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Background: HARE mediates systemic clearance of hyaluronan (HA), which turns over continuously in tissues.

Results: HARE uptake of 40 —400-kDa, but not larger or smaller, HA stimulated NF-«B activation.

Conclusion: HA-HARE signal complexes activate NF-«B and gene transcription only with optimally sized HA.

Significance: HARE responsiveness to a narrow size range of HA degradation products may be a sensing system to detect tissue

ECM stress.

The hyaluronan (HA) receptor for endocytosis (HARE; Stabi-
lin-2) binds and clears 14 different ligands, including HA and
heparin, via clathrin-mediated endocytosis. HA binding to
HARE stimulates ERK1/2 activation (Kyosseva, S. V., Harris,
E.N., and Weigel, P. H. (2008) J. Biol. Chem. 283, 15047-15055).
To assess a possible HA size dependence for signaling, we tested
purified HA fractions of different weight-average molar mass
and with narrow size distributions and Select-HA™ for stimu-
lation of HARE-mediated gene expression using an NF-kB pro-
moter-driven luciferase reporter system. Human HARE-medi-
ated gene expression was stimulated in a dose-dependent
manner with small HA (sHA) >40 kDa and intermediate HA
(iHA) <400 kDa. The hyperbolic dose response saturated at
20-50 nm with an apparent K, ~10 nuM, identical to the K, for
HA-HARE binding. Activation was not detected with oligo-
meric HA (oHA), sHA <40 kDa, iHA >400 kDa, or large HA
(IHA). Similar responses occurred with rat HARE. Activation by
sHA-iHA was blocked by excess nonsignaling sHA, iHA, or IHA,
deletion of the HA-binding LINK domain, or HA-blocking anti-
body. Endogenous NF-kB activation also occurred in the
absence of luciferase plasmids, as assessed by degradation of
IkB-a. ERK1/2 activation was also HA size-dependent. The
results show that HA-HARE interactions stimulate NF-kB-acti-
vated gene expression and that HARE senses a narrow size range
of HA degradation products. We propose a model in which opti-
mal length HA binds multiple HARE proteins to allow cytoplas-
mic domain interactions that stimulate intracellular signaling.
This HARE signaling system during continuous HA clearance
could monitor the homeostasis of tissue biomatrix turnover
throughout the body.
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Hyaluronan (HA),? a ubiquitous extracellular matrix (ECM)
component, is synthesized by many different cell types as a
large co-polymer of -GlcNAc(B1,4)GlcUA(BL,3)- disaccha-
rides, typically in the MDa mass range. This large HA has gen-
eral functions in matrix structural integrity, water and cation
homeostasis in all tissues, and specialized functions in some
tissues, such as a lubricant in synovial fluid (1). HA binds to
many different hyaladherins (2), HA-binding proteins, involved
in remodeling and organizing ECM in a tissue-specific fashion
(3). HA binding to surface receptors activates cell signaling
events important for development, wound healing, and metas-
tasis of some cancers (4—7).

Among biopolymers, the polydispersity of HA (i.e. weight-
average mass + number-average mass; M, /M,) in biological
samples is exceptional. Sizes range in length from 4 to 50,000
sugars. Literature terms for HA size are not uniform or consist-
ent, and some reports use identical terms (e.g. small) for differ-
ent sizes (8). To facilitate data presentation and discussion (Fig.
1), we use four designations to define HA size ranges (oHA,
sHA, iHA, and IHA) based on a five log-scale size range with
three log boundaries (at 10, 100, and 1,000 kDa). For example,
large HA (IHA; >1-10 MDa) in the ECM can be depolymerized
to intermediate HA (iHA; >100-1,000 kDa), small HA (sHA;
>10-100 kDa), and oligomeric HA (oHA; 1-10 kDa) during
various normal or pathophysiological situations such as tissue
injury, tumorigenesis, bacterial infection, oxidative stress, or
exposure to reactive oxygen intermediates at the site of inflam-
mation (9-14).

sHA and IHA promote different cellular and biological
responses. IHA can prevent scar formation during fetal wound
healing and in spinal cord injuries. These biological activities

2 The abbreviations used are: HA, hyaluronic acid, hyaluronate, hyaluronan;
Ab, antibody (IgG); EV, empty vector; ECM, extracellular matrix; HARE, hya-
luronic acid receptor for endocytosis; hHARE, 190-kDa human HARE;
rHARE, rat HARE; iHA, intermediate HA (>100 to 1,000 kDa); LMW-HA, low
molecular weight HA; IHA, large (>1 MDa) HA; IUC, luciferase; MALLS, mul-
tiangle laser light scattering; M,,, weight-average molar mass; sHA, small
HA (>10 to 100 kDa); oHA, oligosaccharide HA (>1 to 10 kDa); SEC, size-
exclusion chromatography; Stab2, Stabilin-2; CS, chondroitin sulfate.
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occur in various cell types as altered cell proliferation, infiltra-
tion, or glycosaminoglycan synthesis (15, 16). oHA or sHA can
activate cell proliferation, differentiation, or angiogenesis (17,
18). In rheumatoid arthritis, sHA fragments, generated by deg-
radation of native IHA from synovial fluid, interact with TLR-2
and TLR-4 and modulate inflammatory mechanisms (19).

NF-kB is a ubiquitously expressed transcription factor that
plays important roles in regulating many genes encoding pro-
inflammatory cytokines, chemokines, growth factors, and
adhesion molecules (20). NF-«B is activated by many inflam-
matory and cell stress stimuli, including cytokines (e.g TNF-«
and IL-1B), mitogens, environmental particles, toxic metals,
pathogens, and pathogen-derived products (21). Normally, in
the cytoplasm, activated NF-kB translocates to the nucleus,
binds to the promoter of the targeted genes, and activates their
transcription. Activation of NF-«B is a hallmark indicator in the
acute phase of inflammatory response after injury or infection
(22). Binding of sHA, but not IHA, to CD44 significantly
increases production of the inflammatory cytokine IL-6 (23). In
3LL and embryonic fibroblasts, oHA strongly stimulates NF-«B
activation by an unknown HA receptor and induces expression
of metalloproteases MMP-9 and MMP-13 (24).

HARE, which begins at Ser'13® and ends at the C-terminal
Leu?™*! of full-length Stab2 (25, 26), is a 190-kDa fully func-
tional isoform of Stab2 that is generated by proteolysis (27); it is
preferentially and highly expressed in the sinusoidal endothe-
lial cells of liver and lymph node (26, 28 —30), the tissues respon-
sible for systemic HA clearance. We designate the full-length
315-kDa protein as Stab2 and HARE as the 190-kDa isoform
that is not a splice variant. HARE and Stab2 function as primary
scavenger receptors for systemic clearance of 14 different
ligands, and other functions, including cell signaling, have only
recently been examined. We found that HA binding to HARE
can stimulate cell signaling, leading to activation of the MAPK
ERK1/2 in a dose- and time-dependent manner (31). Park et al.
(32) found stimulation of anti-inflammatory cytokine release in
macrophages phagocytosing apoptotic cells via the phosphati-
dylserine binding activity of these proteins.

