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Abstract
Automated image analysis of histopathology specimens could potentially provide support for early
detection and improved characterization of breast cancer. Automated segmentation of the cells
comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative
analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most
traditional segmentation algorithms. In this paper, we propose a novel algorithm which can
reliably separate touching cells in hematoxylin stained breast TMA specimens which have been
acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a
fast, reliable object center localization approach which utilizes single-path voting followed by
mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based
on an interactive model. We compared the experimental results with those reported in the most
current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy
provided by human experts with that produced by the new automated segmentation algorithm. The
method was systematically tested on 234 image patches exhibiting dense overlap and containing
more than 2200 cells. It was also tested on whole slide images including blood smears and tissue
microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is
well suited for parallelization, a parallel version of the algorithm was implemented using graphic
processing units (GPU) which resulted in significant speed-up over the C/C++ implementation.
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I. Introduction
Breast cancer is one of the most frequently diagnosed cancers in women. Approximately
209, 060 new cases of invasive breast cancer were reported in women in the US during
2010. There is more than a 98% five-year relative survival rate when localized breast cancer
is detected before it spreads to other parts of the body [1]. Tissue microarrays (TMAs) are a
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relatively new technology for arranging small histological sections (histospots) in a matrix
configuration on a recipient paraffin block [2], [3]. TMAs provide an efficient method for
preserving tissue while facilitating high-throughput of multiple tissue samples in parallel [4],
[5], [6], [7], [8]. Digital microscopy is a complementary technology which is now generally
accepted as a reliable tool for visualizing [8], archiving and sharing [9], [10], [11] pathology
specimens including TMAs.

Segmenting individual cells in digitized histopathology specimens is usually the first step
that is required in automatic image analysis. Recently, an unsupervised clustering approach
which utilizes both color and texture features to segment prostate cancer specimens was
proposed in [12]. A computationally efficient approach that exploits color and differential
invariants to assign class posterior probabilities to delineate the epithelial nuclei, stroma and
background regions in breast microarray was reported in [13]. Segmentation of color and
multispectral images was later proposed by combining spatial clustering and vector level set
active contours to assess prostate cancer samples in [14].

Each of these segmentation methods produced good results on regions exhibiting little or no
cell crowding, however, they often failed to separate touching cells accurately. The
watershed family of algorithms has become one of the most commonly used segmentation
methods to address the challenge of touching cells. However the primary limitation of the
watershed approaches is that they often result in over segmentation. Some algorithms such
as marker-controlled watershed correction [15], [16], rule-based strategies [17], [18], [19]
were developed to address this problem by merging over-segmented regions, but it is
difficult to derive a generalized rule to merge over-segmented patches across image
ensembles. Evolving generalized Voronoi diagrams [15], [20], [21] which utilize image
intensity and geometric information was recently investigated to segment 2D and 3D images
containing overlapping cells. Li et. al. [22] presented a gradient flow tracking algorithm for
segmenting cell nuclei in 3D microscopic images. Although those methods were designed to
segment images where the nuclei were closely juxtaposed or touching slightly, they are not
suitable for specimens containing large numbers of cells with extensive overlapping areas. A
double threshold-based watershed and statistical analysis for clustered cell segmentation was
proposed in [17]. This algorithm measures the quality of the resulting segmentation using
statistical analysis and provides feedback to correct errors. However this algorithm relies on
the assumption that all cells are similar or belong to a limited number of classes or cell
types. Wen et. al. [23] later reported a study on decomposing clumps of nuclei using high
level geometric constraints derived from maximum curvatures. This approach was very
effective in separating touching objects. Unfortunately, its use is somewhat limited because
within some touching cells, the common connecting regions do not exhibit local maximal
curvatures.

