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Abstract A study was conducted to examine the physio-
logical response of contrasting mung bean (Vigna radiata)
genotypes viz., T 44 & MH-96-1 (tolerant) and Pusa
Baisakhi & MH—-1K-24 (sensitive) under waterlogging con-
ditions. Plants were waterlogged at vegetative stage (30 days
after sowing) for 3, 6 and 9 days. Waterlogging resulted in
decreased leaf area, crop growth rate, root growth and
nodules number, membrane stability index, photosynthesis
rate, chlorophyll and carotenoid contents, flowering rate,
pod setting, yield and altered dry matter partitioning.
Sensitive genotypes showed large reductions in aforemen-
tioned physiological traits and slow recovery in photosyn-
thesis rate. On the other hand, tolerant genotypes maintained
higher photosynthetic rate, chlorophylls and carotenoids,
growth rate, membrane stability and fast photosynthetic
recovery under waterlogging. After 9 days of exposure to
waterlogging, photosynthetic rate and yield losses in most
sensitive genotype (MH-1K-24) were 83 and 85 %, respec-
tively. On an average, photosynthetic loss at 3, 6 and 9 days
of waterlogging was 43, 51, and 63 %, respectively, while
grain yield loss was 20, 34 and 52 % respectively.

Keywords Growth - Root proliferation - Photosynthetic
loss - Respiration - Dry matter partitioning - Yield loss

Introduction

Mung bean [Vigna radiata (L.) Wilczek] also known as
green gram, is one of the important pulse crops of India. It
is rich in digestible protein (approximately 25-28 %) by
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virtue of N, fixation machinery. It is extensively grown in
tropical and subtropical Asia because of its wider range of
adaptability (Poehlman 1991). This crop is fitted well in
multi-cropping systems, because of its rapid growth and
early maturity, results in the increase of small landholders’
income and improvement of soil fertility (Nsoukpoe-Kossi
et al. 1999). However, its large-scale adoption is constrained
by low yield potential. Various biotic and abiotic factors are
responsible for low yields of mung bean (Chotechuen
1996). Among the abiotic stresses, excess moisture or soil
flooding stands prominent.

Mung bean cannot withstand waterlogging, particularly
during the early stages of growth (Singh and Singh 2011).
Extensive grain yield losses have also been observed when
the plants are young. Flooding or waterlogging reduces
oxygen concentrations around the roots of the submerged
plants and restricts nodule activity and nitrogen fixation.
Thus, mung bean is not suited to the wet tropics, where
the annual precipitation is above 1,000 mm (Fernandez and
Shanmugasundaram 1988). The heavy rain damages the
crop causing severe yield losses. Although, there have been
a good number of reports on the excess moisture tolerance
of other upland crops such as tomato (Kuo and Chen 1980),
maize (Singh and Ghildyal 1980), wheat (Musgrave and
Ding 1998) etc., and soil flooding in mung bean is not
uncommon, but despite this fact, very little information is
available on the physiological responses of mung bean to
soil waterlogging. Waterlogging reduces plant growth by
affecting one or several physiological processes. One of
the main physiological effects of waterloggging is an inhi-
bition of photosynthesis (Ahmed et al. 2002, 2006). Since
photosynthesis is fundamentally associated with yield,
therefore, the present study was carried out with an aim to
analyze genotypic variability in growth, gas exchanges and
yield responses of mung bean in relation to waterlogging
tolerance and to estimate photosynthetic and yield losses

@ Springer



210

Physiol Mol Biol Plants (April-June 2013) 19(2):209-220

under different levels of waterlogging at vegetative growth
stages.

Materials and methods
Experimental material and growth conditions

A pot-culture experiment was conducted in complete ran-
domized design using four genotypes of mung bean viz.,
two tolerant (T 44, and MH-96-1), and two sensitive (Pusa
Baisakhi, and MH-1K-24) to study their response to water-
logging stress. Seeds were obtained from Division of
Genetics, Indian Agricultural Research Institute, New
Delhi and Indian Institute of Pulse Research, Kanpur,
(UP), India and sown in 30x30 cm (height x diameter)
earthen pots filled with clay-loam soil mixed farm yard
manure in 4:1 ratio during the summer-rainy season.