HARE was first characterized by Laurent, Fraser, and co-
workers (4, 33-35) as a systemic clearance receptor that
removes HA and chondroitin sulfate (CS) from the vascular and
lymphatic circulatory systems. Adult humans contain ~15 g of
tissue HA and synthesize and degrade one-third of this amount
daily. Native IHA is continuously partially degraded by an
unknown mechanism and released from tissue ECMs as
~1-MDa fragments that may contain bound proteins such as
growth factors and lecticans with CS and other glycosamin-
oglycan chains (31-33). These HA-proteoglycan fragments and
associated components enter the lymphatics and lymph nodes,
the initial and primary sites for 85% of the HA and CS clearance
and degradation. Liver is the second clearance site, after the
lymph node effluent enters the circulation, accounting for 15%
of the total body HA and CS turnover. HARE/Stab2 is also
highly expressed in sinusoidal endothelial cells of spleen (26)
and bone marrow (36), perhaps mediating local HA turnover,
and is also found in macrophages (32), corneal and lens epithe-
lium, mesenchymal heart valve cells, ependymal brain ventricle
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cells, prismatic epithelial cells covering renal papillae, and ovi-
duct (37).

Here, we used NF-kB promoter-driven Dual-Luciferase gene
expression to test HA preparations of different sizes for their
ability to stimulate HARE-mediated gene expression in stable
HEK Flp-In 293 cell lines. HA binding to rat or human HARE
stimulated NF-«B-mediated gene expression in a dose- and
time-dependent way. This response was very dependent on HA
size, only occurring with a narrow size range at the sHA-iHA
boundary (40 - 400 kDa); smaller oHA or sHA and larger sHA,
iHA, or IHA were inactive. The optimum signaling size was
~140 kDa. This HARE receptor signaling system in response to
HA clearance could play a role in monitoring the status of tissue
biomatrix turnover throughout the body.

EXPERIMENTAL PROCEDURES

Cells, Plasmids, and Reagents—Flp-In 293 cells, FBS, DMEM,
hygromycin B, Zeocin, Lipofectamine 2000, Lipofectamine
LTX and PLUS reagents, glutamate, plasmid expression vec-
tors, and super-competent TOP10 Escherichia coli were from
Invitrogen. Plasmid vectors pGL4.32(luc2P/NF-«B-RE/Hy-
gro), Dual-Luciferase Reporter Assay System (E1960), and
Luminometer Glomax 20/20 were from Promega (Madison,
WI). Plasmid pRL-TK was kindly provided by Dr. K. Mark
Coggeshall (Oklahoma Medical Research Foundation). Stable
cell lines expressing HARE and HARE mutants were generated
as described previously (25, 31) using Flp-In 293 (HEK) cells,
which are engineered to contain a selected recombinase inser-
tion site, and the correct single insertion was verified. The Invit-
rogen protocol was followed to confirm that the clones selected
contained one transgene inserted at the correct locus. End-la-
beled ®H-oligosaccharides of identical specific activity were a
generous gift from Dr. Paul DeAngelis. Rabbit anti-phospho-
ERK1/2 (p44/42; Thr(P)*°* and Tyr(P)*°*), rabbit anti-ERK1/2,
and mouse anti-IkB-a monoclonal Ab were from Cell Signaling
Technology, Inc. (St. Louis, MO). Goat anti-rabbit IgG-HRP,
donkey anti-goat IgG-HRP, and donkey anti-mouse IgG-HRP
were from Santa Cruz Biotechnology (Santa Cruz, CA). Mouse
monoclonal Ab6276 to human B-actin was from Abcam (Cam-
bridge, MA).

Limulus amebocyte lysate reagent (Endosafe KT A 0.03 endo-
toxin units/ml) was from Charles River (Charleston, SC). HA
prepared by bacterial fermentation was obtained from Gen-
zyme Corp. (Cambridge, MA) or Lifecore (Chaska, MN).
Select-HA™ was from Hyalose (Oklahoma City, OK). Protease
inhibitor mixture (4-(2-aminoethyl)benzenesulfonyl fluoride,
aprotinin, leupeptin, bestatin, pepstatin A, and E-64), sodium
pyrophosphate, sodium fluoride, sodium orthovanadate, benz-
amidine, 2-mercaptoethanol, EGTA, EDTA, Tween 20, Sep-
hacryl resins, and Trace Select grade ammonium acetate (cata-
logue 73432) were from Sigma. Enhanced chemiluminescence
(ECL) substrate was from PerkinElmer Life Sciences. Optimum
Brand autoradiography film was from Life Sciences Products
(Frederick, CO), and nitrocellulose membranes were from
Schleicher & Schuell. Other materials, reagents, and kits were
obtained as described recently (38) or were from Sigma. The
compositions of PBS, Lysis Buffer, TBST (TBST, Tris-buffered
saline with Tween 20), and other buffers were as described pre-
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viously (31, 38) Compete Medium contained DMEM supple-
mented with 8% FBS and 100 ug/ml hygromycin B. Transfec-
tion medium contained DMEM with 8% FBS (no antibiotics).
Protein content was determined by the Bradford method (39)
using BSA as the standard.

Preparation and Characterization of Defined Size, Low Endo-
toxin HA—Preparations of sHA (with M,, = 36, 66, or 80 kDa)
and iHA (with M, = 107, 178, 436, 549, or 967 kDa) with nar-
row size distributions and minimal overlap were purified by
size-exclusion chromatography (SEC) and characterized by
SEC-multiangle laser light scattering (SEC-MALLS) analysis.
HA to be fractionated was either variable broad size range HA
(Lifecore) or MDa size HA (Genzyme) subjected to mild acid
hydrolysis, under conditions that did not cleave N-acetyl
groups (e.g. 0.05 N HCl at 55 °C for 1- 4 h), and then neutralized.
All glassware was either treated with 0.5 N NaOH or baked at
250 °C overnight. Low trace-metal ammonium acetate mini-
mized metal ion content after lyophilization, and ethanol was
included in buffers to minimize bacterial contamination. Sam-
ples were fractionated over Sephacryl HR-500 (for HA >400
kDa) or HR-400 (for HA <400 kDa) columns (3.7 X 120 cmy;
1.3-liter bed volume). A Gilson PrepFC fraction collector was
housed in a custom Plexiglass box to minimize dust entering
the tubes. Positive pressure was maintained using an aquarium
pump by air flowing through a vacu-guard filter. The elution
buffer was 50 mm ammonium acetate containing 20% ethanol,
and 7.5-ml fractions were collected. Portions of every third
fraction were analyzed by MALLS for HA size distribution,
concentration, and M,, (40). Groups of three fractions from =5
identical runs were pooled based on their MALLS profiles and
lyophilized using Triforest Duocap flasks (ISC Bioexpress,
Kaysville, UT). Pellets were dissolved in 2 ml of sterile deionized
water and transferred to a 15-ml conical polypropylene tube.
Sterile deionized water (4 ml) was added to the flasks, which
were rocked at room temperature for 2 h to recover residual
HA. The pooled 6-ml solution was filtered using a 0.2-um poly-
ethersulfone sterile syringe filter, lyophilized, dissolved in 2 ml
of sterile deionized water, and lyophilized again. Samples taken
from the pools were assessed for endotoxin using the Limulus
amebocyte lysate assay and analyzed by SEC-MALLS to deter-
mine final HA concentrations, M,, and size distributions.
Endotoxin levels in all purified HA samples were <1 endotoxin
units/mg. HA concentrations are expressed in molar units
based on weight-average mass (because this is usually provided
by all vendors); values are not corrected for differences between
weight-average and number-average mass.

