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Abstract
Segmentation involves separating an object from the background. In this work, we propose a
novel segmentation method combining image information with prior shape knowledge, within the
level-set framework. Following the work of Leventon et al., we revisit the use of principal
component analysis (PCA) to introduce prior knowledge about shapes in a more robust manner.
To this end, we utilize Kernel PCA and show that this method of learning shapes outperforms
linear PCA, by allowing only shapes that are close enough to the training data. In the proposed
segmentation algorithm, shape knowledge and image information are encoded into two energy
functionals entirely described in terms of shapes. This consistent description allows to fully take
advantage of the Kernel PCA methodology and leads to promising segmentation results. In
particular, our shape-driven segmentation technique allows for the simultaneous encoding of
multiple types of shapes, and offers a convincing level of robustness with respect to noise, clutter,
partial occlusions, or smearing.

1. Introduction
Segmentation consists of extracting an object from an image, an ubiquitous task in computer
vision applications. It is quite useful in applications ranging from finding special features in
medical images to tracking deformable objects; see [7, 14, 16, 17] and the references
therein. The active contour methodology has proven to be quite valuable for performing this
task. However, the use of image information alone often leads to poor segmentation results
in the presence of noise, clutter or occlusion. The introduction of shape priors in the contour
evolution process has been shown to be an effective way to address this issue, leading to
more robust segmentation performances.

Many different methods which use a parameterized or an explicit representation for contours
have been proposed [2, 15, 3]. In [4], the authors use the B-spline parametrization to build
shape models in the kernel space [8]. These models were then used in the segmentation
process to provide shape prior. The geometric active contour framework (GAC) (see [12]
and the references therein) involves a parameter free representation of contours, i.e., a
contour is represented implicitly by the zero level set of a higher dimensional function,
typically a signed distance function [9]. In [7], the authors obtain the shape statistics by
performing linear principal component analysis (PCA) on a training set of signed distance
functions (SDFs). This approach was shown to be able to convincingly capture small
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variations in the shape of an object. It inspired other schemes to obtain shape prior described
in [14, 11], notably, where SDFs were used to learn the shape variations.

However, when the object considered for learning may undergo complex or non-linear
deformations, linear PCA can lead to unrealistic shape priors, by allowing linear
combinations of the learnt shapes that are unfaithful to the true shape of the object. Cremers
et al., successfully pioneered the use of kernel methods to address this issue, within the
GAC framework [5]. In the present work, we propose to use Kernel PCA to introduce shape
priors for GACs. Kernel PCA was presented by Scholkopf [8] and allows to combine the
precision of kernel methods with the reduction of dimension in the training set. This is the
first time, to our knowledge, that Kernel PCA is explicitly used to introduce shape priors in
the GAC framework. In this paper, we also propose a novel intensity segmentation method,
specifically tailored to allow for the inclusion of shape prior.

In the next section, we compare linear PCA to Kernel PCA, using SDFs and binary maps as
representations of shapes. In Section 3, we propose an intensity-based energy functional in
terms of binary shapes for separating an object from the background, in an image. These
energies are qualitatively similar to the ones proposed by [1, 10] but quantitatively different.
In Section 4, we present a robust segmentation framework, combining image cues and shape
knowledge in a consistent fashion. The robustness of the proposed algorithm is
demonstrated on various challenging examples, in Section 5.

2. Kernel PCA for shape prior
Kernel PCA can be considered to be a generalization of linear principal components
analysis. This technique was introduced by Scholkopf [8], and has proven to be a powerful
method to extract nonlinear structures from a data set. The idea behind Kernel PCA consists
of mapping a data set from an input space ℐ into a feature space F via a nonlinear function
φ. Then, PCA is performed in F to find the orthogonal directions (principal components)
corresponding to the largest variation in the mapped data set. The first l principal
components account for as much of the variance in the data as possible by using l directions.
In addition, the error in representing any of the elements of the training set by its projection
onto the first l principal components is minimal in the least square sense.

