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REVIEW review

Introduction

Phage display is a tool for molecular evolution, enzymology and 
study of antibodies. Moreover, it has been used in analyzing 
the protein-protein or protein-ligand interactions. This tech-
nique allows to identify and develop modulators of receptors 
and enzymes,1-3 (to) determine the substrate specificity4,5 and 
(to) obtain stable proteins and enzymes for biotechnological and 
analytical applications.6-8 Antibodies and antibody fragments 
originating from phage display are widely used in therapeutic 
development and diagnostics.9-11 They are commonly used in 
methods such as ELISA,12 immunoblotting,13 immunofluores-
cence microscopy,14 affinity chromatography,15 flow cytometry,16 
microarrays assays,17 hemagglutination assays,18 bead based 
assays,19 proximity ligation assays,20,21 molecular imaging,22 lat-
eral flow strip assays,23 immuno-PCR24 and fluorescence reso-
nance energy transfer (FRET).25 Molecules displayed on phage 
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Phage display is a powerful technique in medical and health 
biotechnology. This technology has led to formation of 
antibody libraries and has provided techniques for fast and 
efficient search of these libraries.

The phage display technique has been used in studying the 
protein-protein or protein-ligand interactions, constructing of 
the antibody and antibody fragments and improving the affin-
ity of proteins to receptors.

Recently phage display has been widely used to study im-
munization process, develop novel vaccines and investigate 
allergen-antibody interactions. This technology can provide 
new tools for protection against viral, fungal and bacterial 
infections. It may become a valuable tool in cancer therapies, 
abuse and allergies treatment. This review presents the recent 
advancements in diagnostic and therapeutic applications of 
phage display. In particular the applicability of this technol-
ogy to study the immunization process, construction of new 
vaccines and development of safer and more efficient delivery 
strategies has been described.
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surface were considered as direct diagnostic agents.26 It was 
reported that by using the phage display technology, scFv frag-
ment that recognizes glycated α7 subunit of the proteasome was 
obtained. This antibody fragment was defined as a tool for ana-
lyzing a marker of proteasomal malfunction, cellular viability, 
and a potential marker of aging.27

Antibody phage display provides direct access to the genetic 
information of the binder, allowing a fast adaptation of the anti-
body format to the desired diagnostic assay.12,13,17,22 The sensi-
tivity of the diagnostic test could be increased by displaying on 
phage surface many copies of antibody fragments. Also the usage 
of the secondary antibodies with specificity for phage coat pro-
teins could improve assay quality.

Phage display enables better understanding of the immuni-
zation process, therefore utilization of this technique in vaccine 
development has increased recently. This technology enables 
searching of immunogenic peptide sequences and constructing of 
novel vaccines. The phage display technology also provides new 
opportunities for vaccine delivery, which may lead to strengthen-
ing the effectiveness of immunization.

This review focuses on selected applications of phage display 
in immunization, vaccine development and investigation of aller-
gen-antibody interactions, which can provide novel diagnostic 
and therapeutic agents.

Vaccine Delivery

Phage display is a powerful technique for designing novel vac-
cine delivery vehicles. With this method, phage display vaccine 
or phage DNA vaccine can be constructed. Also hybrid phage 
vaccine has been suggested. In the first model—the phage dis-
played vaccine, virions contain the antigen encoding gene which 
is expressed in fusion with coat protein. Antigen could be also 
attached to phage surface with artificial linker.28,29 In phage DNA 
vaccine model, DNA vaccine that contains antigen gene cloned 
into eukaryotic cassette is packed within bacteriophage virion. 
Eukaryotic cassette is a part of vector DNA which contains three 
main sequences: promoter, ORF (open reading frame) and 3' 
untranslated region often with polyadenylation site. It was con-
structed to allow proper gene expression and correct folding of 
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responses. The method for identification of mimetics of this 
protein has been described. By the use of biopanning of a ran-
dom phage display library, peptides that bind to Hsp70-peptide 
complexes from human breast carcinoma cells were identified. 
These peptides were used to identify Hsp70 mimetics, which 
could be used as modulators of the immune response against 
tumors.43

Anti-viral vaccines. Phages have been also investigated as 
anti-viral vaccine delivery vehicles.32,44 Cytotoxic T-lymphocyte 
(CTL) is an important factor not only in anti-cancer but also 
in anti-virus strategies,45,46 including HIV infection control.47 
Thereby, ability of CTL phage displayed epitope to induce spe-
cific CTL response has been widely investigated.