Twelve kg of soil was filled in pots and fertilized with
0.264, 0.600, and 0.520 g urea, triple super phosphate, and
muriate of potash corresponding to 40-60-40 kgN, P, and K
per hectare, respectively. Half of the urea and other fertil-
izers were mixed with soil before sowing. The rest of the
urea was top-dressed during the vegetative stage of plants.
The plants were watered regularly to maintain optimal soil
moisture until the flooding treatments were imposed.
Adequate plant protection measures were taken to keep the
plants free from diseases, insects, and weeds by having
repeated manual hand weeding and spraying with Bavistin
and Rogor @ 0.3 %. Before sowing, seeds were treated with
the required Rhizobium culture following the method de-
scribed elsewhere (Tripathi et al. 2012). Initially, four plants
were sown in each pot, which were thinned to three plants
per pot after 20 d. For waterlogging treatment, earthen pots
along with 30 d old plants were transferred to polythene
bags filled with water and placed in plastic troughs. The
water level in polythene bags was maintained almost up to
the upper surface of soil in the pot. Treatments were control,
3, 6, and 9 d of waterlogging, and recovery after 3, 6, and
9 d of termination of waterlogging. Two samples were
collected from each of the four replicates (n=8) for the
estimation of growth parameters, relative water content
(RWC), membrane stability index (MSI), and chlorophyll
(Chl) and carotenoid contents.

Growth parameters

Plants were harvested from control and waterlogging
treatments and after termination of waterlogging. Plants
were dug out gently and roots were washed thoroughly
for counting of root nodules. Leaf area was measured
using leaf area meter (Model 3100, LI-COR, Inc
Lincoln, NE, USA). Plant samples were dried in hot
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air oven at 80 °C till constant weight was achieved.
Plant growth rate (GR) was computed following the
method of Gardner et al. 1985.

W, — W,

GR(g day’l) = T, T,

Where,

W, Total plant dry matter at time T,
W, Total plant dry matter at time T,
T,  Time of first observation and

T, Time of second observation

Leaf relative water content (RWC)

Leaf relative water content (RWC) was determined by re-
cording the turgid weight of 0.5 g fresh leaf samples by
keeping in water for 4 h, followed by drying in hot air oven
till constant weight achieved (Weatherley 1950).

Fresh weight — dry weight

RWC(%) = 100

Turgid weight — dry weight

Membrane stability index

Membrane stability index was estimated 100-mg leaf ma-
terial using two sets of test tubes containing 10 ml of
double distilled water (Sairam 1994). One set was heated
at 40 °C for 30 min in a water bath, and the electrical
conductivity of the solution was recorded using conductiv-
ity meter (C1). Second set was boiled at 100 °C on a
boiling water bath for 10 min, and its conductivity (C2)
was measured as above. Membrane stability index (MSI)
was calculated as:

MSI = [1 — (C1/C2)] x 100

Estimation of chlorophylls and carotenoids

Chlorophyll content was extracted in 0.05 g leaf material
in 10 ml dimethyl sulfoxide (DMSO) (Hiscox and
Israelstam 1979). Samples were heated in an incubator
at 65 °C for 4 h, and than after cooling to room temper-
ature, the absorbance of extracts were recorded at 665
and 645 nm. Total chlorophyll concentration was esti-
mated in leaf tissue using following formula given by
Arnon (1949).

(20.2 X Agss + 8.02 X A663)

v
(1000 x W) 8

Total chlorophyll =
Where

A Absorbance at given wavelength
V  final volume of DMSO in ml
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W weight of sample in g.

