),
RP11-165A4 (patient 27), RP11-10N24 (patient 32), RP11-219K22 (patient 34), and
RP11-168P8 (patient 37) from the 10q11.21q21.1 region to confirm and visualize the
abnormalities using standard methodology.

DNA Sequencing of CHAT
Overlapping amplicons covering the entire coding region of 17 exons from all isoforms of
CHAT (MIM# 118490) were amplified and sequenced in patients 1–7, 9, 11, 15, 16, 18, and
19 by conventional Sanger di-deoxynucleotide sequencing (Lone Star Labs, Houston, TX).
DNA sequences were analyzed by comparison with reference sequence (NM_001451.2)
with the use of Sequencher V4.8 (GeneCodes, Ann Arbor, MI). Individual primer sequences
and polymerase chain reaction (PCR) conditions are available on request.

Bioinformatics and In Silico Sequence Analysis
Genomic sequences of 1 Mb in size for the region between 45 and 57 Mb (10q11.21q21.1)
were downloaded from the UCSC genome browser (Build hg18, UCSC genome browser,
March 2006) and masked using Repeatmasker. The repeat-masked sequences were then
analyzed using Blast2, and the sequences with >90% identity and alignments of more than
400 bp were aligned according to the coordinates and their orientation.

To assess the chromosome architecture causing deletions and duplications in the 10q11.2
region, we evaluated the presence of LCRs using the ICAass (v 2.5) algorithm. The
graphical display was performed using Miropeats (v 2.01) (The Genome Institute at
Washington University, St Louis, MO) [Parsons, 1995a, b]. The program was run using two
thresholds of 1,000 and 5,000 bp. For ease of computation, the 8.0 Mb interval was analyzed
in two nonover-lapping blocks of 3.9 Mb each. The hg18 coordinates for these blocks are
chr10: 45,300,000–49,200,000 and chr10: 49,300,000–53,200,000.
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Results
Molecular Analysis

We identified 24 unrelated individuals with microdeletions at 10q11.21q11.23 by
chromosomal microarray analysis. The deletions range in size from ~1.9 to ~10.9 Mb
(Tables 1 and 2; Figs. 1–3).

Twenty deletions were visualized by FISH, and parental testing in 15 subjects showed that
the deletions were inherited from the mother in six patients (3, 5, 6, 9, 11, and 20), from the
father in seven patients (1, 2, 4, 7, 10, 14, and 24), and were apparently de novo in patients
15 and 16 (Tables 1 and 2). Parental samples for the remaining nine patients (8, 12, 13, 17–
19, and 21–23) were unavailable.

We have also identified 17 individuals with reciprocal microduplications involving
10q11.21q21.1, ranging in size from ~0.3 to ~12 Mb (Table 3; Fig. 3). Parental testing
showed that the duplications were inherited from the mother in six patients and from the
father in three patients. Parental samples for the other eight patients were unavailable for
testing (Table 3).

Smallest Region of Overlap
A comparison of the approximately 1.9 Mb smallest region of deletion overlap in the 24
deletions reported here (between 48.9 and 50.8 Mb) (Fig. 3) to locations of benign copy
number variants (CNVs) in the Database of Genomic Variants revealed the presence of a
small, unique sequence overlap of approximately 1.5 Mb (between 49.2 and 50.6 Mb;
LCR10q11.2C to LCR10q11.2D) that has not been reported to be deleted in control
individuals.

DNA Sequencing of CHAT
To determine whether the second allele of CHAT has a point mutation that could be
unmasked by the 10q11.2 deletion, we sequenced all coding exons of CHAT in a cohort of
13 subjects (patients 1–7, 9, 11, 15, 16, 18, and 19) with heterozygous deletions of 10q11.2
that included CHAT. We did not identify any change in 221 amplicons analyzed.