The nonlinear map φ typically does not need to be known, through the use of Mercer
kernels. A Mercer kernel is a function k(․, ․) such that for all data points χi, the kernel matrix
K(i, j) = k(χi, χj) is symmetric positive definite [8]. It can be shown that using k(․, ․) one can
obtain the inner scalar product in F: k(χa, χb) = (φ(χa) · φ(χb)), with (χa, χb) ∈ ℐ.

We now briefly describe the Kernel PCA method [6, 8]. Let τ = {χ1, χ2, …, χN} be a set of
training data. The centered kernel matrix K̃ corresponding to τ, is defined as

(1)

with , φ̃(χi) = φ(χi) − φ̄ being the centered map corresponding to χi and k̃(․,
․) denotes the centered kernel function. Since K̃ is symmetric, using Singular Value
Decomposition, it can be decomposed as

(2)

where S = diag(γ1, …, γN) is a diagonal matrix containing the eigenvalues of K̃. U = [u1, …,
uN] is an orthonormal matrix. The column-vectors ui = [ui1, …, uiN]t are the eigenvectors
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corresponding to the eigenvalues γi’s. Besides it can easily be shown that K̃ = HKH, where

. 1 = [1, …, 1]t is an N × 1 vector.

Let C denote the covariance matrix of the elements of the training set mapped by φ̃. Within
the Kernel PCA methodology, C does not need to be computed explicitly, only K̃ needs to
be known to extract features from the training set [13]. The subspace of the feature space F
spanned by the first l eigenvectors of C, will be referred to as the Kernel PCA space, in what
follows. The Kernel PCA space is the subspace of F, obtained from learning the training
data.

Let χ be any element of the input space ℐ. The projection of χ on the Kernel PCA space will
be denoted by Plφ(χ)1. The projection Plφ(χ) can be obtained as given in [8]. In the feature

space F, the squared distance  between a test point χ and its projection on the Kernel PCA
space is given by [8]:

Using some matrices manipulations, this squared distance can be expressed only in terms of
kernels as:

(3)

where, kχ = [k(χ, χ1) k(χ, χ2), …, k(χ, χN)]t,  and .

2.1. Kernel for linear PCA
In [7], the authors presented a method to learn shape variations by performing PCA on a
training set of shapes (closed curves) represented as the zero level sets of signed distance
functions. Using the following kernel in the formulation of Kernel PCA presented above,
amounts to performing Linear PCA on SDFs2:

(4)

for all SDFs Φi and Φj : R2 ↦ R.

A different representation for shapes is to use binary maps, i.e., to set to 1 the pixels located
inside the shape and to 0 the pixels located outside (see figure 1). One can change the shape

representation from SDFs to binary maps using the Heaviside function 

Note that, in this case, the kernel allowing to perform linear PCA is given by kid(HΦi, HΦj)
= (HΦi․HΦj).

1In this notation l refers to the first l eigenvectors of C used to build the Kernel PCA space.
2id here stands for the identity function: when performing linear PCA the kernel used is the inner scalar product in input space, hence
the corresponding mapping function φ = id.
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2.2. Kernel for nonlinear PCA
Choosing a nonlinear kernel function k(․, ․) leads to performing nonlinear PCA. The
exponential kernel has been a popular choice in the machine learning community and has
proven to nicely extract nonlinear structures from data sets. Using SDFs for representing
shapes, this kernel is given by

(5)

where σ2 is the variance parameter computed a-priori and ‖Φi − Φj‖
2 is the squared L2-

distance between two SDFs Φi and Φj. If the shapes are represented by binary maps, the
corresponding kernel is

(6)

This exponential kernel is one among many possible choice of Mercer kernels: Other kernels
could possibly be used to extract other specific features from the training set [8].