In the recent study, phage display has been used to isolate 
and enhance a T-cell antigen receptor (TCR) from the infected 
person’s CTL. This TCR was specific for the SL9 peptide, an 
immunodominant HLA-A*02-restricted, HIVgag-specific 
SLYNTVATL sequence. It is noteworthy that the obtained high-
affinity TCRs have targeted HIV-infected cells and have recog-
nized all common escape variants of this epitope.47

Interestingly, the DNA fragment encoding a hepatitis B 
virus epitope S

28–39
 was packed into phagemid vector pC89. 

Hybrid phage containing a pVIII gene with the CTL epitope 
insert was constructed using the VASM13 helper phage and the 
BALB/c (H-2d) mice were immunized. After 8 d of immuniza-
tion a MHC class I restricted hepatitis B specific CTL response 
occurred.48 The phage lambda display system has been used for 
construction and characterization of cDNA expression library of 
human hepatitis C virus (HCV). Several proteins displayed as 
fusion to the carboxy terminus of the phage lambda capsid pro-
tein D were accessible for interaction and affinity-selection with 
specific antibodies.49

Furthermore, herpes simplex virus 1 (HSV-1) glycoprotein D 
is essential for the virus attachment and entry. It was shown that 
inoculation of BALB/c mice with phage DNA vaccine contain-
ing (HSV-1) glycoprotein D cassette results in enhanced both 
humoral and cellular immune responses.50

Other studies have described the platform for peptide display 
based on virus-like-particles (VLPs) of the RNA bacteriophage 
PP7. This platform was utilized in displaying the human papil-
loma virus type 16 (HPV16), minor capsid protein L2 epitope. 
After intramuscular injection of HPV16 L2 epitope displayed 
on PP7 VLPs the robust anti-HPV16 L2 serum antibodies were 
generated. Thus, vaccine based on this protein could provide 
more comprehensive protection against infection by diverse HPV 
types.51-53

Although intensive research on anti-viral vaccines is con-
ducted, much focused on a narrow range of diseases often asso-
ciated with the appearance of tumors. It should be noted that 
the phage display technique has been used in the research on 
novel therapeutics that will specifically interfere with the tran-
scription/replication complex of negative-strand RNA viruses 
(NSRV). Due to the high infectivity of these viruses and the 
possibility of calling epidemics and pandemics, this research 
is particularly important. NSRV can cause respiratory diseases 
(influenza virus, respiratory syncytial virus, measles and mumps 

eukaryotic proteins in prokaryotic cells. The predominance of 
phage vaccines over standard DNA vaccines or using antigens per 
se is primarily the fact that virion protects the vaccine and makes 
it more stable for administration (especially in oral vaccines), stor-
age and transport. Moreover, phages have been reported as the 
adjuvant-like particles, therefore this method allows to achieve 
better results at lower doses than standard vaccination.30,31 Phage 
vaccines give higher and less variable immune response compared 
with standard vaccines. The hybrid phage vaccine is supposed 
to induce effectively humoral and cellular response. This model 
allows to display not only antigen but also targeting molecule, 
thus it appears to have a potentially significant advantage for goal 
directed therapy.32,33

Predominance of phage vaccines is based on fundamental 
properties of the virus itself such as high stability in wide range 
of pH, which facilitates the application and distribution in addi-
tion to a low cost of phage particle production. Moreover, phages 
are unable to proliferate in eukaryotic cells, thereby their applica-
tion is safe. Also phage vaccine application does not cause side 
effects,34 although there are some disadvantages of using prokary-
otic viruses as vaccine delivery vehicles. The main problem is to 
display correctly folded, active epitope in a concentration suffi-
cient to elicit an immune response. Also the administration route 
of the vaccine must be considered because there is a risk that 
after oral distribution phages will infect intestinal flora.35 There 
are several strategies that could lead to enhance the oral admin-
istration of phage vaccines. First, the use of non-lytic phage may 
reduce the risk of infection and the destruction of the natural 
intestinal flora. Moreover, virions with damaged tail fibers are 
incapable of infection, but still can serve as a vaccine delivery 
vehicle. Phages that are stable in the gastro-intestinal tract could 
be successfully used in oral administration. although it is still 
more common to provide vaccines by subcutaneous or intramus-
cular injections.