Estimation of carotenoids

The chlorophyll above extract was also used for the quanti-
fication of carotenoids following the formula (Hendry and
Price 1993) given below:

Total Carotenoids(mg g~ fw)
— [A480 + (0.114 x A663) — (0.638 — AG45)]

X V/1000 x W

Gas exchange measurements

At each of the three growth stages, leaf gas exchange was
measured on successive days in control and treated plants
and also after the termination of flooding. Gas exchange
parameters were measured at ~1,500 photosynthetic photon
flux density (PPFD) light between 10.00 and 11:30 AM,
using a portable photosynthesis system (LICOR-6200)
which is a measure of the photosynthetic photon flux
(area) density normally quantified as pmol photons/m?/s.
Third leaf from the top of the plant was selected for the gas
exchange measurements and data on leaf photosynthetic rate
(Pn), stomatal conductance (Cs) and respiration rate were
recorded. For measurement of the rate of respiration, leaf
chamber of portable photosynthesis system was covered
with black cloth during the recording of respiration rate.
During the measurement, air temperature and relative hu-
midity were around 33.5 °C and 72.5 (%) respectively.

Yield attributes and seed yield

At maturity, pods were harvested in three pickings, viz. at
54, 70 and 88 days after emergence (DAE). Data on pods
per plant, seeds per pod, and 100-seed weight were recorded
for individual treatments and at each harvest. At final har-
vest, plant height was recorded. Yield attributes and seed
yield of each plant were determined by summing up three
harvests and seed yield was adjusted at 12 % moisture
content.

Data analysis

Standard statistical methods were employed to compare dif-
ferent parameters of waterlogged and non-waterlogged plants.
All experimental data recorded were average mean values for
at least three independent assays with three replicates each.
The data were subjected to ANOVA for completely random-
ized design factorial (Gomez and Gomez 1984).

Results
Growth and development

In general, 9 days waterlogging caused yellowing of leave
and reduced the plant growth of all genotypes, however,
reduction was significantly lower in tolerant genotypes (T-
44 and MH-96-1) compared to sensitive genotypes (Pusa
Baisakhi and MH-1K-24) (Fig. 1a—d). Root growth was also
affected under waterlogging and tolerant genotypes showed
formation of horizontal adventitious roots at soil surface
from the transition zone between root and shoot (Fig. 2a
and b). These genotypes also maintained higher root nod-
ules per plant than sensitive genotypes under waterlogging
(Fig. 3a). Similarly, tolerant genotypes maintained signifi-
cantly higher leaf area and growth rate under waterlogging
compared with sensitive genotypes (Fig. 3b—c).

MSI and RWC

Membrane stability index and relative water content de-
creased in all genotypes with advancing in waterlogging.
Tolerant genotypes T- 44 and MH - 96-1 maintained signif-
icantly higher membrane stability and relative water content
than sensitive ones (Pusa Baisakhi and MH-1K-24) under
waterlogging (Fig. 4a-b).

Chlorophylls and carotenoids

Under waterlogging, all genotypes showed chlorosis and
yellowing of leaves and reduction in photosynthetic pig-
ments (Fig. 5a—b). However, sensitive genotypes (Pusa
Baisakhi and MH-1K-24) exhibited relatively higher chlo-
rosis and drastic reduction in the level of chlorophylls and

WATERLOGGED §

CONTROL WATERLOGGED {

Fig. 1 Growth of four contrasting tolerant (T-44 & MH 96-1) and
sensitive (Pusa basakhi & MH 1K — 24) genotypes of mung bean after
9 days of waterlogging
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Fig. 2 Comparative adventitious root formation in tolerant (T-44) (a)
and sensitive (Pusa Baisakhi) (b) genotypes under waterlogging
conditions

carotenoids as compared to tolerant ones viz. T 44 and MH-
96-1. The level of photosynthetic pigments reduced with
increasing level of waterlogging. Amongst all the geno-
types, T 44 maintained the highest levels of total chloro-
phylls and total carotenoids under waterlogging. Both the
sensitive genotypes showed drastic reduction in the levels
of total chlorophylls and carotenoids under waterlogging.
Ratio of total carotenoids and total chlorophylls showed
the genotypic variation during waterlogging (Fig. 5c¢).
Tolerant genotypes namely T- 44 and MH -96-1 exhibited
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an increase in the relative ratio of total carotenoids and
chlorophylls under waterlogging. However sensitive
genotype MH-1K-24 and Pusa Baisakhi showed the
reduction in the relative ratio of total chlorophylls and
carotenoids particularly after 9 days waterlogging
(Fig. 5c¢).