2.3. Shape Prior for GAC
To include prior knowledge on shape in the GAC framework, we propose to use the
projection on the Kernel PCA space as a model and to minimize the following energy:

(7)

A similar idea was proposed in [13, 8], for the purpose of pattern recognition. In (7), χ is a
test shape represented using either a SDF (χ = ϕ) or a binary map (χ = Hϕ) and φ refers to

either id (linear PCA) or φσ (Kernel PCA). Minimizing  amounts to driving the test
shape χ towards the Kernel PCA space computed a priori from a training set of shapes using

(2). In the GAC framework, the minimization of , can be undertaken as follows:

(8)

The gradient of  can be computed by applying calculus of variation and (3). For the
kernel given in (6), the following result is obtained:

with 

2.3.1 Linear PCA vs Kernel PCA—In this section we compare linear PCA with non-
linear PCA for two different representations of shapes, i.e., SDF and binary map. Two
training set of shapes were used: The first training set consists of various shapes of a man
playing soccer and the second training set consists of various shapes of a shark (see Figure
1). These shapes were aligned using an appropriate registration scheme (see, [14]) to discard
differences between them due to Euclidian transformations. The Kernel PCA space
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corresponding to each of the kernels presented in Sections 2.1 and 2.2 were then built for the
two training sets. Starting from an arbitrary shape, Figure 2(a), the contour was deformed by
running equation (8) until convergence: We will refer to this operation as “morphing”, in
what follows.

Figure 2(b) shows the morphing results obtained by applying linear PCA on SDF. Figure
2(d) shows the morphing results obtained by applying linear PCA on binary maps. As can be
noticed, results obtained for the SDF representation bear little resemblance with the
elements of the training sets. Results obtained for binary maps are more faithful to the learnt
shapes. Figure 2(c) and (e) present the morphing results obtained by applying nonlinear
PCA on SDF and binary maps, respectively. In both cases, the final contour is very close to
the training set and results are better than any of the results obtained with linear PCA.

Hence, Kernel PCA outperforms linear PCA as a means to introduce shape priors and binary
maps seem to be an efficient shape representation. Besides, the learning process using
Kernel PCA comes with no significant additional cost compared to linear PCA, thanks to the
kernel formulation [8, 13]. Another advantage of using the exponential kernel, is that it
enables to control the degree to which “mixing” is allowed between the learnt shapes, in the
shape prior, larger σ’s allowing more mixing. This is shown in Figure 3. The choice of σ
typically depends on how much the shapes vary within the data set: If the variation is large,
a smaller value for σ is usually preferable.

3. Intensity based segmentation
Different models [18, 1, 10], which incorporate geometric and/or photometric (color,
texture, intensity) information, have been proposed to perform region based segmentation
using level sets. In what follows, we present a novel intensity based segmentation
framework aimed at separating an object from the background, in an image I. The main idea
behind the proposed method is to build an “image shape model” (denoted by G[I,Φ]) by
thresholding the image I based on the estimates of the intensity statistics of the object (and
background), available at each step t of the contour evolution: G[I,Φ] is interpreted as the
most likely shape of the object of interest, based on the available information. The contour at
time t is deformed towards this “image shape model” by minimizing the following energy:

(9)

This energy functional amounts to measuring the distance between two binary maps, e.g.:
HΦ and G[I,Φ]. This is quite valuable in the present context, where shapes are represented
using binary maps as in earlier sections. Thus, when the shape energy term described before
is combined with the following formulation for image segmentation, all the elements are
expressed in terms of shapes. This is one of the unique contributions in this work. In what
follows, we describe two particular cases of this general framework.