Anti-cancer vaccines. To date, many anti-cancer vaccines 
based on phage display technology have been reported.36-38 In 
phage DNA vaccines, cytokines, chemokines, costimulatory 
molecules and pathogen genes could prime the immune sys-
tem. It was reported that the domain I fragment of pIII pro-
tein expressed as a fusion with an scFv can enhance T helper 1 
humoral and cell-mediated antigen-specific immune response.39 
Moreover, CD8+ cytotoxic T-lymphocytes (CTL), that recog-
nize tumor-associated antigenic epitopes expressed by human 
leukocyte antigen (HLA) class I molecules on the cancer cells, 
can be primed by vaccination.40 The best target antigens are pro-
teins such as telomerase, tyrosinase, gp100, MAGE, Melan-A/
MART, MUC1, CEA, p53, Her-2/neu, survivin or Ras, which 
level is significantly different in cancer cells than in healthy tis-
sue.41 The melanoma antigen MAGE-A1 is expressed in more 
than 50% of hepatocellular carcinoma, metastatic melanoma, 
non-small cell lung carcinoma, esophageal squamous cell carci-
noma. Interestingly, phage vaccination with protein pVIII fused 
epitope of tumor-specific antigen (MAGE-A1

161–169
) prevents 

and suppresses melanoma tumor growth and also enhances the 
NK cells activity.42 Moreover, vaccination with heat shock pro-
tein Hsp70-peptide complexes can induce protective immune 
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Ab fragments resulted in obtaining the streptococcal infection 
immunity by the neonatal mice.65

Other studies focused on Pseudomonas aeruginosa have led to 
identification of outer membrane proteins encoding genes that 
are potential targets for anti-P. aeruginosa vaccine development.66

Anti-fungal vaccines. Strengthening the immune response 
against fungal infection has been intensively investigated. 
Specific epitope LKVIRK of Candida albicans heat shock pro-
tein 90 was genetically inserted into the phage major coat pro-
tein pVIII using a phagemid vector system and investigated in 
vivo in C57BL/6 mice as anti-fungal vaccine. Immunization led 
to achieve higher titers of epitope LKVIRK-specific serum IgG 
as compared with those immunized with heat-killed C. albicans 
(HK-CA).67 Protective immune responses mediated by hybrid-
phage expressing Candida albicans heat shock protein 90 epitope 
(DEPAGE) in C57BL/6J mice were also evaluated. This epitope, 
expressed as fusion with pVIII, has been reported to induce the 
specific antibody response, enhance delayed-type hypersensitiv-
ity (DTH) response, natural killer (NK) cell activity and con-
canavalin A (ConA)-induced splenocyte proliferation.68 Phage 
display based method of identification of short peptide sequences 
that can distinguish C. albicans from other closely related species 
has been also reported.69,70

Anti-drug vaccines and abuse treatment. Addictions are a 
major societal and health problem and the addiction syndrome is 
similar between different drugs of abuse and could be described as 
a chronic relapsing brain disorder with neurobiological changes.71 
Recently, immunopharmacotherapy treatment of drug abuse has 
been widely discussed and anti-drug vaccines against metham-
phetamine,72 phencyclidine, opiates, nicotine73 and cocaine,74 
have become the object of intensive research.75,76 Moreover, phage 
display peptide libraries and biopanning are considered a tool for 
early diagnosis and prognosis of chronic alcohol consumption.77 
Antibody fragments have been applied toanti-idiotypic cocaine 
vaccines, cocaine-specific scFv fragments, nicotine-specific IgG 
and methamphetamine-specific scFv.72-74

Phages ability to penetrate the central nervous system (CNS) 
was applied to generate phage displayed cocaine-binding pro-
teins. This anti-cocaine antibodies block the psychostymulatory 
effects of cocaine. One of them is GNC92H2 phage displayed 
protein, which delivered intranassally might serve as anti-drug 
therapeutic.75 The potential of this approach has been demon-
strated, however the kinetic constant of this protein is insufficient 
for clinical treatment. Nevertheless, phage displayed enzymes 
such as butyrylcholinesterase (BChE), the major cocaine-metab-
olizing enzyme and bacterial cocaine esterase (CocE), the most 
efficient cocaine degradation biocatalyst might be displayed on 
phage surface to enable them to access the CNS and protect them 
from proteolysis.78

Anti-sperm Contraceptive Vaccines. To date, several human 
scFv antibody fragments that recognize sperm antigens were 
described as potential contraceptives.79 The phage display tech-
nique was used to obtain antibodies that react in a concentration-
dependant manner with fertility-related sperm antigens.