Kothari et. al. [24] proposed a semi-automatic method for touching cell segmentation, which
applied concavity detection at the edge of clusters to find the points of overlap between two
nuclei. An ellipse-fitting technique was applied to segment the concavities between two
nuclei with overlapping regions. However, the ellipse used in these studies is unable to
accommodate the shape of some cells, especially irregularly shaped cancerous cells. Diaz et
al [25] reported their study to split overlapping cells using template matching. In the paper,
maximal correlation points between the overlapping and template shapes were determined
by affine registration. The template size varied from 70% to 120% to find the “best match”.
Our team [26] proposed an approach to address touching cell segmentation using concave
vertex graphs, and several other graph based methods were proposed in [27], [28], [29] to
segment touching stem cells in fluorescence microscopy images. Unfortunately, such graph-
based methods generally require the image to exhibit a high contrast at the edges of the
structure of interest which is often not the case, especially in cancerous regions of the tissue.
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Elter et. al. [30] had proposed a method called maximum-intensity-linking for segmenting
touching cells. This approach is based on the idea of representing an image as a directed
graph structure which is significantly faster than classic watershed algorithms, however, it
still results in over-segmentation and requires complicated post-processing steps when used
in our experiments. Al-Kofahi et. al. [31] reported an automatic segmentation of cell nuclei
in histopathology images. Their seed detection results are used as initialization markers for
nuclear segmentation. Their approach achieved very good results on heterogeneous regions.

Level set based deformable methods have been widely used for cell segmentation [32], [33],
[34] and different terms [35], [36], [37], [38] were inserted into original Mumford-Shah
function to try to address the overlapping object segmentation problem. Parametric texture
adaptive snakes were proposed in [21] for cell segmentation and tracking. However, for the
level set based algorithm or parametric snake to work properly, a good initialization is
required to locate each touching object.

A preliminary version of our work was presented in the 2010 High Performance Computing
Workshop associated with Medical Image Computing and Computer Aided Intervention
[39]. Compared to the shorter conference version which focused on parallel computing, each
step of the proposed algorithm is explained in detail in the journal paper. Epithelial region
extraction and connect component analysis have been newly introduced in the journal
version for more efficient parallelization of cellular level segmentation to support whole
slide images. Different tissue types prepared with a range of different stain were used to test
the effectiveness of the algorithm through exhaustive experiments. The studies were
completely redesigned to compare the proposed algorithm with five state-of-arts
segmentation methods. An extensive evaluation of seed detection and the selection of a
feasible range of parameters were investigated and added in the journal paper. The algorithm
has now been tested on a set of comprehensive, large scale datasets. The contributions are:

• A computationally efficient mean shift based single-pass voting algorithm which
provides accurate seed detection and robust touching object localization, used as an
initialization for the repulsive level set model;

• A segmentation framework which can successfully separate cells residing in a
densely touching regions. The algorithm has been tested on a large clinical dataset
using a range of different tissues and stain preparations.

• The algorithm is designed for easy parallelization as a result of data independence.
The GPU parallel version of the seed detection part in the algorithm can process a
1392 × 1040 image which contains hundreds of touching cells in less than 0.2
second.

II. Touching Cell Segmentation
We propose a novel algorithm for separating touching cells, which is not limited to a
specific type of staining preparation. Breast TMAs and blood smears have been acquired
using standard RGB imaging with a 40× magnification objective. Standard hematoxylin
staining was applied to breast TMA specimens, and the commonly used Giemsa stain was
used to prepare peripheral blood smears. Please note that Giensa stain is a mixture of
methylene blue, eosin and azure B. It is the most dependable stain for differentiating nuclear
and/or cytoplasmic morphology of platelets, RBCs, WBCs, etc.

The algorithm was tested on whole slide digitized TMA specimens. In Figure 1 we show the
entire procedure describing the method used to automatically zoom in and crop a single disc
from the TMA array using our previous algorithm [40]. Figure 2 shows some typical
overlapping patches in hemotoxylin stained breast TMA disc. Many patches are shown to
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contain overlapping regions which are darker than the intensity of non-overlapping regions.
The overlapping regions in this figure are marked with yellow rectangles.