Agarose Gel Electrophoresis—HA samples (1-3 ug/lane)
were analyzed by agarose gel electrophoresis using 0.8 -1.5%
gelsin TAE buffer (41) at 80 -90 V for 2—3 h with the apparatus
in an ice bath. Gels were stained overnight with 0.005% Stains-
All in 50% ethanol, destained by washing in water and exposed
to light, and then digitally scanned and photographed.

Cell Culture and Transient Transfection—Flp-In 293 cells
stably expressing 190-kDa human HARE (hHARE), rat HARE
(rHARE), hHARE lacking the Link domain (hHARE(ALink)), or
empty vector (EV) were grown to confluence in Complete
Medium, plated in 12-well tissue culture plates, and maintained
in Complete Medium for atleast 2 days prior to experiments. At
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50-60% confluence, Transfection Medium was added 10 min
prior to transfection. Transfection complexes were generated
in serum-free medium by mixing Lipofectamine LTX and
PLUS reagents with 1 pg/ml firefly luciferase (LUC) vector
pGL4.32(Iuc2P/NF-«kB-RE/Hygro) and 0.5 ug/ml pRL-TK
(Renilla luciferase vector). Transiently transfected cells were
grown for 18 h before use.

HA Treatment of Stable Cell Lines—Cells expressing 190-
hHARE, 190-rHARE, and 190-hHARE mutants or EV were
transiently transfected with firefly and Renilla LUC vectors as
above, washed once each with sterile PBS and DMEM without
serum, and then preincubated with fresh serum-free DMEM
for 1 h at 37 °C. To determine the time dependence for HA-
HARE-mediated NF-«B activation of reporter gene expression,
hHARE cells were incubated with 125 nm 80-kDa sHA for 3, 4,
or 6 h (supplemental Fig. S1). Because no significant differences
were seen between 3 and 6 h, we performed all experiments (to
assess HA concentration and mass dependence of HARE-me-
diated NF-kB-activated gene expression) using a 1-h pretreat-
ment and a 4-h treatment period (to allow ample time for gene
expression and protein translation). The medium was then
aspirated, and cells were processed to determine the extent of
NE-kB-activated reporter gene expression (see below).

Dual-Luciferase Reporter Assays and Analysis of NF-kB
Activity—After cell stimulation with HA, or TNF-a (positive
control), cells were washed with sterile PBS, scraped, and har-
vested in serum-free medium. Cells were centrifuged at
12,000 X g for 1 min; supernatants were aspirated, and pellets
were resuspended in 150 ul of serum-free medium and assayed
for LUC activities using the Dual-Luciferase Reporter Assay
System following the manufacturer’s protocol (Promega). The
amounts of firefly and Renilla LUC activities in each sample
were measured and recorded as relative light units using a Glo-
max 20/20 luminometer (Promega). The ratio of firefly lucifer-
ase to Renilla LUC activity in each condition was calculated and
normalized to the value for untreated control cells (defined as
1.0). Results are expressed as mean =* S.E. fold-change in firefly/
Renilla LUC activity.

Analysis of Phospho-ERK1/2—EV or hHARE cells were
grown to confluence in Complete Medium, washed with sterile
PBS, and serum-starved for 1 h followed by incubation with
560- or 80-kDa HA for the indicated times. Cells were pro-
cessed for ERK1/2 activation as described (31).

IkB Degradation Assay—EV or hHARE cells were grown to
confluence in 6-well plates, washed with sterile PBS, and then
incubated with serum-free DMEM for 1 h. Cells were stimu-
lated with 1 ng/ml TNF-a or 100 nm HA (137 kDa) for the
indicated times. Equal amounts of cell lysate protein, made as
above, were run on 10% SDS-PAGE, transferred to nitrocellu-
lose, and then probed with anti-IkB Ab.

Statistical Analysis—Values are presented as the mean = S.E.
based on three independent experiments performed in tripli-
cate (n = 9), unless noted otherwise. Data to be compared were
first analyzed by a one-way analysis of variance, and any signif-
icant difference in the group was then assessed by individual
pairwise post hoc Tukey’s HSD tests using GraphPad Prism v6
statistical software (GraphPad Software, Inc., San Diego). Pair-
wise comparisons were made for EV and HARE cells with the
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FIGURE 1. HA size nomenclature based on log incremental mass ranges.
Four different 10-fold HA mass ranges are used (top of panel) as follows: oHA
(between >1 and 10 kDa); sHA (between >10 and 100 kDa); iHA (between
>100 and 1,000 kDa), and IHA (between >1,000 and 10,000 kDa). HA size
within any of these four mass ranges is described further by assigning thirtiles
(one-thirds) by the descriptors low-, mid-, and high-range. For example (bot-
tom of panel), sizes within the iHA range are further defined as low-range
(100-330 kDa), mid-range (330-660 kDa), and high-range (660-999 kDa)
iHA. The smallest oHA fragment is actually a tetrasaccharide (technically <1
kDa), and the largest HA size in vivo is unknown but is likely >10 MDa (>1HA).
The red dotted lines and spanning double-arrow represent the sHA-iHA region
of active HA (~40-400 kDa) capable of stimulating HARE-mediated signaling
and gene activation.

same HA concentration and then with HARE cells plus HA
versus EV cells without HA. Only those sample sets with signif-
icant differences in both cases are marked (values considered
statistically significant were as follows: *, p < 0.05; **, p < 0.005;
=5 < 0.001; ****, p < 0.0001).

