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Abstract
For more than two decades, reports have suggested that pesticides and herbicides may be an
etiologic factor in idiopathic Parkinson’s disease (PD). To date, no clear associations with any
specific pesticide have been demonstrated from epidemiological studies perhaps, in part, because
methods of reliably estimating exposures are lacking. We tested the validity of a Geographic
Information Systems (GIS)-based exposure assessment model that estimates potential
environmental exposures at residences from pesticide applications to agricultural crops based on
California Pesticide Use Reports (PUR). Using lipid-adjusted dichlorodiphenyldichloroethylene
(DDE) serum levels as the “gold standard” for pesticide exposure, we conducted a validation study
in a sample taken from an ongoing, population-based case–control study of PD in Central
California. Residential, occupational, and other risk factor data were collected for 22 cases and 24
controls from Kern county, California. Environmental GIS–PUR-based organochlorine (OC)
estimates were derived for each subject and compared to lipid-adjusted DDE serum levels.
Relying on a linear regression model, we predicted log-transformed lipid-adjusted DDE serum
levels. GIS–PUR-derived OC measure, body mass index, age, gender, mixing and loading
pesticides by hand, and using pesticides in the home, together explained 47% of the DDE serum
level variance (adjusted r2 = 0.47). The specificity of using our environmental GIS–PUR-derived
OC measures to identify those with high-serum DDE levels was reasonably good (87%). Our
environmental GIS–PUR-based approach appears to provide a valid model for assessing
residential exposures to agricultural pesticides.
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INTRODUCTION
Parkinson’s disease (PD) is a complex movement disorder and the second most common
neurodegenerative disorder affecting the elderly after Alzheimer’s disease. PD continues to
grow in public health importance due to the aging of populations in Western nations and the
considerable personal and societal burden it represents in the form of loss of quality of life
and high health/nursing care costs.1,2 PD is considered to have a multifactorial etiology with
environmental exposures likely playing a major role. For more than two decades now,
reports have suggested that pesticides and herbicides may cause idiopathic PD. The pesticide
rotenone causes PD-like degeneration in an animal model3; the herbicide paraquat is
structurally similar to the toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that
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induces Parkinsonism in humans,4 dieidrin has been found in PD brains,5 and some
carbamate fungicides seem to enhance the neurotoxicity of MPTP in animals, raising
questions about the biologic interaction of various pesticides.6,7

The first epidemiological studies to suggest a link with pesticides were the ecological studies
reporting an excess of PD in rural as compared to urban populations.8–12 Case–control
studies investigating pesticide exposures from occupational and non-occupational sources
reported two- to six-fold increased risks for PD in exposed subjects.13–22 However, the
conclusion drawn by Checkoway et al.23 in the end 1990s, that “no clear associations with
any specific pesticide have been demonstrated from epidemiologic studies,” (p. 635) still
holds today. Relying on study subjects to recall specific chemical usage for periods in the
distant past to evaluate exposures in studies of chronic diseases with long latencies may
result in substantial information bias, as has recently been suggested by a German study.22

As almost all published PD and pesticide case–control studies relied on retrospective self-
reports of pesticide use, the validity of their results hinges on whether the exposure
assessment suffered from differential recall bias.

An extensive and detailed assessment of occupational exposures to specific pesticides was
performed for a large group of licensed pesticide applicators enrolled in the Agricultural
Health Study. Results from this study are still forthcoming for PD. Large prospective
occupational cohort studies like the Agricultural Health Study24 are extremely labor-, time-,
and cost-intensive, and likely to be rare resources. Pesticides applied from the air or ground
may drift from their intended treatment sites, such that there are measurable concentrations
of pesticides detected in the air, in plants, and in animals up to several hundred meters from
application sites.25–28 Thus, alternative methods of estimating exposures in rural
communities are sorely needed, but accurate exposure assessment may be particularly
challenging. Geographic Information System (GIS)-based methods of assessing exposures to
pesticides have become popular in recent years and may prove to be an effective solution to
this problem. We developed a GIS-based exposure assessment model to estimate pesticide
exposures in the residential environment from applications to agricultural crops based on
California Pesticide Use Reports (PUR) and land-use maps. We conducted a validation pilot
study to examine how well our environmental GIS–PUR model derived exposure estimates
predicted biomarkers, specifically dichlorodiphenyldichloroethylene (DDE) serum levels.
Although more than 600 unique agricultural pesticides have been reported in the PUR and
are available for modeling, only organochlorines (OCs), which provide a biomarker
(dichlorodiphenyltrichloroethane [DDT]/DDE serum levels) for longer term exposures,
could be used for model validation. OC compounds are stored in adipose tissue, the lipid
components of blood, and breast milk. They are resistant to metabolism and have long half-
lives; therefore, measurements in humans potentially represent cumulative exposures over
many years.29 In this article, we will describe our environmental GIS–PUR model and the
results from the validation study involving biomarkers.