Computational Analysis of the 10q11.21q11.23 Region
Using the hg18 build of the UCSC genome browser [Bailey et al., 2001] and the hg17 build
of the Human Genome Segmental Duplication Database, we identified a complex
arrangement of six segmental duplication clusters in the 10q11.21q11.23 region, labeled
LCR 10q11.2A-LCR10q11.2F (Fig. 3). These segmental duplications range in size from 32
to 427 kb and have a complex evolutionary structure [Deloukas et al., 2004]. More than half
of the analyzed 6.5 Mb region in 10q11.21q11.23 is occupied by these LCR clusters and
seven genomic gaps. We identified 18 paralogous pairs of directly oriented LCR subunits
between LCR10q11.2A–C and LCR10q11.2D–F (Fig. 3; Supp. Table S1). Sixteen similar
sized approximately 6 Mb deletions (patients 2, 4–12, 15, 17–18, 20, 23, and 24) and five
duplications (patients 26, 28, 33, 40, and 41) are flanked by LCR10q11.2A and
LCR10q11.2E that harbor subunits approximately 130 kb in size with greater than 98.2%
DNA sequence identity and in direct orientation with respect to each other. Rearrangements
in six individuals might have been caused also by NAHR between LCR10q11.2C and
LCR10q11.2D (patients 16 and 21) and LCR10q11.2A–B and LCR10q11.2D–E (patients
22, 29, and 32), and by LCR10q11.2B and LCR10q11.2E (patient 35). Five deletions
(patients 1, 3, 13, 14, and 19) and nine duplications (25, 27, 30, 31, 34, 36–38, and 39) are
not flanked by directly oriented LCR subunits and represent atypical breakpoints (Fig. 3;
Supp. Table S1).
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Using Miropeats program, we have identified the paralogous LCR subunits in the proximal
and distal LCR10q11.2 that can serve as a substrate to NAHR (Figs. 3 and 4; Supp. Table
S1). Those directly oriented overlap with the defined breakpoint regions and can serve as the
substrates for NAHR (Fig. 3).

Identification of Additional Copy Number Changes in Patients
Nine of the 24 individuals with deletions have secondary copy number alterations. Three of
the additional copy number changes in patients 3, 7, and 20 were inherited from
phenotypically normal mothers. Patient 5 has an approximately 12 Mb additional, de novo
deletion in 3q13, which likely confounds the clinical phenotype associated with the 10q
deletion. The parental origins of the additional copy number changes in patients 9, 12, 19,
and 22 are unknown. Patient 16 had mosaic trisomy 2 confined to the placenta identified by
aCGH and confirmed by FISH in 15% of cells (Table 1). Uniparental disomy (UPD) testing
was not performed.

Deletion and Duplication Frequency in Affected and Control Populations
We compared the frequency of the 10q11.21q11.23 rearrangements among our study
population to the frequency in controls to determine whether the deletion predisposes
individuals to an abnormal phenotype. No complete deletions or duplications of the unique
sequence between LCR 10q11.2C and LCR 10q11.2D were found in six control groups
consisting of 2,792 individuals [Kirov et al., 2009], 2,493 individuals [Itsara et al., 2009],
2,026 individuals [Shaikh et al., 2009], 1,152 individuals [Zogopoulos et al., 2007], 450
individuals [Conrad et al., 2010], and 270 individuals [Redon et al. 2006], although several
small CNVs within this region were reported in two of the control populations [Itsara et al.,
2009; Shaikh et al., 2009]. CNVs overlapping the proximal LCRs are also more frequent in
these control populations, such as that seen in patient 14 (Fig. 2). Combining these
populations yields a frequency of 0/9,183 LCR10q11.2C to LCR10q11.2D deletions in
healthy controls.

To determine the frequency of the rearrangements in our study populations, we have
combined the frequency of the deletions and duplications (involving the entire 1.9 Mb
region between LCR10q11.2C and D), respectively, detected at BCM (11/25,354 and
4/25,354) with the frequency in Signature Genomics’ patient database (10/32,821 and
8/32,821). Thus, the combined frequencies of deletions and duplications in our study
populations are 21/58,175 and 12/58,175, respectively. The differences in deletion and
duplication prevalences between the affected and the control populations are statistically
significant (P = 0.046, Fisher Exact test) for deletions and not significant (P = 0.17, Fisher
Exact test) for duplications, when considering the number of deletion and duplication alleles
in diploid individuals or the number of individuals harboring deletion and duplication
events.

Clinical Analysis
Clinical characterization of 20 of 24 individuals with microdeletions at 10q11.21q11.23
revealed variable clinical features (Table 4). The only clinical features common to a
majority of individuals were ID and DD. Other clinical features identified in two or more
individuals include failure to thrive, growth retardation, or short stature (42%, 8/19), chronic
constipation (37%, 7/19), hypotonia (32%, 6/19), gatroesophageal reflux (GERD, 32%,
6/19), sleep apnea (26%, 5/19), cleft or high palate (26%, 5/19), epilepsy (21%, 4/19),
autism spectrum disorders (ASDs; 27%, 4/15), microcephaly (19%, 3/16), corpus callosum
abnormalities (18%, 2/11), attention deficit hyperactivity disorder (ADHD; 16%, 3/19),
ataxia or disco-ordination (16%, 3/19), micrognathia (16%, 3/19), vesicoureteral reflux
(16%, 3/19), severe eczema (16%, 3/19), scoliosis (11%, 2/19), significant congenital heart
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defects (11%, 2/19), microphthalmia (11%, 2/19), dysphagia (11%, 2/19), short halluces
(11%, 2/19), nystagmus (11%, 2/19), and ptosis (11%, 2/19). Interestingly, patient 1's
brother with the same deletion had constipation, and Decipher patient 248902 (deletion of
chr10: 49,130,990–50,638,651, including CHAT) presented with hypotonia, epilepsy, and
sleep apnea.