RESULTS

Native high mass MDa IHA is broken down to smaller size
HA (oHA, sHA, or iHA) during various pathophysiological sit-
uations that generate free radicals or increase hyaluronidase
activities, e.g during tissue injury, oxidative stress, infections,
tumorigenesis, or exposure to reactive oxygen species at
inflammation sites (12—14). Intact native HA is generally des-
ignated high molecular weight HA (despite use of the term
molecular weight being technically incorrect, because mass
units are almost always given, and there is no true molecular
weight for polydisperse HA preparations). The HA field lacks a
standard nomenclature to define and designate the broad size
ranges of HA found physiologically. For example, some reports
(43) designated 500-kDa HA as low molecular weight HA,
whereas others consider the same size to be high molecular
weight HA. To minimize confusion here, we utilize an HA size
nomenclature based on a five-log scale of mass ranges from 1
kDa to 10 MDa (Fig. 1).

SEC-MALLS Analyses of HA Size and Concentration—Vari-
ous HA preparations of M, from 14 to 967 kDa were purified by
SEC fractionation and selective pooling from replicate column
runs, based on SEC-MALLS analysis of column fractions. Frac-
tions with similar HA sizes were pooled, and the final prepara-
tions were analyzed for size distribution, HA concentration,
and M,,. SEC-MALLS simultaneously provides these data for
each sample analyzed (40, 44). This approach enabled prepara-
tive scale production of narrow size range HA preparations,
with low polydispersity. For example, the polydispersities of
Genzyme and Lifecore HA used here were 1.2 and 1.3, respec-
tively, whereas the sHA (36, 66, and 80 kDa), low-range iHA
(107 and 178 kDa), and the mid- and high-range iHA (436, 549,
and 967 kDa) preparations had polydispersities of 1.05-1.15
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FIGURE 2. SEC-MALLS and electrophoretic analyses of purified HA prep-
arations. Non-animal-derived, low endotoxin-containing HA preparations
were fractionated by SEC and selectively pooled as described under “Experi-
mental Procedures.” A, size distribution for each color-coded HA preparation
with the indicated M,, (ranging from 36 to 967 kDa) is plotted as the cumula-
tive weight fraction. The sizes within the vertical dotted lines represent the
active HA size range for HARE-mediated stimulation of NF-«B activated gene
expression. B, agarose gel electrophoresis of the indicated purified narrow
size range HA preparations was performed and the 1.2% gels processed as
described under “Experimental Procedures.” For comparison, unfractionated
HA preparations (LifeCore) with M,, values of 741 and 215 kDa are shown at
the right. The M,, values for Lo- and High-Ladder Select-HA standards in lane
M were (kDa) as follows: 30.3, 111, 214, 310, 495, 667, 940, 1138, and 1510.

(i.e. a value of 1.0 is a monodisperse polymer). Each HA prepa-
ration showed minimal or no overlap with several larger or
smaller preparations based on SEC-MALLS cumulative weight
fraction (Fig. 2A) or agarose gel electrophoretic (Fig. 2B) anal-
ysis (e.g. most low-range iHA fractions do not overlap with
high-range iHA fractions). Importantly, all HA preparations
had endotoxin levels of <1 endotoxin unit/mg and, as noted in
the experiments below, did not stimulate signaling in control
EV cells.

Many studies have described differential effects of sHA ver-
sus IHA in cell signaling to promote different biological activi-
ties (8, 45—47); thus, it is clear that sHA and iHA are physiolog-
ically important inducers of various cell signaling pathways,
including HA-HARE-mediated ERK1/2 activation (31). To
study the HA size dependence of HARE-mediated signaling, we
used an NF-kB promoter-driven Dual-Luciferase reporter
assay system to determine whether downstream gene expres-
sion changes could be an outcome of a signaling pathway (48).
Various endogenous inflammatory stimuli (e.g cytokines,
TNF-e, and IL-1B8) or bacterially derived substances (e.g
lipopolysaccharide) activate the NF-«B pathway and promote
downstream-targeted gene expression. To test whether our
recombinant Flp-In 293 cell lines respond to TNF-a (a cytokine
that activates NF-«kB-mediated gene expression), we incubated
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FIGURE 3. HA binding to human or rat HARE mediates NF-«B-activated
gene expression in a dose-dependent manner. Cells expressing hHARE (A,
@), rHARE (B, @) or EV (A and B; O) were grown and transiently transfected
with plasmids encoding firefly and Renilla LUC for 18 h in Transfection
Medium. Cells were washed, incubated in serum-free medium for 1 h, washed
again, and incubated with the indicated concentrations of 107-kDa iHA for
4 h. Cells were then processed and analyzed for their relative ratios of LUC
activities as described under “Experimental Procedures.” Results are normal-
ized to the untreated control and expressed as a fold-change in the ratio of
firefly-to-Renilla LUC activity. In Figs. 3-9, values are means * S.E. (n = 9) from
three independent experiments, unless noted otherwise. Values for p com-
pare HARE and EV cells at each HA concentration and HARE cells plus HA
versus EV cells without HA. Only sample sets with significant differences in
both cases are marked: ***, p < 0.001; ****, p < 0.0001.

EV or hHARE cells with increasing concentrations of TNF-a.
Both cell lines showed NF-«B activation of firefly luciferase
gene expression in a dose-dependent manner (supplemental
Fig. S2). The similar level of reporter gene expression in EV and
hHARE cells indicates that these 293-derived cells are capable
of activating this model reporter gene pathway and that, as
expected, HARE is not required.

HA Binding to Human or Rat HARE Activates NF-«kB-medi-
ated Gene Expression in a Dose-dependent Manner—A
sequence alignment of human, rat, and mouse HARE proteins
(supplemental Fig. S3; the C-terminal 44% of Stab2) shows the
human and rat sequences are 77% identical (28). To determine
whether HA binding to rat or human HARE stimulates NF-«B
activation, we incubated stable Flp-In 293 cell lines expressing
rHARE, hHARE, or EV with increasing concentrations of 107-
kDa iHA for 4 h (Fig. 3). Both human (Fig. 34) and rat (Fig. 3B)
HARE activated NF-«kB-mediated reporter gene expression in
an essentially identical HA dose-dependent manner. Both
receptors showed surprisingly high sensitivity to HA, with sig-
nificant activation at minimal doses of 5 and 10 nm, compared
with EV cells (p < 0.0001). Human and rat HARE showed sim-
ilar 1.7-2.3-fold increases in NF-kB activation at saturation,
above 20 nM. Importantly, the dose response for each HARE
species was hyperbolic with an apparent K, of ~10 nm, which is
nearly identical to the dissociation constants for HA-HARE
complexes in cells expressing recombinant receptor (e.g. K, ~7
nM) or purified ectodomain (e.g. K, ~10-20 nMm) protein (25,
27).
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FIGURE 4. HA-HARE binding is required for NF-xB-activated gene expres-
sion. A, cells expressing hHARE (black bars), h(HARE(ALink) (gray bars), or EV
(white bars) were incubated with nothing or 50 nm 107-kDa HA and processed
asin Fig. 3 (**** p < 0.0001; n = 9). B, cells expressing rHARE were incubated
with 50 nm 107-kDa HA, 30 pg/ml mAb-174 mAb, or mouse IgG alone for 4 h
and/or with HA added after preincubation with mAb-174 for 30 min and then
processed as in Fig. 3 (*, p < 0.05;n = 9).