The touching cell segmentation algorithm that we developed is composed of two steps. The
first step is to automatically locate the geometric center of each cell using a novel single-
pass voting with mean-shift based seed detection. The result of this step is used as an initial
position for the second step which is touching cell segmentation, which extracts each
contour of touching cells using a level set function with a repulsion force to penalize any
object overlap. The flow chart of whole touching cell segmentation is shown in Figure 3. It
contains the epithelium region segmentation [41], seed detection, connect component
analysis and the level set based contour extraction. The connect component analysis step is
intentionally added into the algorithm. By separating the whole disc into connected
components, the algorithm can be run in parallel on multiple cores and the final
segmentation result is an ensemble of all the connected components. Graphic processing unit
(GPU) was applied to speed up the entire segmentation procedure.

A. Seed Detection
Since the number and location of cells are not known, a-priori, it is difficult to directly
segment cells from microscopic images especially when they touch one another. The
geometric centers of cells is considered as a basic perceptual cue that is used by human
experts to support the accurate separation of touching cells. Al-Kofahi et. al. [31] reported a
distance-constrained LoG filtering method to identify the center of nuclei. Parvin et. al. [42]
proposed an iterative voting method which was used to detect the centers of touching cells.

The method in [31] produced excellent results in detecting the nuclear seed points using a
distance-map constrained multiscale Laplacian-of-Gaussian filtering. The algorithm could
lead to under-segmentation for some homogenous regions with multiple nuclei. Therefore
the authors provide a post-processing module which requires human interaction to “fix”
some segmentation errors. The method in [42] provides excellent results in detecting the
centers in touching cells exhibiting homogenous intensity, however, when the intensity of
overlapping regions is brighter (or darker) than the non-overlapping regions within
individual cells, a set of false seeds will be created in the overlapping regions. This is not
surprising because the voting schema in [42] is biased towards the boundary of the object.
The edges of overlapping regions contribute to the creation of false seeds within the
overlapping regions using methods by Parvin et. al. [42].We will explain in detail how we
are able to address this problem, and we will also show the significant improvement of the
new algorithm which applies a shifted Gaussian kernel and mean shift onto single-pass
voting to generate more accurate and quicker seed detection, for both synthetic and real
testing datasets.

Defining I(x, y) as the original image, the image gradient ∇I(x, y) and the magnitude ||∇I(x,
y)|| are subsequently calculated. Because typically the background of original images can be
converted to black or darker than the intensity of objects of interest, the direction from
outside of object to center of object is negative for this definition. For each pixel (x, y), the
voting direction α(x, y) is defined as the negative gradient direction

 where θ is the angle of the gradient
direction with respect to x axis. The voting area A(x, y; rmin, rmax,Δ) of each pixel is defined
by a cone-shape with its vertex at (x, y). A cone-shape voting area was chosen for two
reasons. First, the center of the cell is far away from its boundary, thus more voting points
are located within the region closest to the center rather than within the region closest to the
edge of the cell. Second, a cone-shape voting area greatly reduces the time requirement by
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reducing the number of calculations since there are fewer voting points in total. The rmin,
rmax, and voting area of pixel (x, y) are illustrated in Figure 4. We define a 2D Gaussian
kernel g(x, y, μx, μy, σ) with its mean (μx, μy) located at the center of the voting area and
oriented in the voting direction α(x, y). The shifted Gaussian kernel is defined as

(1)

where  and . We designed the
kernel in this manner so that voting is amplified at the center of the targeted object.

We define V(x, y; rmin, rmax,Δ) as the voting image, which has the same dimensions as the
original image I(x, y). Setting an initialization of V as zero for all pixels (x, y), for each pixel
(x, y), we update the voting image in a single-pass approach as

(2)

Using this single-pass voting approach, the geometric centers of objects are determined by
executing mean shift on the sum of the voting images. The detailed algorithm is listed in
Algorithm 1.