METHODS
Environmental GIS–PUR Model

Employing a geographic model developed by Rull and Ritz,30 California PUR data and
geocoded subject residential histories were linked to obtain estimates of exposures to
pesticides in the residential environment based on proximity to agricultural pesticide
applications. Briefly, since 1974, agricultural pesticide applications in California are
recorded in the PUR system documenting the name of the pesticide’s active ingredient, the
poundage applied the crop and acreage of the field, the application method, and the date and
location (geographic section). We created a cumulative exposure intensity score for a given
residence based on the weighted average of OC applications in a public land use (PLS)
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section (total lbs. active ingredient ÷ total PLS sections acreage) within a 1000-m buffer
from a residence between 1974 and 1989. The following OCs were used in the targeted
counties and included in our GIS–PUR model: aldrin, benzene hexachloride (BHC),
chlordane, dicofol, dieldrin, dienochlor, endosulfan, heptachlor, lindane, methoxychlor, and
toxaphene.

Validation Study Population
To validate our GIS–PUR model derived OC pesticide exposure estimates we employed
data from subjects enrolled in a population-based Parkinson’s study at UCLA (the PEG
Study).31 We recruited newly diagnosed PD patients for the PEG study from among current
residents of Kern, Fresno, and Tuleke counties, California, with the help of healthcare
providers, mostly neurologists practicing in this region. We selected 22 patients for whom
we had obtained and stored serum samples at random from among all Kern county PEG
cases. We also selected 24 controls with serum samples; specifically, controls were recruited
from among: (a) a random sample of age- and gender-matched Medicare beneficiaries
residing in Kern county in the year 2000 and (b) residential parcels randomly sampled from
Kern county GIS shape files for the years 1998–2000.

OC Serum Analysis Methods
After obtaining subject’s informed consent, a blood sample was drawn and stored in a
−20°C freezer at UCLA prior to shipment to Pacific Toxicology Laboratory (Chatsworth,
California) for analyses of serum OC levels. Serum was tested for 13 OC pesticides and
metabolites; however, as only DDE was found above the detection limit in most subjects, we
focused in our analyses on this metabolite. Each serum sample was brought to room
temperature and thoroughly mixed by vortexing. Two milliliters of serum was transferred to
a 16 mL × 125 mL culture tube. Then, 6 mL of hexane and 20 mL of internal standard was
added to the sample. The tube was then tightly capped and rotated at 50 rpm for 2 h. After
rotating, 5 mL of the hexane phase was transferred into a graduated centrifuge tube. The
volume was then reduced to 1.0 mL under a gentle stream of nitrogen gas after which the
centrifuge tube was vortexed briefly before the sample was transferred to an autosampler
tube. Analysis was performed on a gas chromatograph with electron capture detection. The
column was a 30 m × 0.25 mm inner diameter DB-35 column with a 0.25-mm film
thickness. Calibrators, controls, and blank samples were run with every sample batch.

Questionnaire Data
Each subject provided a detailed demographic and residential history, including dates of
residence, and landmarks or cross streets when exact street addresses could not be recalled.
We also collected information on residential case of pesticides and whether a subject ever
worked on a farm, nursery, or orchard, or as a professional pesticide applicator and used
pesticides occupationally. Specifically, information on ever having mixed, loaded, or
applied pesticides, and work practices were obtained.

Statistical Methods
All lab results and questionnaire data were entered into a Microsoft Access database
(Microsoft Corp., Redmond, WA) by the interviewers. First, we generated descriptive
statistics and conducted bivariate analyses. Pearson’s correlations of the continuous
variables and their relation to lipid-adjusted blood levels of DDE were examined. Using a
manual step-wise variable selection technique, linear regression models were built in SAS
Software (version 9.1, SAS Institute, Inc., Cary, NC). Variables were kept in the model if
they were deemed important for the control of confounding or if their inclusion increased
the adjusted r2. Our final “basic” linear regression model included the log-transformation of
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lipid-adjusted serum DDE as the outcome, and our environmental GIS–PUR-derived model
estimate of OC exposure, age (centered at age 70 years), body mass index (BMI) (centered
at 27), the square of BMI, sex, ever mixed and loaded pesticides by hand, and ever used
pesticides in the home as predictor variables. The basic regression model was also applied
after excluding influential points (N = 44) and separately for subjects who had an OC
exposure estimate above zero (N = 26). Each regression model was tested for overall fit with
the F-test (F - the ratio of regression mean square to the residual mean square).