Although detailed clinical information was not obtained for the duplication patients, the
indication provided for testing for most patients included DD/ID. The next most common
manifestations included ASDs (patients 25, 26, 28, and 31) and epilepsy (patients 28, 33, 37,
and 38) (Table 3).

Discussion
The conventional wisdom surrounding genomic disorders posits that they fit several criteria:
the deletions/duplications are large, highly penetrant, de novo in the majority of individuals,
and associated with a uniform constellation of clinical features [Mefford and Eichler, 2009].
Smith-Magenis syndrome, Prader-Willi syndrome, and Williams-Beuren syndrome are
examples of such “classic” genomic disorders. In contrast to these “classic” genomic
disorders, many of the more recently described recurrent genomic lesions identified in large
case–control studies demonstrate apparently diverse phenotypes and are frequently inherited
while showing reduced penetrance [Ensenauer et al., 2003; Hannes et al., 2008; Klopocki et
al., 2007; Mefford et al., 2008; Sharp et al., 2008., Ullmann et al., 2007; Yobb et al., 2005].
These studies suggest the phenotypic effects of such copy number changes are pleiotropic
and imply the existence of shared biologic pathways among multiple neurodevelop-mental
conditions, which may explain the variability of neurological manifestations within some
families. However, even classical deletion syndromes can present with diverse phenotypes
[Shah et al., 2008].

In the present study, the only consistent clinical features present in the majority of
individuals with deletions or duplications were DD and ID (Tables 1–4). However, these
clinical features probably reflect an ascertainment bias, because individuals are often
referred for chromosomal microarray testing for general indications such as ID/DD.

Comparison with previously reported individuals with deletions encompassing 10q11.2
[Bisgaard et al., 2007; Fewtrell et al., 1994; Fryns et al., 1991; Ghai et al., 2011; Holden and
MacDonald, 1985; Kirchhoff et al., 2005; Lobo et al., 1992; Puliti et al., 1993; Shapiro et al.,
1985; Zenger-Hain et al., 1993] is uninformative because most of these deletions were
identified by standard cytogenetic analysis and are substantially larger than the deletions
reported here. Only two of the 15 deletions in our study for which parental samples were
available were de novo. In several recently described syndromes including 8p23 duplication
[Barber et al., 2008], 1q21.1 microdeletion (MIM# 612474) [Mefford et al., 2008], 15q13.3
microdeletion (MIM# 612001) [Sharp et al., 2008], and 16p12.1 microdeletion (MIM#
136570) [Girirajan et al., 2010], deletions have been found in control populations as well as
in unaffected family members. Recurrent microdeletions of 16p12.1 have been identified in
individuals referred for genetic testing for idiopathic ID and congenital anomalies and
appear to be enriched in such individuals compared to clinically normal controls. Almost all
the 16p12.1 microdeletions identified have been inherited from a carrier parent; carrier
parents for the 16p12.1 microdeletion are more likely to exhibit learning disability, bipolar
disorder or depression, and epilepsy than noncarrier parents. The presence of varying
degrees of learning disability in the adult family members suggests that some transmitted
abnormalities are pathological and have an underappreciated contribution to the phenotype
[Girirajan et al., 2010]. Similarly, 10q11.21q11.23 deletions are found in 10 apparently
normal parents (patients 2–7, 9–10, 14, and 20) and one grandparent (patient 7); however,
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none have been reported in 9,183 controls. Two carrier parents (patients 1 and 11) and two
carrier siblings (patients 1 and 11) are affected. The frequency of these deletions is
significantly enriched in cases versus controls.