Leaf photosynthesis and respiration

Waterlogging inhibited the rate of photosynthesis in all
genotypes. Inhibition of photosynthesis increased with the
advancing of waterlogging duration. Moreover, photoinhi-
bition was comparatively higher in sensitive genotypes
(Pusa Baisakhi and MH-1K-24) than tolerant ones (T - 44
and MH-96-1) (Fig. 6a). Tolerant genotypes not only main-
tained the higher rate of photosynthesis during waterlogging
but also showed faster recovery after termination of water-
logging (Fig. 6d). Furthermore, after 9 days waterlogging
termination, almost 100 % recovery in terms of rate of photo-
synthesis was recorded in tolerant genotypes. Amongst sensi-
tive genotypes, photosynthetic recovery was observed slower
than tolerant (Fig. 6d). Photosynthetic loss among mung bean
genotypes increased with increase in the level of waterlogging
and was estimated up to 80 % at 9th day. However, photosyn-
thetic losses among tolerant genotypes were quite lower than
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Fig. 3 Effect of waterlogging on a root nodule/plant growth rate, b
leaf area and ¢ growth rate in tolerant (T-44 & MH-96-1) and suscep-
tible (Pusa Baisakhi and MH-1K-24) genotypes of mung bean. For
different parameter genotype wise control average values equivalent to
100 % were recorded as: Root nodules (No. of nodules/plant) 12.67
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(T - 44), 17.67 (MH 96 — 1), 19.33 (Pusa Baisakhi) and 16.67 (MH
1K — 24); Leaf area (cm?) 167.92 (T - 44), 190.74 (MH 96 — 1), 222.15
(Pusa Baisakhi) and 152.32 (MH 1K — 24); Growth rate (mg/plant/day)
244.63 (T - 44), 224.17 (MH 96 — 1), 262.24 (Pusa Baisakhi) and
198.93 (MH 1K — 24). Vertical bars show + SD of mean
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Fig. 4 Effect of waterlogging on a membrane stability index and b
relative water content of leaf tissues in tolerant (T-44 & MH-96-1) and
susceptible (Pusa Baisakhi and MH-1K-24) genotypes of mung bean.
For different parameter genotype wise control average values

sensitive genotypes (Fig. 6a). Stomatal conductance also
showed the similar pattern as observed in for photosynthesis
rate (Fig. 6b and e).

On an average, leaf respiration increased at 3rd day of
waterlogging, as compared to normal conditions. MH- 96-1
and Pusa Baisakhi exhibited maximum enhancement of leaf
respiration rate than other genotypes. At 6th and 9th day of
waterlogging, slight reduction in rate of respiration was
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equivalent to 100 % were recorded as: MSI (%) 90.56 (T - 44), 92.22
(MH 96 — 1), 90.23 (Pusa Baisakhi) and 88.29 (MH 1K — 24); RWC
(%) 89.23 (T - 44), 87.33 (MH 96 — 1), 86.67 (Pusa Baisakhi) and
83.43 (MH 1K — 24). Vertical bars show + SD of mean

recorded. Leaf respiration rate in T-44 remained unaffected
throughout waterlogging treatment. Thus, in general, leaf
respiration rate, did not decrease and maintained normal
level even during last phase of waterlogging (Fig. 6c¢).
After 3 days of waterlogging termination Pusa Baisakhi
had the highest CO, liberation (respiration rate) and after
9 days of waterlogging termination all genotypes of mung
bean showed almost complete respiration recovery (Fig. 6f).
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Fig. 5 Effect of waterlogging on a total chlorophyll, b total carotenoid
and c relative ratio of total chlorophyll/total carotenoids in leaf tissues
of tolerant (T-44 & MH-96-1) and sensitive (Pusa Baisakhi and MH-
1K-24) genotypes of mung bean. For different parameter genotype
wise control average values equivalent to 100 % were recorded as:
Total chlorophyll (mg/g fwt) 2.041 (T - 44), 2.078 (MH 96 — 1), 1.814
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(Pusa Baisakhi) and 1.441(MH 1K — 24); Total carotenoids (mg/g f wt)
0.345 (T - 44), 0.392 (MH 96 — 1), 0.340 (Pusa Baisakhi) and 0.260
(MH 1K — 24); Total carotenoids/Total chlorophyll (Ratio) 0.1698
(T - 44), 0.1895 (MH 96 — 1), 0.1872 (Pusa Baisakhi) and 0.1804
(MH 1K — 24). Vertical bars show + SD of mean
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Fig. 6 Leaf photosynthesis, stomatal conductance (Cs) and respiration
rate in mung bean genotypes during waterlogging. a Photosynthetic
rate (% of control), b Stomatal conductance (% of control), ¢ respira-
tion rate (% of control) and after waterlogging termination during
recovery, d photosynthetic rate (% of control), e Stomatal conductance
(% of control f respiration rate (% of control). For different parameter
genotype wise control average values equivalent to 100 % were