HA Binding to HARE Is Required for NF-«kB-activated Gene
Expression—HARE contains a 93-amino acid Link domain,
which is required for HA binding and for HA-HARE-mediated
ERK1/2 activation (31). Deletion of the Link domain inhibits
HA binding and internalization by >90% compared with wild
type hHARE and abolishes ERK1/2 activation. To verify that
HA binding to hHARE is required for NF-«B-activated gene
expression, we treated EV, hHARE, and hHARE(ALink) cells
with 50 nm HA (107 kDa) for 4 h. HA did not stimulate NF-«B-
activated gene expression in either EV or hHARE(ALink) cells
(Fig. 44), compared with hHARE cells (p < 0.0001). A positive
control using TNF-a showed identical LUC activation in all
three cell lines, demonstrating that 190-hHARE(ALink) cells
have a functional signaling pathway (data not shown). The
results confirm that HA binding to 190-hHARE is required for
HARE-mediated NF-kB-activated gene expression. Although
we do not have a similar stable cell line expressing
rHARE(ALink), previous studies showed that mAb-174, which
was raised against rHARE, completely blocks HA uptake in sta-
ble cells expressing rHARE (29), in primary rat liver sinusoidal
endothelial cells, and in intact perfused rat liver (30, 49). mAb-
174 does not recognize hHARE. To test if HA binding to rHARE
is required for NF-«kB activation, we pre-blocked HA-binding
sites in rHARE cells with mAb-174 and then treated with HA.
Control treatment with mouse IgG had no effect on HA-stim-
ulated gene expression. As expected, mAb-174 significantly
blocked HA-HARE-mediated NF-kB activation (p < 0.05).
Treatment with mouse IgG or mAb-174 alone (no HA) did not
activate NF-kB signaling (Fig. 4B). These data confirm that HA
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FIGURE 5. HA size dependence for HARE-mediated NF-«B-activated gene
expression. EV (white bars) or hHARE (black bars) cells were incubated with 20
nm (A) or 100 nm (B) preparations of narrow size range HA of the indicated M,,
values, representing sizes from the oHA-sHA boundary to high-range iHA, for
4 h, and then processed as in Fig. 3. C, dose-response curves expressed in
weight concentration units (ug/ml) rather than molar units (nm) are shown
using active 107 kDa and inactive 14- or 509-kDa HA preparations. Values for
p comparing hHARE and EV cells (n = 9) are as follows: *, p < 0.05; **, p <
0.005; ***, p < 0.001; **** p < 0.0001.

binding to rat or human HARE is required for NF-«B-activated
gene expression.

Small to Intermediate HA but Not Smaller or Larger HA
Stimulates HARE-mediated NF-kB Activation—To determine
whether there is an HA size dependence for HARE-mediated
NF-«B activation, we tested HA preparations with different size
ranges from oHA-sHA to IHA (M, 14, 36, 66, 80, 107, 178, 436,
549, and 967 kDa) in both EV and hHARE cells. Interestingly,
only mid-range to high-range sHA (M, 80 kDa) and low-range
iHA (M,, 107 and 178 kDa), but not mid-range to high-range
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FIGURE 6. Select-HA size dependence for HARE-mediated NF-kB-acti-
vated gene expression. EV (white bars) or hHARE (black bars) cells were incu-
bated with 100 nm of the indicated nearly monodisperse Select-HA for4 h and
processed as in Fig. 3. Values for p compare cell responses at each HA concen-
tration (n = 9): **, p < 0.005; ***, p < 0.001; ****, p < 0.0001.

iHA (M,, 436, 549, and 967 kDa) stimulated HARE-mediated
NEF-kB activation at both lower (20 nm; Fig. 54, p < 0.05) and
higher (100 nm; Fig. 5B, p < 0.0001) doses. The ability of differ-
ent size HA preparations (at 100 nm) to stimulate NF-«B acti-
vation showed a bell-shaped curve overlapping high-range sHA
and low-range iHA (i.e. spanning the boundary of 100 kDa).
Using our “lab-made” narrow size range HA preparations, the
peak response occurred at 107 kDa, and response intensity
decreased with either increasing or decreasing HA size.
Because the responses with 80- and 178-kDa HA were identical,
we estimate that the optimal response size for HA is likely about
140 kDa. In contrast, EV cells showed no activation of NF-kB
with any of the different HA size ranges tested at either 20 or
100 nm (Fig. 5, A and B). The same biphasic HA size dependence
was observed in a dose-response experiment (Fig. 5C) using
weight concentration values of small and large nonsignaling
HA and 107-kDa signaling HA.

Select-HA™ Stimulates HARE-mediated NF-kB Activation—
Because our purified narrow size range HA pools are still some-
what polydisperse (PD = 1.05-1.15), we tested essentially
monodisperse (PD = 1.0-1.03) Select-HA from Hyalose, L.L.C.
(50). To further define the optimum HA size for HARE-medi-
ated NF-«B activation, we tested a broad range of M, values
from 44 to 1138 kDa (Fig. 6). As expected, the results confirmed
that only small-intermediate size HA stimulated HARE-medi-
ated NF-kB-activated gene expression, giving a bell-shaped
curve with a peak that decreased with increasing or decreasing
HA size. Mid-range iHA (509 kDa) or IHA (1,138 kDa) did not
stimulate NF-«B activation.

Two additional features of the activation became evident
when Select-HA rather than the narrow size range HA was
used. First, rather than 107 kDa as found in Fig. 5, the optimal
Select-HA size was 137 kDa, and the response would perhaps be
even greater with slightly larger Select-HA. Using Select-HAs,
the response with 137 kDa was significantly greater than with
107 kDa. Second, the ability to stimulate signaling was detected
with smaller sizes ranging down to about 40 kDa. Apparently,
the size heterogeneity of even the narrow size HA in this low
mass range decreases the ability to detect activity of larger mol-
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FIGURE 7. Rat and human HARE show similar HA size dependence for
NF-kB-activated gene expression. EV (white bars), hHARE (black bars), or
rHARE (gray bars) cells were incubated with 20 nm of different narrow size
range HA preparations with the indicated M,, values for 4 h and processed as
in Fig. 3. Values for p compare hHARE or rHARE with EV cells for each HA
sample (n = 6): *, p < 0.05.

ecules (Figs. 2 and 5), whereas Select-HA of 44 and 54 kDa
showed significant stimulations (p < 0.005). Nonetheless, using
various preparations of oHA-sHA, sHA, iHA, and IHA, gener-
ated in our laboratory or obtained from Hyalose, we consis-
tently observed that a relatively narrow range of small-interme-
diate HA (i.e. from mid-range sHA to mid-range iHA; 40 —400
kDa) stimulated HARE- and NF-«B-mediated gene expression
but that OHA, low-range sHA, mid-range, or high-range iHA
and IHA did not stimulate this response.