The variable expressivity resulting from haploinsufficiency of genes in the deletion region
and its inheritance from apparently healthy carrier parents suggests additional modifiers,
genetic and nongenetic, may influence the pathogenicity of the 10q11.21q11.23
microdeletions. Several explanations have been proposed for the variable expressivity and
clinical heterogeneity in some genomic disorders. First, atypical or variable-sized copy
number changes may account for the variable phenotypes in some apparently recurrent
lesions. In our study population, the deletion sizes varied from 1.9 to 10.9 Mb, although
there was substantial clustering of deletion intervals. In addition, five of the deletions and
nine of the duplications were not flanked by directly oriented LCRs and thus are unlikely to
be caused by NAHR. Atypical breakpoints have been reported for other recurrent
rearrangements mediated by segmental duplications: for example, some of the rarer
rearrangements of 17p11.2 associated with Smith-Magenis syndrome do not have
breakpoints flanked by the typical paired segmental duplications and are not associated with
known genomic architectural features [Stankiewicz et al., 2003], and some of the
breakpoints in the recently identified 16p11.2p12.2 microdeletion syndrome are not flanked
by segmental duplications [Ballif et al., 2007].

A “two-hit” model has also recently been proposed to account for phenotypic variability; it
was first used to describe the recurrent deletion 16p12.1 [Girirajan et al., 2010]. In that
study, 25% of probands carried a “second hit”—a 40-fold increase for two or more copy
number changes over the general population. Furthermore, the clinical features in probands
with two hits were different from those with just the second hit. Further analysis of other
genomic disorders has shown clustering of two hits in copy number changes with variable
phenotypes compared to syndromic lesions [Girirajan and Eichler, 2010]. One hit may be
sufficient to reach a threshold that results in mild neurodevelopmental deficits, whereas a
second hit is necessary for the development of a more severe neurological phenotype,
including ID/DD, ASDs, or schizophrenia [Girirajan and Eichler, 2010]. Patients 5, 7, 9, 16,
and 19 have additional large copy number changes, including ~12 Mb deletion
3q13.12q13.32, ~4.8 Mb duplication 12q23.1q23.2, ~11.4 Mb duplication 6p25.3p22.1,
confined placental mosaicism for trisomy 2, and ~1.4 Mb duplication 15q21.2q21.3,
respectively, that might have contributed additional features to their abnormal phenotypes
not observed in other patients lacking additional copy number changes. In patient 19, one
cannot exclude the possibility of genomic imprinting in this region also contributing to the
phenotype.

A comparison of the approximately 1.9 Mb smallest region of overlap in the 24 deletions
reported here to locations of benign CNVs revealed the presence of a small, unique sequence
overlap of approximately 1.5 Mb (between 49.2 and 50.6 Mb, LCR 10q11.2 from C to D),
where complete deletions have not been reported in control populations. This critical
interval encompasses 11 RefSeq genes: MAPK8 (MIM# 601158), ARHGAP22 (MIM#
610585), WDFY4 (MIM# 613316), LRRC18, FAM170B, DRGX (MIM# 606701), ERCC6
(MIM# 609413), PGBD3, SLC18A3 (MIM# 600336), CHAT, and OGDHL (Fig. 1). Some
of these 11 genes are known to contribute to human disease. Recessive mutations in ERCC6
have been reported in patients with Cockayne syndrome type B (CSB, MIM# 133540)
[Falik-Zaccai et al., 2008; Ghai et al., 2011]. Interestingly, two genes, CHAT, encoding
choline acetyltransferase and the single exon SLC18A3 that maps to the first intron of
CHAT and encodes vesicular acetylcholine transporter, are involved in cholinergic
neurotransmission [Harold et al., 2003]. Point mutations in CHAT have been found in
patients with autosomal recessive myasthenic syndrome with episodic apnea (CMS-EA;
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MIM# 254210) [Ohno et al., 2001]. Of note, a few of our patients manifest some features
typical for CMS-EA such as hypotonia, sleep apnea, dysphagia, and ptosis. Usually,
haploinsufficiency for enzymes is not deleterious; however, exceptions have been described
[Bademci et al., 2010]. We suggest that the above features as well as chronic constipation,
gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, and nystagmus
present in some of our patients with heterozygous deletions at 10q11.2, could have been
exacerbated by haploinsufficiency of SLC18A3 (cis-genetics effect) and may be mitigated
with acetylcholinesterase inhibitors. In support of this notion, a 50–100% increase of the
choline transporter 1 (Slc5a7) mRNA was found in the heterozygous Chat+/– mice and was
proposed to compensate for the reduced Chat activity and restore the acetylocholine amount
[Brandon et al., 2004]. Alternatively, the abnormal phenotype in patients with a
heterozygous deletion of a gene responsible for an autosomal recessive trait can result from
unmasking of a recessive mutation or functional polymorphism of the remaining allele
[Kurotaki et al., 2005]. However, we did not identify any change in 221 amplicons
sequenced in the second allele of CHAT in 13 patients with heterozygous deletions of
10q11.2.