3.1. Object and background with different mean intensities
As in [1, 18], we assume that the image is composed of two regions having different
intensity means: μo (respectively μb) is the mean intensity of the object (respectively of the
background). Given an initial guess for the shape of the object and representing the contour
as the zero level set of a SDF Φ, one can calculate the mean intensity inside (μ1) and outside

(μ2) the curve as  and . The goal is to
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deform this initial contour so that μ1 = μo and μ2 = μb. To achieve this, the “image shape
model” G[I,Φ] is generated at each step t, in the following manner:

Notice that G[I,Φ] is the image shape model (binary map) obtained from thresholding the
image intensities so that values closer to μ1 are classified as object (set to 1) and others are
classified as background (set of 0). For numerical experiments, the function G[I,Φ] is
calculated as follows:

where ε, a parameter such that G[I,Φ,ε] → G[I,Φ] as ε → 0.

3.2. Object and background with different variances
Following [10], we assume that the image is composed of two regions, with different
variance in intensity. The mean intensities are computed as before, while the variances

inside (σ1) and outside (σ2) the curve are computed as follows:  and

. In this case, the image shape model G[I,Φ] is obtained as
follows:

where,

This thresholding ensures that pixels set to 1 in G[I,Φ] correspond to pixels that are more
likely to belong to the object of interest in the image, based on information available at step
t. In the same way, pixels set to 0 in G[I,Φ] correspond to pixels that are more likely to
belong to the background. Figure 4 shows the different cases justifying the way thresholding
is performed in equation (10).

In numerical applications, the binary map G[I,Φ] in (10) is computed as follows (for ε small):

Figure 5, presents results obtained for each of the image shape models presented above.
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4. Combining Shape Prior and Intensity information
In this part, we combine shape knowledge obtained by performing nonlinear PCA on binary
maps with image information obtained by building an “image shape model”, within the

GAC framework. As presented above,  and Eimage are squared distances between the
shape of the current contour and a model. However, Eimage is a squared distance in input

space, whereas  is expressed in the feature space. Thus, equilibrium would be hard to

reach between “forces” extracted from  and Eimage
3. This can be remedied by noticing

that, for any SDFs ϕa and ϕb:

By defining , a new shape prior energy functional is
obtained4. This energy Eshape, like Eimage, is homogeneous to a square distance in input
space. This consistent description of energies allows for efficient and intuitive equilibration
between image cues and shape knowledge, through the following energy functional:

(10)

4.1. Invariance to Similarity Transformations
Let p = [tx, ty, θ, ρ] = [p1, p2, p3, p4] be a vector of parameters corresponding to a similarity
transformation; tx and ty corresponding to translation according to x and y-axis, θ being the
rotation angle and ρ the scale parameter. Let us denote by Î(x̂, ŷ) the image obtained by
applying the transformation: Î (x̂, ŷ) = I(ρ(x cos θ − y sin θ + tx), ρ(x sin θ + y cos θ + ty)). As
mentioned above, the elements of the training sets are aligned prior to the construction of the
space of shapes. Supposing that the object of interest in I differs from the registered
elements of the training set by a similarity of parameter p, this transformation can be
recovered by minimizing E(Φ, Î) with respect to the pi’s. During evolution, the following
gradient descent scheme can be performed for i ∈ [1, 4]:

5. Experiments
This section presents segmentation results obtained by introducing shape prior using Kernel
PCA on binary maps and using our intensity based segmentation methodology: Equation
(10) was run until convergence on diverse images.

3  would, indeed, exhibit nonlinear behaviors due to the exponential terms figuring in its expression

4By applying the chain rule, one can verify that ∇ϕEshape and  have the same direction and similar influence on the
evolution.
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5.1. Toy Example: Shape Priors Involving Objects of Different Types
Kernel methods have been used to learn complex multimodal distributions in an
unsupervised fashion (see [8], and the references therein). The goal of this section is to
investigate the ability of the proposed framework to simultaneously learn and accurately
detect objects of different shapes. To this end, we built a training set consisting of four
words, “orange”, “yellow”, “square” and “circle” each written using twenty different fonts.
The size of the fonts was chosen to lead to words of roughly the same length. The obtained
words (binary maps, see Figure 1) were then registered according to their centroid. No
further effort such as matching the letters of the different words was pursued. The method
presented in Section (2) was used to build the corresponding space of shapes for the
registered binary maps.