Although our work was initially motivated by [42], the method we propose differs because
of several significant aspects: 1) For each point (x, y) with high gradient, we define

Algorithm 1

Single-pass voting with mean shift based seed detection

1. Initialize the parameters: d is the estimated average diameter of cells within the image, rmin = 0.5d, rmax = 1.5d, Δ =
30.

2. Calculate the Gaussian blurred gradient image and the orientation of the gradient at each pixel (x, y). Record the set of
(x, y) with large gradient magnitude as S.

3. For each point (x, y) ∈ S, calculate the voting image V (x, y) in a single-path way.

4. for R = 0.3, 0.4, …, 0.9 do

5. Record all the points (x, y) in the voting image with voting number larger than max(V (x, y)) × R.

6. end for

7. Sum all the voting images and run mean shift to generate the final list of the seeds. The bandwidth of the mean shift
is defined as 1/3 of the estimated average diameter of the cells.

a shifted Gaussian kernel at the center of the voting area instead of (x, y). This is a critical
step which enables the new algorithm to provide accurate results for overlapping cells in
histopathology specimens. As the center of the object is usually far from the boundary, the
shifted Gaussian kernel encourages the voting towards the center of the object and thereby
avoids false seeds in overlapping regions (We revisit this issue in the experimental section
for clarity). For the overlapping regions, the overlapped edges always exhibit higher
gradient intensity values than other regions. The shifted Gaussian kernel causes high voting
outside of overlapping regions instead of inside, thus the algorithm reduces false seeds. 2)
Instead of using iterative voting as reported in [42], we calculate the centers of overlapping
objects by running mean shift on the single-pass voting images. This step dramatically
reduces the computational time of processing as many iteration steps are avoided. More
importantly, using single-pass voting with mean shift to replace iterative voting facilitates
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subsequent parallelization. In Figure 5 we show the entire process of the seed detection
applying single-pass voting with mean shift to generate the final seed. The false seed on the
overlapping region is marked with a yellow square (using diameter = 50, Sigma = 3 and
minimal voting = 550 in the most recent release of ImageJ plugin).

B. Parallelization of the Seed Detection on the Graphic Processing Unit (GPU)
During the seed detection step, each voting pixel (x, y) utilizes a cone-shaped voting area
A(x, y; rmin, rmax, Δ). Each pixel in the final voting image, V, is then updated by equation (2).

After calculating the execution time profile for each step in the proposed seed detection
algorithm, we found that the most computationally expensive part is the calculation of the
voting image (90% of the whole procedure). Because our voting image is calculated using
single-pass with mean shift rather than iterative voting, it is much more computationally
efficient. Furthermore, because the voting algorithm is a pixel-based method which has an
advantage of easy parallelization as a result of data independence, this part can be
accelerated by introducing parallelization on a graphics processing unit (GPU). In our
algorithm, we utilized eight blocks for a GPU. Within each block, we create 128 threads.
Each voting pixel was assigned to one thread to calculate its corresponding voting image. In
total 1024 threads were created simultaneously. In this way the GPU accelerated the voting
image calculation dramatically and therefore increased the entire seed detection procedure
dramatically.

C. Cell Segmentation
Because of the accuracy of the detected seeds (the geometric centers of cells), the touching
cell segmentation process was performed using level set based on an interactive model. The
interactive model includes two types of mechanisms: (1) a repulsion term to prevent the
contours of adjacent cells from overlapping and separating the touching cell boundaries; (2)
the competition term to determine the membership of each pixel which is assigned to the cell
producing the smallest difference. Considering an image I that has N cells, let Ci(i = 1, …,
N) denote the contours that evolve towards the boundaries. Please note that each cell is
represented by its own level set energy function. Instead of examining each contour
independently, the interactive between neighboring contours was integrated into the level set
energy function. The energy function E for cell segmentation combines the repulsion and
competition terms and can be expressed as:

(3)

where Ai denotes region of cell {Ai|i = 1, 2, …, N} and Ωb is the background which
represents the region outside all the cells out(C1) ∩ out(C2) ∩ … ∩ out(CN). The operator
in() and out() represent the regions inside and outside of cells, respectively. The ci and cb are
the mean intensities of the cell region and background region respectively. The λ0, λb, and u
are the fixed weighting parameters. Function g is chosen to be a sigmoid function

(4)
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where α is used to control the slope of the output curve and β controls the window size. By
penalizing the union of the overlapped region {Ai|i = 1, …, N} enclosed by contours Ci(i =
1, …, N), the last item in Energy function E is the repulsion term which is used to represent
the repulsion force between each adjacent touching object and the ω is the regulation
parameter.

Segmentation is achieved by minimizing the energy function E using the evolution of the
level set. In order to express the energy function using level set, we introduced the
regularized Heaviside function H [43]

(5)

where ε is the regulation parameter of the Heaviside function and Delta function is defined
as

(6)

The energy function can be minimized by iteratively employing the gradient descent
method. The evolution equation for each energy function Ψi(t, x, y) is then obtained by
deducing the associated Euler-Lagrange equation as

(7)

After evolving the level set contours, the means ci and cb of the cell and background regions
are iteratively updated. This method was proposed and proved to be quite effective and
accurate for RNAi fluorescent cellular image segmentation in [38]. Throughout the
experiments, the parameters that we selected were: λ0 = 1, λb = 0.3, μ = 0.5, γ = 0.2, ω = 0.6,
ε = 1, α = 1, β = 7 empirically.

III. Experimental Results
Hematoxylin stained breast TMA specimen images were captured at a high magnification
objective (40 ×) using a Nikon Microscope. In total there were 234 image patches containing
more than 2200 image cells.

A. Seed Detection
To illustrate the new seed detection method that we developed, an example of a synthetic
image with five overlapping objects is shown in Figure 6. Figure 6a is the original synthetic
image, with two and three overlapping cells, respectively. Figure 6b is the seed detection
results using the iterative voting method in [42], which created false seeds in two
overlapping areas. Figure 6c is the intermediate results of our method before applying mean
shift clustering, and Figure 6d is the final detected seeds using our method. From this
experiment, it can be seen that the iterative voting method [42] tends to put the seeds at the
overlapping regions (shown in Figure 6b) when overlapping regions have brighter/darker
intensity than its corresponding touching objects. Using our method as shown in Figure 6d,
the detected seeds are approximately located in the centers of the objects and no seeds were
misdetected in the overlapping regions. In the real dataset (hematoxylin stained pathology
specimens), there are cases where the overlapping areas are darker than the intensity of the
non-touching cells as shown in Figure 2.
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In Figure 7, hundreds of cells were accurately detected on the epithelial region. For better
illustration, we cropped several patches from the whole dataset and show their comparative
seed detection results in Figure 8 using [42] and our method. It is obvious that the method in
[42] creates false seeds in the overlapping regions; while the algorithm we developed avoids
these errors and provides reliable seed detection results. In Figure 8, the first and the fourth
rows are the original hematoxylin stained breast TMA images; the second and fifth rows are
the seed detection results using [42]. The regions containing false detected seeds are marked
in yellow rectangles; the third and sixth rows are the seed detection result using our method.
All of the detected seeds are marked with red crosses. In Figure 9 we show the seed
detection results on the whole slide scanned blood smear slide where thousands of cells are
successfully detected. The blood smear image was acquired using 40× objective on a Trestle
MedMicro.