Notably, none of the deletions presented here harbor the RET proto-oncogene that maps 2.5
Mb centromeric to the proximal LCR10q11.2 LCR cluster. Mutations in RET have been
reported in patients with multiple endocrine neoplasia, type IIA (MEN2A; MIM# 171400),
MEN, type IIB (MEN2B; MIM# 162300), Hirschsprung disease (HSCR; aganglionic
megacolon; MIM# 142623), and medullary thyroid carcinoma (MTC; MIM# 155240).
Interestingly, Puliti et al. [1993] described a patient with a cytogenetically visible deletion
10q11.2q21.2 and a variant of HSCR.

As expected from the NAHR mechanism, we also identified patients with the reciprocal
microduplications. None of them were referred for microarray testing for any of the specific
clinical features that we suggest may be due to haploinsufficiency of the CHAT and
SLC18A3 genes, although detailed clinical descriptions were not available to us.

We report novel deletions and duplications at 10q11.21q11.23 that are likely caused by
NAHR between LCRs. Our findings challenge the traditionally used paradigm in the
diagnostic setting that aberrations inherited from a phenotypically normal parent are usually
without clinical consequences. Large copy number alterations such as those described in this
report are associated with unpredictable and variable phenotypic outcomes and pose
diagnostic and counseling difficulties. Careful consideration of additional factors that may
influence variable phenotype should be considered. Larger studies are needed to obtain a
better understanding of this complex genomic region and its associated pathology. Further
analysis of the 10q11.21q11.23 deletion in a well-phenotyped family might reveal that the
deletion has recognizable phenotypic consequences, although the effect in some individuals
may be more subtle depending on genetic and/or nongenetic modifiers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Chromosomal microarray results for eight samples analyzed by BCM, using
RocheNimbleGen oligonucleotide-based microarrays. At the top is a schematic of the
genomic architecture of the region. Black boxes represent sequence gaps. Colored boxes
represent segmental duplications. For each plot, probes are arranged on the X-axis according
to physical mapping positions, with the most proximal 10q11.21 probes to the left and the
most distal 10q11.23 probes to the right. Values along the Y-axis represent log2 ratios of
patient:control signal intensities. Deletion intervals are represented by a dotted bracket
(patients 1–5) or vertical, solid black lines (patients 6, 19–20).
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Figure 2.
Chromosomal microarray results for patient samples analyzed by SignatureChip
oligonucleotide-based microarray. At the top is a schematic of the genomic architecture of
the region. Black boxes represent sequence gaps. Colored boxes represent segmental
duplications. For each plot, probes are arranged on the X-axis according to physical
mapping positions, with the most proximal 10q11.22 probes to the left and the most distal
10q11.23 probes to the right. Values along the Y-axis represent log2 ratios of patient:control
signal intensities.

Stankiewicz et al. Page 16

Hum Mutat. Author manuscript; available in PMC 2013 May 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Summary of chromosomal microarray analysis of individuals with deletions and
duplications 10q11.21q21.1. At the top of the figure is a partial idiogram showing
chromosome bands 10q11.21q21.1 with genomic coordinates corresponding to the hg18
build of the human genome. Green bars represent the deletions and the orange bars the
duplications. Red bars represent segmental duplications. Only the directly oriented
paralogous LCR subunits (18) between LCR10q11.2s A–C and D–F, that have a potential
for NAHR, are shown for illustrative purposes as the colored arrows. Each of the 18
paralogous pairs is shown in different color (Supp. Table S1). Note that NAHR might have
mediated rearrangements in patients 2, 4–12, 15, 17–18, 20, 23, 24, 26, 28, 33, 40, and 41
(between LCR10q11.2A and LCR10q11.2E), 16 and 21 (between LCR10q11.2C and
LCR10q11.2D), 22, 29, and 32 (between LCR10q11.2A–B and LCR10q11.2D–E), and 35
(between LCR10q11.2B and LCR10q11.2E). Dark blue bars depict seven genomic gaps.
Semitransparent light blue shading represents the collapsed LCR clusters A–F.

Stankiewicz et al. Page 17

Hum Mutat. Author manuscript; available in PMC 2013 May 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Semitransparent yellow shading represents the smallest region of unique sequence shared by
all deletion patients.
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Figure 4.
DNA sequence homology between the proximal (chr10: 45,300,000–49,200,000) and distal
(chr10: 49,300,000–53,200,000) LCR10q11.2 clusters for the paralogous subunits larger
than 1 kb in size (hg18) using Miropeats program analysis. The upper and bottom panels
depict the UCSC segmental duplication track.
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