Total dry matter production and Dry matter partitioning

Waterlogging in mungbean reduced total dry matter produc-
tion and also affected the dry matter partitioning (Fig. 7).
Relative reduction in dry matter was more pronounced in
sensitive genotypes than tolerant ones. At harvest, under
waterlogged condition tolerant genotypes i.e. T- 44 and
MH- 96-1 exhibited relatively higher dry matter accu-
mulation in root and slight reduction in stem and leaf
over its control (Fig. 7a—d). However, waterlogging
sensitive genotypes Pusa Baisakhi and MH-1K-24
showed poor dry matter accumulation in root and higher
dry matter accumulation in stem and leaf under

@ Springer

2127 Q7.4 @MH-9-1 O Pusa Baisaki @ MH - 1K - 24
S 1001
z +*
St 4
2 +*
E :
g *
:
z +*
£ *
=
Y
9
120 -
= 100
& T
g 804 L e+
: 28
S .
= . }’
: 1
8 T T3
T
e
. il
3
= 120+
£
=
100 T
S _ii I *
3 80 b4 W [
&
% # 2 2
£ 607 +* L
= L : o
= P -
S 40|00 + -
E o0l $ 33
| : 24
£ ) * 4

6 9
Recovery (days)

recorded as: Photosynthesis rate (iumole CO*/m?%/s) 21.07 (T - 44),
22.23 (MH 96 — 1), 21.97 (Pusa Baisakhi) and 19.77 (MH 1K — 24);
Stomatal Conductance (cm/s) 3.434 (T - 44), 3.623 (MH 96 — 1), 3.581
(Pusa Baisakhi) and 3.223 (MH 1K — 24); Respiration rate (pumole
CO*/m?/s) 8.82 (T - 44), 8.85 (MH 96 — 1), 8.61 (Pusa Baisakhi) and
6.17 (MH 1K — 24). Vertical bars show £ SD of mean

waterlogging than its control (Fig. 7e-h). In T- 44,
proportion of dry matter partitioning in pod under
waterlogging remained exactly similar to its control
and very slightly reduced in MH- 96-1 (Fig. 7a-d).
However, in sensitive mung bean genotypes Pusa
Baisakhi and MH-1K-24, proportion of dry matter par-
titioning in pod under waterlogging was recorded lower
than their respective controls (Fig. 7e—h).

Flowering and podding patterns

Both tolerant and sensitive genotypes showed the inhibition
of flowering, pod setting and enhanced the dropping of
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Fig. 7 Dry matter partitioning
in leaves, stem, roots and pods
in tolerant (T-44 & MH 96-1)
and sensitive (Pusa Baisakhi &
MH-1K 24) mung bean geno-
types under control and water-
logged conditions. a T-44
(control), b T-44 (waterlogged),
¢ MH 96-1 (control) and d MH
96-1 (waterlogged) e Pusa Bai-
sakhi (control), f Pusa Baisakhi
(waterlogged), g MH-1K 24
(control) and h MH-1K 24
(waterlogged). Genotype wise
total dry matter (g/plant) aver-
age values of control (non-wa-
terlogged) equivalent to 100 %
were recorded as 17.68 (T - 44),
33.72 (MH 96 — 1), 39.67 (Pusa
Baisakhi) and 23.22 (MH 1K —
24) while under waterlogged
conditions average values of
total dry matter (g/plant) were
15.18 (T - 44), 26.36 (MH 96 —
1), 13.21 (Pusa Baisakhi) and
7.32 (MH 1K - 24)