Rat and Human HARE Show a Similar HA Size Dependence
for NF-kB Activation—We then tested different HA size prep-
arations for the ability to stimulate NF-kB activation in cells
expressing rHARE (Fig. 7). There was no significant difference
between rat and human HARE in the HA size dependence of
NF-kB activation. Both receptor species mediated about a
2-fold stimulation of NF-«kB activation with 107-kDa HA and
showed decreasing activation with larger or smaller HA. The
results indicate that mammalian HARE responds exclusively
and very selectively to a narrow range of HA sizes, from ~40 to
400 kDa (i.e. from mid-range sHA to mid-range iHA; see the
dashed lines in Fig. 1).

NF-kB Activation Stimulated by Low-range iHA Is Blocked by
Large or Small HA—To assess possible competition for signal-
ing by HA sizes outside the signaling range, we incubated
hHARE or EV cells with 137-kDa Select-HA (a low-range iHA)
with or without increasing doses of either a mid-range iHA,
509-kDa Select-HA (Fig. 84), or a narrow range 14-kDa oHA
(Fig. 8B). Both the larger and smaller HA blocked, in a dose-de-
pendent manner, the ability of the signaling iHA to stimulate
HARE-mediated NF-«B activation. NF-«kB activation was not
detected in EV cells treated with either HA species or in hHARE
cells treated with the larger or smaller HA.

The above results indicate that not just the presence of an
appropriate size HA, but the overall distribution and concen-
tration of all HA sizes, to which HARE-expressing cells are
exposed, will determine whether NF-«B activation occurs. In
normal physiological samples, a broad range of HA sizes is nor-
mally present, including sHA, iHA, and IHA. To understand
further the relevance of HARE-mediated NF-kB activation
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stimulated by a relatively narrow range of sHA and iHA, we
tested 51- and 741-kDa polydisperse commercial HA prepara-
tions for their ability to signal (Fig. 9A4). The 51-kDa, but not the
741-kDa, HA activated NF-«kB, and when the two were mixed
(1:1) the 51-kDa signaling response was reduced from ~2- to
1.3-fold. Although both preparations contained a broad range
of sizes, ~55% of the 51-kDa HA was in the active range compared
with 30% in the 741-kDa HA (unshaded areas in Fig. 9, B and C).
Thus, the mixture has an ~0.43 fraction of active HA. The results
demonstrate that HARE-mediated signaling occurs only above a
threshold fraction of active HA in a given M,, sample.

Effect of sHA-iHA on the Degradation of IkB-a—IkB-a and
IkB-B are endogenous proteins that inhibit NF-«B. In an inac-
tive form, the p50 and p65 subunits of NF-«B form heteromeric
complexes with the inhibitory [kB proteins and are sequestered
in the cytoplasm. These inactive NF-kB complexes cannot
translocate into the nucleus to interact with NF-kB promoters
and regulate gene expression. The activation of NF-«B (e.g. by
inflammatory cytokines such as TNF-«) is achieved through
the phosphorylation of IkB-a at Ser®” and Ser®®, which targets
the phosphoprotein for polyubiquitination and degradation
(51). The degradation and decreased amount of the I«B inhib-
itor leads to the activation and nuclear translocation of NF-«B.
To determine whether EV or hHARE cells used in this study are
capable of activating this endogenous NF-«B pathway for gene
expression, we assessed the effect of TNF-a, a strong positive
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FIGURE 9. HARE-mediated NF-«B activation by polydisperse HA occurs
onlyif the active HA size fraction is high enough. A, cells expressing hHHARE
were incubated with medium alone (no addition) or 20 nm of polydisperse 51
or 741 kDa or 40 nm of a 1:1 mixture and processed as in Fig. 3. Significant
differences are indicated by a symbol above a bar (left of line) for comparison
with the no addition sample or by a symbol to the right of the line for com-
parison with the 51-kDa sample (*, p < 0.05; ****, p < 0.0001; n = 9). SEC-
MALLS analysis of the cumulative weight fractions of 51-kDa (B) and 741-kDa
(€) HA reveals that the fraction of active HA in the 40-400-kDa range
(unshaded area) is greater than the inactive fraction (gray shaded area) in the
51-kDa but not in the 741-kDa HA preparations.

activator of NF-«kB, on IkB-« degradation. After TNF-« treat-
ment, significant decreases in IkB-a levels (45-65%) were
observed by 30— 60 min in both cell types (Fig. 10, A, B, E, and
F). By 2 and 3 h, IkB-a protein levels were recovering and
increased to ~75% of the initial value. Thus, EV and hHARE
cell lines showed an expected intracellular activation of NF-«B
due to degradation of IkB-« after stimulation with TNF-a.

To confirm that small-intermediate size HA indeed stimu-
lates an endogenous HARE-mediated NF-kB pathway in the
absence of the Dual-Luciferase reporter system, hHARE and
EV cells were incubated with 137-kDa HA for various times,
and IkB-a levels were assessed as above. HA treatment of EV
cells had no effect on the amount of I«kB-« (Fig. 10, C and G). In
contrast, the level of IkB-« in treated hHARE cells dropped
significantly (p < 0.05) from 30 to 120 min, reaching a maxi-
mum 55% decrease at 120 min (Fig. 10, D and H). By 3 h, the
IkB-a level in HA-treated cells had begun to rebound, increas-
ing to ~65% of control. Treatment with TNF-« or HA did not
alter the levels of actin, an unrelated control protein, in the
same cells (Fig. 10, A-D). These results confirm that sHA-iHA
stimulates HARE-mediated cell signaling via endogenous acti-
vation of NF-kB pathways and thus corroborates the use of the
NE-«B promoter-driven luciferase gene expression assays to
quantify the signaling responses.