In order to gauge the accuracy of seed detection, an error function is defined as the pixelwise
distance E between seeds manually located and seeds extracted by seed detection methods.
Table I shows the quantitative results of our algorithm and [42] both compared with the
ground truth annotation. The 80% column in Table I represents the sorted 80% accuracy
among all the seed detection results. Meanwhile a number of missing and false seeds are
calculated. When compared with the ground-truth annotation, the mean of the number of
missing seeds and false seeds using our algorithm were 0.2 and 0.8 respectively. The mean
of the number of missing seeds and false seeds using [42] were 1 and 1.2, respectively.

Due to the minimal diameter rm in of cells and the bandwidth of mean shift played a
significant role in our seed detection method, the error function defined above was
calculated to test the parameter sensitivity of the algorithm. The range of minimal diameter
is defined as minus and plus 10 of the estimated minimal diameter of the cell. The range of
the bandwidth of mean shift is from 5 to 19. Figure 10 shows three examples of the average
errors respect to the minimal diameter of cells (horizontal axis) and the bandwidth of mean
shift (vertical axis). Each row represents one test image and its mean pixelwise detection
errors with respect to two parameters: the minimal diameter of cells and the bandwidth of
mean-shift. From the results in Figure 10, it is apparent that the errors are relatively
insensitive to specific values. Within a feasible range, an average error smaller than 5 pixels
is achieved.

B. Segmentation
In Figure 11, the performance of the proposed touching cell segmentation method is
compared with the level-set based on an interactive model using the seeds detected by [42].
Each column represents two testing samples. The contours are presented using red lines.
Yellow squares are over-segmented regions that arise due to false seeds. The first and the
fifth rows are the original hematoxylin stained pathology specimens; the second and the
sixth rows are the ground-truth annotation as provided by human experts; the third and
seventh rows are the segmentation results generated by the interactive level set using the
seed provided by [42]; the fourth and eighth rows are the segmentation results using single-
pass with mean shift based seed detection and interactive level set.

In order to quantitatively measure the accuracy of this approach, precision (P ) and recall (R)
[44] were calculated for the newly developed touching cell segmentation algorithm and [42],
both were compared with the ground-truth annotations. The P is defined as the intersection
between the segmentation results and the manually annotation results divided by the
segmentation results. The R is defined as the intersection between the segmentation results
and manually annotation results divided by the manually annotation results. The mean and
standard deviation of P and R for our touching cell segmentation algorithm is 0.90 ± 0.02
and 0.78 ± 0.01, respectively, which indicates a good agreement between the manual and
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ground truth annotations. The mean and standard deviation of P and R for interactive level
set using the seed provided by [42] is 0.84 ± 0.04 and 0.64 ± 0.02, respectively.

In Figure 12, we provide the segmentation results on a whole TMA disc, for illustration
purposes we zoom in and crop several representative patches. In Figure 13, we show four
representative patch image segmentation results of our method as compared to five other
algorithms including marker-based watershed, mean shift, isoperimetric [45] and two
methods presented in [42] and [31], respectively. Using our seeds, marker-based watershed
tends to over-segment the whole cell in the image as it can’t handle the intensity variation
within the cells. Mean shift, Isoperimetric [45] and method in [31] segmentation tends to
under-segment the image by merging multiple cells into one object. Method in [42] tends to
create false seeds in the overlapping region of cells, which leads to improperly segment cells
in the overlapping regions. All the source codes or binaries of the other state-of-the-art
method were implemented by their original authors and downloaded from their websites. In
Table II, we show the detailed statistics of the quantitative segmentation results compared
with the ground truth annotation. The 80% column in Table II represents the sorted 80%
accuracy among all the 234 image patches, which contains around 2200 cells. From Table II,
we achieved better segmentation result compared with other methods because of the
reduction of false seeds.