We tested our framework on images where a corrupted version of either of the four words
“orange”, “yellow”, “square” or “circle” was present (Figure 6, 1st row). Word recognition
is a challenging task and addressing it using geometric active contours may not be a
panacea. However, the ability of the level set representation to naturally handle topological
changes was found to be useful for this purpose: During evolution, the contour split and
merged a certain number of times to segment the disconnected letters of the words. In all the
following experiments, β1 and β2 were fixed in (10) and the same initial contour was used.

Experiment 1: In this experiment, one of the words “square” belonging to the training set
was corrupted: The letter “u” was almost completely erased. The shape thus obtained was
filled with gaussian noise of mean μo = .5 and variance σo = .05. The background was also
filled with Gaussian noise of same mean μb = .5 but of variance σb = .2. The result of
applying our method is presented Figure 6(a). Despite the noise and the partial deletion, a
very convincing segmentation is obtained. In particular, the correct font is detected and the
letter “u” accurately reconstructed. In addition, the final curve is smooth even if no
curvature term was used for regularization. Hence, using binary maps to represent shape
priors can have valuable smoothing effects, even when dealing with noisy images.

Experiment 2: In this second experiment, one of the elements of the training set was used. A
thick line (occlusion) was drawn on the word and a fair amount of gaussian noise was added
to the resulting image. The result of applying our method is presented Figure 6(b). Despite
the noise and the occlusion, a very convincing segmentation is obtained. In particular, the
correct font is detected and the thick line completely removed. Once again, the final contour
is smooth despite the fairly large amount of noise.

Experiment 3: Here, the word “yellow” was written using a different font from the ones used
to build the training set. Additionally, a “linear shadowing” was used in the background
(completely hiding the letter ”y”) and the letter ”w” was replaced by a grey square. The
result of applying our framework is presented in Figure 6(c). The word “yellow” is correctly
recognized and segmented. Also, the letters “y” and ”w”, were completely reconstructed.

Experiment 4: In this experiment, the word “orange” was handwritten in capital letters
roughly matching the size of the letters of the words in the training set. The intensity of the
letters was chosen to be rather close to some parts of the background. In addition, the word
was blurred and smeared in a way that made its letters barely recognizable. This type of
blurring effect is often observed in medical images due to patient motion. This image is
particularly difficult to segment, even using shape prior, since the spacing between letters
and the letters themselves are very irregular due to the combined effects of handwriting and
blurring. Hence, mixing between classes (confusion between either of the 4 words) can be
expected in the final result. In the final result obtained, the word “orange” is not only
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recognized but satisfyingly recovered; in particular, a thick font was obtained to model the
thick letters of the word (Figure 6(d)).

Hence, starting for each experiment from the same initial contour, our algorithm was able to
accurately detect which word was present in the image. This highlights the ability of our
method not only to gather image information throughout evolution but also to distinguish
between objects of different classes (“orange”, “yellow”, “square” and “circle”). Comparing
the final contours obtained in each experiments to the final “image shape model” G[I,ϕ] (last
row of Figure 6), one can measure the effect of our shape prior model in constraining the
contour evolution: The image information alone would lead to a shape that would bear very
little resemblance with any of the four words learnt.

5.2. Real Images Example: Tracking of challenging sequences
To test the robustness of the framework, tracking was performed on two challenging
sequences. A very simple tracking scheme was used: the same initial contour was used for
each image in the sequence. This contour was initially positioned wherever the final contour
was in the preceding image. The coefficients β1 and β2 were fixed throughout each
sequence. Of course, many efficient tracking algorithms have already been proposed.
However, convincing results were obtained here without considering the system dynamics,
for instance. This highlights the efficiency of including prior knowledge on shape for the
robust tracking of deformable objects.