Small but Not Large HA Stimulates HARE-mediated ERK
Phosphorylation in a Time-dependent Manner—W e previously
found that HA binding to the Link domain is required for HA-
HARE-mediated ERK1/2 activation (31), but we did not exam-
ine the HA size dependence for HARE-mediated signaling. To
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FIGURE 10. Effect of TNF-a and HA on IkB-a degradation. EV (A, G, £, and G)
or hHARE (B, D, F, and H) cells were grown to confluence and washed. After a
1-h serum-free medium incubation at 37 °C, the cells were incubated with 1
ng/mITNF-« (A, B, E, and F) or 100 nm 137-kDa HA (C, D, G, and H) for 0-180 min
as indicated. Cells were processed and Western blot analyses performed with
amADb against IkB-a (A-D, top of panels) as under “Experimental Procedures.”
The same membranes were stripped and reprobed with anti-actin Ab as an
internal loading control (A-D, bottom of panels). Blots from three independ-
ent experiments were digitized by scanning, and densitometric analysis was
performed to determine the IkB-a/a-actin ratios at each time. Normalized
data (E-H) are presented as mean = S.E. (n = 3) percent of the |kB-a/a-actin
ratio relative to the no addition time 0 value as 100% (E-H); *, p < 0.05.

assess this, we incubated EV or hHARE cells with an sHA (80
kDa) preparation that activated NF-«B-mediated gene expres-
sion or an iHA (560 kDa) preparation that was inactive (Fig. 11).
Cell extracts were processed for Western analyses to detect
ERK1/2 activation as described previously (31). As expected,
neither HA size had any effect on ERK1/2 activation in EV cells
(Fig. 11, A and C). Cells expressing HARE showed no activation
of ERK1/2 by the 560-kDa IHA (Fig. 11B), but the 80-kDa sHA
stimulated significant phosphorylation of ERK1/2 in a time-de-
pendent manner (Fig. 11D). hHARE cells treated with the sHA
for 15 min showed a 2.3-fold increase in pERK1/2 (p < 0.001);
the response decreased by 30 min to a 1.8-fold increase that was
still significantly elevated (p < 0.005). Thus, the previously
identified HA- and HARE-dependent ERK1/2 activation shows
a similar HA size dependence to that for the activation of
NE-«B-mediated gene expression.

Many questions remain unanswered, including whether HA
endocytosis is required for HARE-mediated cell signaling and
whether NF-«B and ERK activations are linked. However, it was
not possible to use specific agents such as dynasore or MEK
inhibitors, because TNF-a-induced (supplemental Fig. S4A)
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FIGURE 11. HARE-mediated ERK activation also shows HA size depend-
ence. EV (A and C) or hHARE (B and D) cells were grown to confluence,
washed, incubated in serum-free medium at 37 °Cfor 1 h, and then incubated
with or without 10 ug/ml 80-kDa (A and B) or 560-kDa (C and D) HA for the
indicated times. Lysate samples were subjected to 10% SDS-PAGE and West-
ern analysis with Ab against phospho-ERK1/2 (pERK1/2) and then, after strip-
ping, with Ab against total ERK1/2 protein (tERK1/2) and anti-actin (31). Blots
from three to four independent experiments were digitized, and densitomet-
ric analysis was performed to determine the phospho-ERK/total ERK ratios at
each time. Values are the mean = S.E. (n = 3-4) percent of the phospho-ERK/
total ERK ratio relative to time 0 (the no addition value) as 100%. p values
compare the sample pairs at time 0 and the indicated time (¥, p < 0.05; **,p <
0.005; ***, p < 0.001).
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and HA-induced (supplemental Fig. S4B) NF-«kB activations
were both blocked by DMSO; results similar to the DMSO inhi-
bition of HA fragment induced NF-«B activation of inflamma-
tory gene expression in mouse alveolar macrophage and epithe-
lial cells (52).

DISCUSSION

For this study we used non-animal-derived low endotoxin
HA preparations, either commercial polydisperse and
Select-HA or narrow size range preparations of HA purified by
SEC fractionation and parallel SEC-MALLS analysis. SEC-
MALLS is one of the most accurate methods to characterize an
HA sample by simultaneously measuring multiple parameters
that enable determination of number-average and weight-aver-
age molar masses, polymer size distribution, polydispersity, and
concentration. The laboratory-made preparations (Fig. 5) indi-
cated a maximum signaling response with 107-kDa HA and an
active size range between about 36 and 436 kDa (M,,). The
Select-HAs, which are as close to monodisperse as any HA
available (53), revealed a maximum response with 137 kDa and
an active size range of at least 44 —254 kDa (Fig. 6). Based on the
Select-HA results and the narrow range HA responses, we esti-
mate that the optimal HA size for signaling is likely between 140
and 150 kDa, and the active fragment size range is between 40
and 400 kDa. In more complex physiological situations with
polydisperse HA that has a broad size range, signaling will only
occur if the fraction of HA in the active size range is high
enough to offset the effect of competition by the inactive
smaller and larger HA fractions (Fig. 9).
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We note our use of molar concentration units, rather than
weight concentrations, because it is more appropriate when
comparing HA preparations of different M, and also enables an
easier comparison with receptor-ligand binding parameters. If
weight concentration values are used, the same biphasic HA
size dependence is observed (Fig. 5C). HA-HARE-mediated
stimulation of NF-kB activation was dose-dependent with an
apparent K, value of ~10 nwm, which is nearly identical (25, 27)
to the dissociation constant for HA-HARE complexes in cells
expressing recombinant hHARE (K, ~7 nm) or purified ecto-
domain (K, ~10-20 nm).

HARE is a constitutively recycling receptor that functions in
the same way as the LDL and asialoglycoprotein receptors (54—
56). These receptors continuously traverse a spatial and tempo-
ral pathway in which they are internalized from the surface via
coated pits, whether ligand is bound or not, travel through a
series of intracellular compartments (during which bound
ligand is dissociated and delivered to lysosomes), and then
return to the plasma membrane, ready for another cycle.
Receptor recycling times are 8 —12 min. Because ligand binding
is not needed for receptor internalization, bound ligands are
co-endocytosed as cargo. Therefore, HA of any size able to bind
HARE will be internalized.

Laurent and Fraser (4) discovered the receptor using meta-
bolically labeled MDa [PHJHA. We have used higher specific
activity 50 -150 kDa '*°I-HA, uniquely modified at the reduc-
ing end (56, 57). To examine the oHA size range for HARE
binding, we assessed the ability of [PH]HA oligomers, 1020
sugars long, to bind purified 190-hHARE ectodomain in a
ligand blot-autoradiography format (supplemental Fig. S5A).
Binding to HARE occurred with all six oligosaccharides tested
but increased 35-fold with increasing size (supplemental Fig.
S5B). Thus, the sizes of HA that are able to bind and be endo-
cytosed by HARE range from 8 to 50,000 sugars (<2 kDa to 10
MDa). Any HA molecule able to span a Link domain-binding
site (= 8 sugars) can bind HARE and be internalized.

The 35-fold binding increase as oHA length increased from
10 to 20 sugars (supplemental Fig. S5B) is consistent with the
expected higher affinity and lower K, values as HA size
increases. This phenomenon was first reported for this receptor
by Laurent et al. (58), who found that the K, varied from 4.6 um
(4,600 nm) for an 8-mer to 9 pm (0.009 nm) for 6 MDa HA. The
HA binding affinity for any HA-binding protein depends on the
HA size used. Higher affinity is the biochemical consequence of
greater multivalency proportional to increasing HA size. This is
evident in Fig. 8 by the different competitive effectiveness of 14-
versus 509-kDa HA, expressed on a molar basis. The larger HA
is far more effective at low doses because it has more HA-bind-
ing sites per molecule than the 14-kDa HA.