The code was parallelized on a Graphic Processing Unit (GPU). GPU is a massively parallel
multi-core chip that can execute thousands of concurrent threads. The GPU cores (also
called stream processors) are grouped into several streaming multiprocessors. They are
managed by the thread manager. The GPU used in these experiments was a NVIDIA Quadro
FX5800 which has 240 cores and 30 streaming multiprocessors, each of which contains 8
GPU cores. It supports both single and double float point precision; offers 933 GFlops single
precision; and has memory bandwidth with 102 GB/sec. Unlike CPU threads that are heavy
weight, GPU threads are light weight with little creation overhead, instant switching, and
instruction and memory latency hiding. The Compute Unified Device Architecture (CUDA)
environment from NVIDIA Corporate was utilized throughout the parallel implementations.

The experimental results show significant speed up (22 times faster when compared with the
sequential implementation on CPU and thousands of times faster than the original Matlab
implementation). In the parallel version of the algorithm, we can complete the seed detection
procedure for an image with dimensionality 1392 × 1040 in 197 millisecond. The final
repulsive level set algorithm, based on a C/C++ implementation, can process images in less
than 5 seconds.

IV. Discussion and Conclusion
In this paper we present a touching cell segmentation algorithm using challenging clinical
datasets to test performance. Accurate seed detection was shown to be a prerequisite for
accurate segmentation. We demonstrated that single-pass coupled with mean shift based
voting algorithm can accurately detect the centers of regions containing densely touching
and overlapping cells.

The method in [42] was shown to achieve very good results for homogenous touching
objects, even though it was sometimes necessary to tune the parameters. However, when we
compared the newly developed seed detection method with the one in [42], where there
existed touching cells with non-homogeneous intensities, the new method produced much
better results. The accurate seed detection is the prerequisite to achieve an accurate cellular
segmentation. We conducted comparison experiments using our method and Parvin’s [42]
approach using the software posted on their group’s website at http://www.vision.lbl.gov/.
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These studies showed that our seed detection algorithm was not sensitive to parameters
initialization as shown in Figure 10. Within a feasible range, an average errors smaller than
5 pixels can be achieved.

The new segmentation algorithm is not sensitive to the parameters in equation (7) [38]. Our
experiments shown that there is only a slight variation in the performance even if the value
of the repulsive weight ω changes more than 50%. Meanwhile, the algorithm performance
varies less than 5% when the values of the parameters λ0 and λb vary about 20%. In
addition, the parameters μ and γ play minor roles in the performance of the algorithm.
However, due to the fact that active contours are local models, they are not robust to the
initial positions which are determined by the location of the seeds. That is the central reason
why the accurate seed detection is necessary before the level set method is applied to the cell
segmentation.

For the cell overlapping regions, the edges have dramatic intensity variation. For the regions
within the cells, the intensity variation within the cells is much milder compared to the
intensity variation of overlapping regions. The third term in the equation (7) enhances the
edge effects and the fourth term smoothes the contours, which is not sensitive to both noise
and mild intensity variation within the cells, so that the algorithm can separate touching cells
to create smooth and complete contour of each cell. Watershed algorithm can not handle
intensity variation within cells very well, which leads to incomplete and jagged contours of
touching cells. Consequently, the interactive model outperforms the watershed algorithm
even when the watershed is provided with accurate seeds for initialization.