5.2.1 Soccer Player Sequence—In this sequence (composed of 130 images), a man is
jingling with a soccer ball. The challenge is to accurately capture the large deformations due
to the movement of the person (e.g.: limbs undergo large changes in aspect), while
sufficiently constraining the contour to discard clutter in the background. A training set of
22 silhouettes (Figure 1, first row) was used. The version of Eimage involving the intensity
means only was used to capture image information. Despite the small number of shapes
used, successful tracking was obtained, correctly capturing the posture of the player.

5.2.2 Shark Video—In this sequence (composed of 70 images), a shark is evolving in a
highly cluttered environment. Besides, the shark is oftentimes occluded by other fish and is
poorly contrasted. To perform tracking, 15 shapes were extracted from the first half of the
video (Figure 1, second row) and used to build shape prior. The version of Eimage involving
the variances was used to make up for the poor contrast of the shark in the images. Once
again, despite the small training set, successful tracking performances were observed: The
shark was correctly captured, while clutter and obstacles rejected.

6. Conclusion
In this work, we used Kernel PCA to introduce prior knowledge about shapes in the GAC
framework. Better performance of Kernel PCA over linear PCA was demonstrated for two
representations of shapes (binary maps and SDFs). We also developed a general approach to
separate an object from the background using various image intensity statistics. In our
algorithm, image information and shape knowledge were combined in a consistent fashion:
both energies were expressed in terms of shapes. The proposed method not only allowed to
simultaneously learn shapes of different objects but was also robust to noise, blurring,
occlusion and clutter. In addition, even if the same parameters and same initial contour were
used for each of the image of the sequences, successful tracking was obtained: This further
highlights the robustness of the framework.
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Figure 1.
Three training sets (Before alignment - Binary images are presented here). First row,
“Soccer Player” silhouettes (6 of the 22 used). Second row, “Shark” silhouettes (6 of the 15
used). Third row, “4 words” (6 of the 80 learnt; 20 fonts per word).
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Figure 2.
Morphing results of an arbitrary shape, obtained using Linear PCA and Kernel PCA applied
on both Signed Distance Functions and binary maps. First row: Results for the “Soccer
Player” training set, Second row: Results for the “Shark” training set. (a): Initial shape, (b):
PCA on SDF, (c): Kernel PCA on SDF (d): PCA on binary maps, (e): Kernel PCA on binary
maps.
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Figure 3.
Influence of σ for the Kernel PCA method (exponential kernel) applied on binary maps.
Morphing results of an arbitrary shape are presented for the “Shark” training set. (a): Initial
shape, (b): Morphing result for σ = 3, (c): σ = 7, (d): σ = 9, (e): σ = 15,.
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Figure 4.
Probability density functions. Thick line: p(I ∈ Object); Thin line: p(I ∈ background). It is
straightforward to see that p(I ∈ Object) > p(I ∈ Object) for I1 ≤ I ≤ I2, when σ1 < σ2 and for
I ≥ I1 and I ≤ I2, when σ1 > σ2.
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Figure 5.
Segmentation results obtained using Eimage, equation (9). Initial contour in black, final
contour in white. Left: 1st moment only. Right: second order moments (Two regions of same
mean intensity and different variances)
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Figure 6.
Segmentation results for the “4 Words” training set. Shape Priors were built by applying the
Kernel PCA method on binary maps as presented in Section 2. First row: Original images to
segment, Second row: Segmentation results, Third row: shape underlined by the final
contour (Hϕ), Fourth row: “Image shape model” (G[I,ϕ]) obtained when computing Eimage
for the final contour.
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Figure 7.
Tracking results with the proposed method. First row: Soccer Player Sequence (Rightmost
frame is the result obtained without shape prior; β2 = 0 in (10)). Second row: “Shark”
sequence (Rightmost frame is an original image from the sequence, reproduced here to
assess the poor level of contrast).
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