flowers and pods under waterlogging (Fig. 8a—h). However,
number of floral buds and pods per plant were most
affected under waterlogging only in sensitive genotypes
(Fig. 8e—h). There was severe reduction in pod setting
in sensitive genotypes viz. Pusa Baisakhi & MH-1K-24
and this reduction was mainly associated with the drop-
ping of floral buds and pods (Fig. 8e—h). In contrast,
tolerant genotypes T- 44 and MH-96 -1 maintained
fairly good pod setting even in waterlogged plant
(Fig. 8a—d).

Yield loss

The yield was affected by waterlogging in all the gen-
otypes. Yield losses increased with the increase in
waterlogging duration at vegetative stage. On an aver-
age, grain yield losses in all four mung bean genotypes
at 3, 6 and 9 days of waterlogging were 20.01, 33.79
and 51.88 %, respectively. Tolerant genotypes almost
recovered the grain yield losses caused by 3 days water-
logging. However, for sensitive genotypes even 3 days
waterlogging reduced the yield upto 20 %. Grain yield
losses in sensitive genotypes after 9 days waterlogging
at were estimated 70.0 (Pusa Baisakhi) to 84.9 % (MH
— 1K — 24) as compared to their respective controls.
Tolerant genotypes showed comparatively lesser yield
reduction even after 9 days of waterlogging (Fig. 9).

@ Stem 1 Pod Il | eaf 1 Root

Discussion

During the study waterlogging induced several physiological
disturbances, including reduction in growth, dry matter, pho-
tosynthesis and pod formation that resulted in low yield sim-
ilar to that in other beans (Solaiman et al. 2007; Pociecha et al.
2008; Celik and Turhan 2011). Waterlogging treatment caused
reduction in plant growth in terms of leaf area and growth rate
in all the genotypes and the level of reduction was more
pronounced in sensitive genotypes. For acclimation in water-
logging environment, avoidance of water loss through reduc-
tion in leaf area and the induction of adventitious roots
proliferation have been reported in soybean by Bacanamwo
and Purcell (1999). In our study, waterlogging resulted in
increased adventitious root proliferation in tolerant genotypes.
This in turn indicated significance of adventitious roots pro-
liferation as an important trait. It provides an early and fast
root growth recovery. Similarly, low degree of root decay and
formation of adventitious roots along with aerenchyma has
been reported as important characteristics to confer tolerance
under waterlogging in cowpea (Takele and McDavid 1994)
and faba bean (Solaiman et al. 2007). Similar to our observa-
tions inhibition of growth has been reported in sensitive
genotypes in field bean (Pociecha et al. 2008), tomato (Else
et al. 2009) and common bean (Celik and Turhan 2011).

The formation of new roots at the upper most part of the
tap root (transition zone between root and shoot) might have
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«Fig. 8 Comparative account of flowering, podding and droppings
patterns in tolerant (T-44 & MH 96-1) and sensitive (Pusa Baisakhi
& MH-1K 24) genotypes under control and waterlogging. a T-44
(control), b T-44 (waterlogged), ¢ MH 96-1 (control), d MH 96-1
(waterlogged), e Pusa Baisakhi (control), f Pusa Baisakhi
(waterlogged), g MH-1K 24 (control) and h MH-1K 24
(waterlogged). Total includes sum of flowers, pods and dropped ones

occurred as a consequence of the death of existing root tips
(Palta 2007). These newly formed roots under waterlogging
represent not only the losses of previously-invested carbon,
but an investment of new carbon (Palta et al. 2010). The
malfunctioning of root systems under anoxia and enhanced
production of adventitious roots was also reported earlier in
several plant species like maize (Wenkert et al. 1981),
Rumex spp. (Visser et al. 1996) and mungbean (Islam et
al. 2010). Visser et al. (1996) reported that accumulation of
ethylene has a role in the formation of flooding-induced
adventitious roots formation. The production of new thick
roots reflects the death and decay of existing roots (Malik et
al. 2001). Formation of adventitious roots is viewed as an
indicator of the presence of adaptive mechanism in plants
tolerant to excess soil water (Jackson and Drew 1984). This
trait allows the root system to obtain oxygen directly from
the air because the adventitious roots formed in the soil and
even at the soil surface. We observed reduction in number of
nodules per plant in all genotypes of mung bean at 9 days of
waterlogging but tolerant genotypes maintained higher
number of nodules per plant. Similar observations have been
reported in cowpea (Hong et al. 1977) and soybean
(Matsunami et al. 2007).