Given these estimated seeds, a level set active contour based on the interactive model can
effectively separate each of touching cells. The improved segmentation results are achieved
by accurately estimating the seeds (number of cells) and utilizing a repulsion term in the
level set energy function to separate the touching boundaries. The method is automated
requiring very little prior knowledge. Therefore it can be extended to other touching object
segmentation applications including a broad range of applications requiring accurate spatial
localization of multiple biomarkers which have been tagged with immunostains or quantum
dot conjugates. The GPU implementation of the seed detection algorithm can handle one 2D
image (1392 × 1040) in less than 0.2 second. The experimental results show that GPU is an
efficient parallel platform for the proposed novel algorithm.
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Fig. 1.
The procedure on how to automatically zoom in and crop a single disc from the TMA array.
The TMA whole slide images were taken under 40× objective using Trestle MedMicro.
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Fig. 2.
Representative examples of hemotoxylin stained breast TMA RGB images acquired using a
40× objective using a Nikon Microscope. Some cells overlap with each other and the
intensity of overlapping regions are darker than the intensity of non-overlapping regions.The
overlapping regions are marked with yellow rectangles.
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Fig. 3.
The flow chart for the automated segmentation of overlapping cells in hemotoxylin stained
breast TMA discs. From left to right, it contains input image; extracted epithelial region of
input image; seed detection results with green dots representing the detected seeds; cell
contours of the biggest connected component within the epithelial region; final segmentation
results of an ensemble of all the connected components.
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Fig. 4.
Cone shape voting area with the Gaussian kernel overlapped at the center of the voting area.
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Fig. 5.
The whole process of the seed detection applying single-pass voting with mean shift to
generate the final seeds. (a) The magnitude of the gradient image. (b) The angular image of
the gradient direction with respect to x axis. (c) The summed voting images, and the white
points show the number of candidate seed points. (d) The voting points superposed on its
original image before mean shift. (e) The final detected seeds superposed on the original
image after mean shift. (f) The detected seeds superposed on the original image using
Pravin’s algorithm [42].
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Fig. 6.
Seed detection results for a representative synthetic image. The red crosses denote detected
seeds. (a) the original synthetic image. (b) the seed detection results using the iterative
voting method in [42]. (c) the intermediate results of our method. (d) the final detected seeds
using our single-pass with mean shift based seed detection method.
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Fig. 7.
The TMA whole disc seed detection results using our proposed method. The green dots
represent the detected seeds on a whole TMA breast core acquired using a 10× objective.
Please note that these are the seed detection results overlayed on the segmented epithelial
region mask as was shown in the first step in Figure 3. Those seeds falling outside the
epithelial region masks were intentionally excluded and are not the result of a missed
detection.
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Fig. 8.
Seed detection results of hematoxylin stained pathology specimens. The first and the fourth
rows are the region of interest (ROI) of the original images; the second and fifth rows are the
seed detection results using [42]; the third and sixth rows are the seed detection results using
our method. The seeds are marked with red color. The false detected seeds are marked with
yellow rectangles.
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Fig. 9.
The whole slide blood smear seed detection results using our proposed method. The stained
blood smear image was taken under 40× objective using Trestle MedMicro. Even the image
contains thousands of cells, we can still provide accurate detection results.
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Fig. 10.
Three examples of the average error respect to the minimal diameter of cells and the
bandwidth of mean shift. The first column is the RGB images; the second column is their
corresponding mean errors with respect to the minimal diameter of cells and the bandwidth
of mean shift. Within a feasible range, an average error smaller than 5 pixels can be
achieved.
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Fig. 11.
Segmentation results illustrated using eight images of hematoxylin stained pathology
specimens. Each column represents two testing samples. The contours are presented using
red lines. Yellow squares are over-segmented regions due to false seeds. The first and the
fifth rows are the original hematoxylin stained pathology specimens; the second and the
sixth rows are the ground truth annotation by human experts; the third and seventh rows are
the segmentation results by interactive level set using the seeds provided by [42]; the fourth
and eighth rows are the segmentation results using single-pass with mean shift based seed
detection and interactive level set.
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Fig. 12.
The TMA whole disc segmentation results on epithelial regions. The first row is the
hematoxylin stained whole disc breast TMA. The second row consists of regions which have
been enlarged for detailed viewing.
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Fig. 13.
The comparative segmentation results on four representative images patches. (a) The
original image patches. (b) The marker-based watershed segmentation results using our
detected seeds. (c) The mean shift results (d) The isoperimetric segmentation results [45]. (e)
The segmentation results using method presented in [42]. (f) The segmentation results using
the method described in [31]. (g) Segmentation results using the proposed method.
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