The contraceptive effect of cFA-1,80 YLP
12

,81 P10G,82 A9D,83 
and SP5684 peptides has been investigated in vivo in murine 

viruses), encephalitis (rabies virus, Hendra and Nipah viruses; 
Rift Valley fever virus) or hemorrhagic fevers (Ebola and Marbug 
virus, Crimean-Congo hemorrhagic fever virus, Lassa virus). 
It is noteworthy that the transcription/replication complex is 
similar for all NSRV, thus broad-spectrum anti-viral therapeu-
tics could be developed. Panning of large libraries by the phage 
display technique has led to the identification of five promising 
peptides, two of which have potentially broad-spectrum activ-
ity.54 Furthermore, it was described that mice immunized with 
phage displayed vaccine that contain a protective B cell epitope 
of human respiratory syncytial virus gained a complete resistance 
to this virus.28

Anti-parasite vaccines. Phage display strategies for anti-
parasite therapeutics have been described.55-58 One of them is 
based on an iterative subtraction strategy to identify potential 
vaccine antigens of Brugia malayi—the filarial parasites that 
cause lymphatic filariasis (a debilitating disease affecting over 
120 million people in the tropical and sub-tropical countries). 
The cDNA library expressed on the surface of T7 phage was 
screened with human sera and five antigens (ALT-2, TPX-2, 
VAH, COX-2 and novel cuticular collagen Col-4) were iden-
tified. Vaccination of mice and jird with recombinant ALT-2 
resulted in achieving high immunity level.59 It is noteworthy 
that strategies for development of malaria vaccines have been 
reported. The abundant merozoite surface protein-1 (MSP-1) 
of Plasmodium falciparum has been successfully used in vivo 
as a protective immunogen.55 Another vaccination approach to 
malaria is a phage displayed SM1 peptide that specifically binds 
to the same surfaces that are invaded by the malaria parasite and 
almost completely inhibits invasion of the midgut by ookinetes 
and invasion of the salivary glands by sporozoites.56 Besides, 
host antibody response to the ring-infected erythrocyte surface 
antigen (RESA) from P. falciparum has been characterized by 
phage display library.60

Anti-bacterial vaccines. Mimetics of polysaccharides were 
obtained by the phage display method. This strategy can be 
used for anti-bacterial vaccine development. Phage display librar-
ies have been utilized in identification of Neisseria meningitidis 
serotypes A, B and C. Moreover, peptides selected by screening 
random phage library against Staphylococcus aureus RNAIII-
activating protein were able to elicit immune responses in murine 
models.61,62 The mouse monoclonal antibodies (mAbs) against 
Klebsiella pneumoniae MrkD adhesin were obtained by the 
hybridoma technique and screened against phage-displayed ran-
dom library which resulted in (QKTLAKSTYMSA) mimotope 
selection that was able to mimic immunological properties of the 
native epitope of K. pneumoniae MrkD.63 Furthermore, lambda 
display library of DNA fragments from Streptococcus pneumoniae 
and Mycoplasma pneumoniae genome was applied in identifica-
tion of epitope-containing fragments. This study demonstrated 
that S. pneumoniae epitope is conserved in all Pneumococcus sero-
types and S. mitis strains, while it is absent in other Streptococcus 
strains. It also allows to confirm the immunogenicity of M. pneu-
moniae adhesins P1 and P30 and to identify four novel immuno-
genic polypeptides.64 Moreover, immunization of maternal mice 
with the phage particles displaying recombinant anti-idiotypic 
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storage proteins and the last one, Ara h 5 was similar to a well-
known plant allergen profilin. Phage display can offer solutions 
in allergen studies that will certainly affect the development of 
novel diagnostic tools and therapeutic agents.

Development of New Vaccine 
and Diagnostic Candidates

Several novel vaccines and diagnostic candidates, developed by 
the use of phage display were described earlier.51,72-74 Recently, the 
usage of the phage display technique to identify new potential vac-
cines and diagnostic candidates has been described. This technique 
was utilized to identify three antigens: a conserved hypothetical 
protein (MSC_0636), a glycosyl transferase (MSC_0108), and an 
acyl carrier protein phosphodiesterase (MSC_0029), that could 
serve as diagnostic agents in Contagious Bovine Pleuropneumonia 
caused by Mycoplasma mycoides. Interestingly, the prototype of the 
diagnostic test resulted in 100% sensitivity and specificity.103 Also, 
phage display allowed to identify novel immunogenic proteins 
and generate antibodies against Salmonella typhimurium. These 
proteins could be used to establish a diagnostic kit with very high 
specificity in comparison to commonly used methods.104 It was 
suggested that MAP-31, a four-branch multiple antigen peptide, 
may be a novel vaccine candidate against Staphylococcus aureus.105 
A novel mechanism of marking morbillivirus vaccines, using rin-
derpest virus (RPV) has been recently described. Moreover, this 
method was considered to be utilized in development of marked 
vaccines for peste des petits ruminants virus (PPRV).106 It was 
shown that immunogens carrying large combinatorial libraries of 
mutated epitope variants (VELs) induce potent, broad and long 
lasting CD8+IFN-γ+ T-cell response. This VELs with structural 
composition RGPGXAXXXX or XGXGXAXVXI, where X is 
any of 20 natural amino acids, could serve as vaccines against 
antigenically variable pathogens including HIV-1 virus.107 Also 
the immunogenicity of different conjugates of epitope EC26–2A4 
localizing to the membrane proximal external region (MPER) of 
the HIV-1 transmembrane protein gp41 has been studied. This 
EC26-2A4 MPER epitope was reported as a promising vaccine 
candidate for HIV-1 virus.108