Cell membrane stability has been widely used to express
stress tolerance in plants and higher membrane stability is
correlated with stress tolerance by Premachandra et al.
(1992). Membrane disintegration as a result of oxygen dep-
rivation and solute leakage upto 40 times has been reported
in 4 days waterlogged pea plants (Jackson et al. 1982;
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Fig. 9 Relative reduction in grain yield of mung bean tolerant (T-44 &
MH 96-1) and sensitive (Pusa Baisakhi & MH-1K 24) genotypes under
varying durations of waterlogging at vegetative stage. Genotype wise
control average values of grain yield (g/plant) equivalent to 100 %
were 7.37 (T - 44), 8.96 (MH 96 — 1), 11.15 (Pusa Baisakhi) and 6.96
(MH 1K - 24)

Rawyler, et al. 2002). In our study, waterlogging significant-
ly reduced the relative water content (RWC) and membrane
stability particularly in sensitive mungbean genotypes.
Similar reduction in relative water content (RWC) has been
reported under flooding stress in pineapple by Min and
Bartholomew (2005). Wilting in plants under excess of
water during flooding has been attributed to higher resis-
tance to mass flow of water through the roots (Jackson and
Drew 1984). Flooding-tolerant plant species develop adap-
tive mechanisms to maintain better water relationship by
means of stomatal conductance (Malik et al. 2001).

Yellowing of the plants and reduction in total chlorophyll
content in the leaves of mung bean plants was observed
during waterlogging. Similarly, reduction in total chloro-
phyll content as a result of flooding has been reported in
wheat (Collaku and Harrison 2002), maize (Prasad et al.
2004), sesame (Mensah et al. 2006) and onion (Yiu et al.
2008). Under waterlogging, yellowing of the plant might be
due to reduction in leaf nitrogen (Bacanamwo and Purcell
1999), nodulation and N fixation and production of toxic
substances such as nitrites and sulphides which move from
the soil through roots to the leave if carried upward in large
quantities (Ezin et al. 2010). In addition, waterlogging
results in reduced soil nitrogen through rapid volatilization
and denitrification (Ali Rasaei et al. 2012). During water-
logging tolerant genotypes maintained relatively higher lev-
el of carotenoids and higher ratio of total carotenoids and
total chlorophylls indicated the protective role of carote-
noids in waterlogging tolerance.

Waterlogging has been reported to severely affect the
process of photosynthesis in plants (Li et al. 2011a, b). We
observed reduction in rate of photosynthesis in mung bean
genotypes under waterlogging stress. Reduction in photo-
synthesis within a day after waterlogging was also reported
earlier in snap bean (Lakitan et al. 1992). Decrease in rate of
photosynthesis under waterlogging has been attributed to
stomatal closure (Yordanova et al. 2005), decrease in leaf
chlorophyll concentration (Bradford 1983), production of
ethylene (Ahmed et al. 2006), reductions in sink demand
(Robert and Robert 1984), and disruption of the transloca-
tion of photosynthates (Chen et al. 2005). In Spinacia oler-
acea photosynthesis decreased due to disruption of PSII and
reductions in chlorophyll pigments under waterlogging
(Schnettger et al. 1994). Damage to light-harvesting com-
plex has also been reported in flooded tomato (Janowiak et
al. 2002) and mung bean (Ahmed et al. 2006). The rate of
photosynthesis under flooding may decrease due to in-
creased photorespiration and reduced ribulose bisphosphate
carboxylase (RuBisCO) activity (Yordanova and Popova
2007). Mung bean tolerant genotypes (T 44 and MH- 96-
1) showed faster recovery after waterlogging termination
probably due lesser damage to photosynthetic machinery
was caused by waterlogging treatment.
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In our study, waterlogging initially enhanced or main-
tained normal rate of leaf respiration in mung genotypes.
Liao and Lin 2001 reported the significant enhancement in
leaf respiration during flooding. This might be related to the
additional energy consumption for homeostasis mainte-
nance and adaptation of the plants under waterlogging.
Maintenance respiration is known to accelerate during ad-
aptation, which indicates additional energy consumption
(Bragina et al. 2001). Further, leaf respiration was sup-
pressed, which might be related to the fact that the genotype
is already adapted to hypoxia. Maintenance of normal leaf
respiration in mung bean genotypes T 44 throughout water-
logging, suggested its better adaptability to excess water
environment. Rate of respiration in mung bean genotypes
was increased after waterlogging termination probably due
to the need of ATP for recovery and availability of
photosynthates.