The molecular basis for the narrow size dependence for HA
signaling is unknown, but several scenarios could explain why
oHA or IHA binding to HARE is not able, but sHA-iHA is able,
to organize HARE in appropriately configured complexes (at
the plasma membrane, in early endosomes, or both) to induce
downstream cell signaling cascades. We favor a model in which
the optimum length for an HA fragment is one that binds mul-
tiple HARE proteins and brings them in close enough proximity
for the HA-induced oligomeric cytoplasmic domains to inter-
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ERK Activation and NFkB-Mediated Gene Activation

FIGURE 12. Model for the HA size dependence of HARE-mediated cell sig-
naling. The scheme shows several possibilities for how two HARE proteins
areabletointeract with and bind to the same HA molecule, depending on the
mass, and thus length, of the HA. Signaling does not occur with oHA or sHA
<40 kDa because HA of this size is only able to bind one HARE protein (left).
Signaling HA, between 40 and 400 kDa, is long enough to bind to two HARE
molecules and yet short enough that the two proteins are brought into close
proximity, inducing their cytoplasmic domains to interact and create com-
plexes with signaling molecules (middle). Two proteins are shown, but three,
four, or more HARE molecules could interact in a similar HA size-dependent
manner to achieve cytoplasmic domain signaling complexes (e.g. trimers or
tetramers). Complexes could occur in which two or more HARE proteins bind
with the same HA to create dimers, dimers of dimers (tetramers), or a larger
closed circular complex in which >4 cytoplasmic domains are brought
together. As HA length increases, the bound HARE proteins are more likely to
be further apart and not interact (right), even though more than two recep-
tors may bind to the same HA; monomeric HA-HARE complexes may also
occur.

act and present new interfaces for binding and activating sig-
naling molecules (Fig. 12). HA smaller than a critical mass
(length) cannot simultaneously bind and keep in close proxim-
ity multiple receptors, and therefore this HA size creates HA-
HARE monomers. Larger HA than this critical mass can bind to
two or more receptors, but with increasing probability that as
HA size increases the receptor cytoplasmic domains will be too
far apart to create a functional oligomer capable of intracellular
signaling. It is inherent in the model that the affinity of HARE-
HARE interactions (via cytoplasmic, ecto-, or membrane
domains) increases when HA is bound. Models in which HARE
proteins are bound in an open linear chain do not explain the
HA size dependence.

Our results indicate that the relative concentrations and
ratio of signaling HA to nonsignaling HA will determine the
extent of HA-HARE-mediated cell signaling leading to NF-«B-
activated gene expression. Native IHA in various tissues (typi-
cally M,, = 2-7 MDa) is considered anti-inflammatory and pro-
tective and has been used clinically to decrease inflammation
joint and lung diseases (59, 60) and noninfectious lung injury
(12, 43). As noted in the Introduction, many reports in various
cell types and animal models have documented different bio-
logical effects of HA based on its size. In addition to HARE, the
HA receptors CD44 and RHAAM also signal in response to
smaller but not larger HA (62, 63). Small HA fragments are
thought to occur at inflammation sites and be active in inducing
expression of inflammatory genes, such as TNF-a, IL-13 (64).

Itis more technically challenging to detect and quantify small
versus large HA, and few studies have determined the endoge-
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nous tissue levels of various HA size ranges in normal or path-
ological situations. Similarly, few reports have studied both HA
size and levels in the serum of healthy people or during patho-
logical situations. The serum HA level in healthy people is 25
ng/ml and the size is ~100-kDa HA (34, 65). Reticulum cell
sarcoma and neuroblastoma patients showed abundant sHA
(~58 kDa) in serum, which was not detected in healthy people
(66). SEC analysis of serum HA from healthy donors and
patients with rheumatoid arthritis or primary biliary cirrhosis
revealed varied concentrations of low-range iHA (140-270
kDa). Healthy donors had a relatively low serum HA concen-
tration (21 pg/liter), whereas rheumatoid arthritis (397 ug/li-
ter) and biliary cirrhosis (629 pg/liter) patients showed highly
increased levels (67). All the HA sizes reported in the above
studies are within the signaling size range for HA activation of
HARE-mediated signaling in sinusoidal endothelial cells of
liver and perhaps spleen.

HARE and Stab2 are constitutively recycling receptors (25,
56) that bind and internalize, via clathrin-mediated endocyto-
sis, 14 different ligands that represent tissue ECM degradation
products or dead cell debris (25, 32, 68). Our earlier finding that
HA-HARE complexes activate ERK1/2 (31) indicates that the
function of HARE is not just the clearance of HA, leading to its
degradation. The present findings that HARE-mediated activa-
tion of ERK1/2 and NF-kB-mediated gene expression occur
within a narrow size range of HA products supports a recently
proposed Tissue Stress Sensor hypothesis (42) that the HARE
clearance system functions to monitor the health and homeo-
stasis of tissues throughout the body. Cellular and ECM tissue
components normally turnover as they are continuously syn-
thesized and degraded at characteristic rates (i.e. defining their
biological half-lives). The HARE/Stab2 signaling system may
respond to an endogenous danger signal (e.g. abnormally high
levels of circulating degraded HA) indicating a tissue stress sit-
uation (e.g. due to injury, infection, inflammation, oxidative
damage, or other stress) that creates a homeostasis imbalance
in tissue matrix turnover, as reflected in increased levels of tis-
sue matrix breakdown products. Ongoing studies indicate that,
in addition to HA, some of the other glycosaminoglycan and
nonglycosaminoglycan HARE ligands are also able to activate
NF-kB-mediated gene expression.®> Thus, the HARE signaling
system may respond to multiple circulating systemic ECM deg-
radation and tissue stress-indicator ligands, whose relative con-
centrations and ratios reflect the turnover and damage status of
tissues throughout the body. Preliminary studies also indicate
that signaling by HA, but not other ligands, is lost by elimina-
tion of the HARE Link domain N-glycan (61).

In summary, our results show that HA-HARE interactions
stimulate NF-«B activation of gene expression and support a
previous finding that HA binding to HARE can activate
ERK1/2, which shows a similar dependence on HA size. The
receptor sensing system for HA size detects and responds to a
narrow size range of HA degradation products (40 —400 kDa).
This active signaling HA size range corresponds to the circulat-
ing HA size range reported for healthy people and those with

3 M. S. Pandey and P. H. Weigel, unpublished results.
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various diseases. Thus, this HARE receptor signaling system
operating in parallel with its HA clearance function could play
an important role in monitoring the status of issue biomatrix
turnover and stress throughout the body.
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