Conclusion

Since its creation in 1985, phage display has become a technol-
ogy of great importance in medicine and biotechnology. With 
this inspiring technology, mechanisms of many diseases can be 
investigated, which may lead to development and improvement 
of diagnostic methods and therapies. Moreover, through phage 
display new drugs and vaccines may be available on the market, 
allowing treatment and protection against many diseases such 
as autoimmune and cancer diseases or life-threatening infec-
tions. Further research should focus on studying the immune 
response, which may lead to improvement of the method for 
rapid antibody selection and development of new therapies. It 
can be concluded that the role of phage display in diagnostic 
and medical applications within the next decades will continue 
to increase.

model. All vaccines show maximum 75% reduction in mice 
fertility, however, this result cannot be directly related to the 
effectiveness of the vaccine in humans.85 Furthermore, an immu-
nocontraceptive vaccine for men was considered.86 Phage display 
libraries were used to select several peptides of 7 and 12 amino 
acids with binding specificity to canine zona pellucida (ZP) gly-
coprotein, one of the key proteins in the sperm-oocyte binding 
process. The NNQSPILKLSIH peptide was found to induce an 
immune response and to stimulate anti-sperm antibodies pro-
duction.87 Studies on the contraceptive effect of sperm antigens 
include also LDH-C4, 80 kDa HSA, Eppin and Izumo, however 
they have not led to clinical trials.88

Investigation of Allergen-Antibody Interactions

Cloning and characterization of diverse types of allergens is 
essential for investigating the allergen-IgE interactions. Phage 
display is an advanced technology that can lead to development 
of novel diagnostic and therapeutic agents. Fab fragments with 
high affinity for the IgE-binding epitope of the allergen could 
be applied to neutralize allergens in vivo and to prevent binding 
of IgE to FcεRI receptor and thereby block histamine release. 
The obtained mimotopes could serve as anti-allergic vaccines and 
might be safer than the currently used natural allergens, which 
evoke IgE responses.89

Screening of random phage libraries allows mapping of allergen 
epitopes and leads to obtain a variety of allergen mimetics. Phage 
display has been used to generate IgE Fab library, which allows to 
select four Fab clones that were specific for the Phleum pratense 
grass (timothy-grass) allergen Phl p 5.90 The CDR3 region was rich 
in aromatic amino acids which increase the allergen cross-reactivity 
of specific IgE.91 The rPhl p 5a domain contains several IgE epit-
opes in a configuration optimal for efficient effector cell activation, 
interacts with serum IgE from 76% of grass pollen-allergic patients 
and reveals an extremely high allergenic activity in basophil his-
tamine release as well as skin test experiments.92 The selection 
of anti-idiotypic antibodies against Phl p 5a-specific IgE directly 
from the B-cell repertoire of a grass pollen allergic individual had 
led to identification of five different Fab clones with anti-idiotypic 
specificity for anti-Phl p 5a-IgE. It was reported that phagemid 
DNA was used to produce two soluble recombinant anti-idiotypic 
Fab clones in E. coli, both of which induced anti-Phl p 5a-specific 
antibodies in immunized BALB/c mice.93

Recently, phage display has been used to characterize the epi-
topes and identify the mimotopes for antibodies to the Lolium 
(ryegrass) pollen allergen Lol p 2,94 Betula (birch) pollen aller-
gen Bet v 1,95 Prunus dulcis (almond) allergen,96 Charybdis feria-
tus allergen (crab)97 and to the Dermatophagoides pteronyssinus 
(home dust) allergen Der p 1.98 Moreover, the cDNA display 
libraries based on pJuFo phagemid were utilized to define fun-
gal (Aspergillus fumigatus),99 peanut (Arachis hypogaea) and wheat 
(Triticum aestivum L.) protein allergens.100 For instance, a panel 
of six Arachis hypogaea allergens was isolated by the phage display 
technology. Two of them were previously described as major pea-
nut allergens (Ara h 1101 and Ara h 2102), allergens Ara h 4, Ara h 6 
and Ara h 7 have been shown to contain similar sequence to seed 
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