Waterlogging generally reduced the growth of plant com-
ponents resulting in lesser total dry weight (TDW).
Waterlogging reduced relative TDW as a result of reduced
dry weight of plant components. Tolerant genotypes had
more dry matter because they were lesser affected by water-
logging. The tolerant genotypes maintained greater root,
shoot and leaf dry matter under waterlogging than the sen-
sitive cultivars. Therefore, tolerant genotypes with vigorous
shoot and root growth were better able to tolerate transient
waterlogging (Hartley et al. 1993). The reduction in root dry
matter is probably due to reduction in dry matter of both tap
root and adventitious root as a result of a reduction in root
length and branching. Earlier studies also showed the de-
cline of both plant growth and accumulation and redistribu-
tion of dry matter by waterlogging after anthesis in wheat
(Li et al. 2011a, b; Setter et al. 2009). It was shown earlier
that plants invest a large proportions of carbon in their root
system (Hooda et al. 1990) and the production of new roots
after waterlogging, represent not only losses of a previously-
invested carbon, but also an investment in new carbon (Palta
et al. 2010). An alternative explanation is that transpiration
flow drawn through the waterlogged roots is partially
replaced by that through well-aerated adventitious roots,
thereby sweeping fewer phytohormones out of waterlogged
roots and into the leaves. This could reduce delivery of
stomatal closing factors from the oxygen-deficient root sys-
tem (Else et al. 2006), but only if water flow rate is the
driving force behind its entry into xylem sap of the water-
logged roots.

In present study, waterlogging reduced seed yield primar-
ily by reducing the number of pods per plant and pod
setting. Similar reductions in plant yield have been reported
in snap bean (Lakitan et al. 1992) and mung bean (Ahmad et
al. 2003; Ahmed et al. 2002) grown under waterlogging.
Genotypic sensitivity to waterlogging could be related to the
level of endogenous plant hormones, which increase
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dropping of flowers and/or the loss of pod setting, as also
observed in other crops (Lakitan et al. 1992; Umaharan et al.
1997) and induced by ethylene (Zhou and Lin 1995). The
higher number pods in tolerant cultivars was probably due
to greater availability of the source to the reproductive sinks.
Higher yield in tolerant cultivars resulted with increases in
the number of pods, higher rate of photosynthesis and
availability of plant nitrogen under waterlogging (Palta et
al. 2010). On the other hand large reduction in root nodule
number and dry matter in the sensitive genotypes indicated
that subsurface waterlogging might have reduced nitrogen
fixation (Matsunami et al. 2005). Quick recovery of photo-
synthesis and leaf growth in tolerant genotypes might also
have resulted in small reduction of seed yield.

Conclusions

The study concludes that contrasting mung bean genotypes
responded differently to excess water in the soil, due to
variability and their growth, physiological responses to
waterlogging. Maintenance of normal leaf respiration by
tolerant genotypes under waterlogging stress was associated
with their better adaptability to excess water environment.
Transient subsurface waterlogging at vegetative stage
caused a severe reduction in root growth in sensitive mung
bean genotypes and root proliferation in tolerant ones. The
vigorous early growth and faster recovery after termination
of waterlogging treatment in tolerant genotypes was associ-
ated with faster rates of adventitious root growth. However,
further research is needed to evaluate the tolerance in mung
bean for long term flooding conditions.
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