RESULTS
The mean age of the PD cases and matched controls was similar (71.3 and 70.2 years,
respectively), but controls were more often male (15 versus 7 male cases) and had a slightly
higher BMI, compared to cases (28.8 versus 26.4) (Table 1). The mean level of lipid-
adjusted DDE in the serum was 1.2 mcg/g lipid in cases and 0.7 mcg/g lipid in controls;
cases also had higher model-derived OC measure (38.6 versus 8.1). Only two cases and
three controls reported mixing and loading pesticides by hand, while about half of all cases
and controls reported using pesticides in their homes.

In Table 2, we present the proportion of variance explained (adjusted r2) for our basic
regression model, for the basic regression model after two influential observations were
removed, and for a regression model from which we removed all subjects with an
environmental GIS–PUR-derived pesticide exposure estimate of zero. The basic regression
model with the total study population explains 41% of the variance (P = 0.002), whereas the
basic regression model with the two influential observations removed explains 47% of the
variance (P < 0.001). Excluding the 20 subjects for whom our environmental GIS–PUR-
derived exposure estimated zero OC exposure between 1974 and 1989, the r2 increased to
0.49 (P = 0.005).

The correlation between our environmental GIS–PUR model derived estimate of OCs and
log-transformed lipid-adjusted blood DDE level was estimated to be 0.32 (P = 0.03, Table
3). The correlation with age was of similar magnitude (Pearson’s correlation coefficient
0.35, P = 0.017). Age, gender, and mixing and loading pesticides by hand were all important
predictors in our linear regression model (all with P value 0.004), as were pesticide use in
the home and BMI (P-values 0.007 and 0.045, respectively). Our environmental GIS–PUR
exposure estimate alone predicted 6%, mixing and loading of pesticides by hand predicted
13%, and home pesticide use predicted 11% of the variance of log-transformed DDE blood
levels when modeled alone (data not shown). Meat, poultry, seafood, fruit, and vegetable
consumption all failed to alter the adjusted r2 when added to the model.

Using the lipid-adjusted DDE blood test as the “gold standard,” the sensitivity of our GIS–
PUR estimate of OCs is 38%, whereas the specificity is much higher at 87%.

DISCUSSION
Our environmental GIS–PUR pesticide exposure measures were correlated with lipid-
adjusted DDE blood levels and predicted a portion of the variance of the log-transformed
serum levels in a linear regression model. Thus, residential exposure to OC pesticides seems
to be an important contributor to exposure in this population. Occupational exposures, such
as mixing and loading pesticides, and home pesticide use are also components of exposure,
but are much less prevalent (only 10% of the subjects reported handling pesticides in this
manner). Although we did not take the use of personal protective equipment or type of
pesticides handled into account, mixing and handling of pesticides alone seems to be a good
indicator of blood levels in this elderly population.
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Our GIS–PUR measure reflects potential low-level exposures to pesticides in a residential
environment. The unexplained portion of the log-transformed lipid-adjusted DDE serum
level variance may include dietary exposures that we were unable to assess adequately. In
another small pilot study of 30 slightly younger subjects of lower socio-economic status who
resided in Kern county and frequented a neurological clinic, we found that apart from having
“ever lived in Mexico” reporting to have “loaded and mixed pesticides” also was a major
contributor to DDE serum levels (data not shown). DDT was used widely in Mexico long
after use had been banned in the United States.

Although the sensitivity of using our GIS–PUR-derived OC measure to identify subjects
with high-serum DDE levels is poor (38%), our specificity is quite good (87%). Thus, we
are less likely to classify unexposed subjects as having been exposed, important for a
population-based case–control study.

Using DDT/DDE as Gold Standard
Even though DDT has been banned in the United States since 1972, it lasts in the soil of
temperate areas for 5–30 years. It may evaporate into the air and significant concentrations
of DDT have been found in the atmosphere over treated agricultural plots. DDT adheres
strongly to soil, and remains on the soil surface layers; thus, people who work or live around
or with contaminated soil might be exposed by accidentally ingesting the soil, having skin
contact with the soil, inhaling DDT vapor, or breathing in DDT in dust. Because DDT
bioconcentrates in aquatic organisms and bioaccumulates in the food chain, the main source
of DDT exposure in the general population is from eating meat, fish, poultry, and dairy
products. DDT is stored in fatty tissues and has a prolonged physiological half-life of up to
11–14 years, which makes it one of few candidates for a biomarker of long-term pesticide
exposure. DDE, the metabolite of DDT, can likely be found in the serum of everyone
reading this article.32–34

Limitations
The small sample size restricted the statistical power and precision of our validation study
and prevented us from conducting more extensive multivariate analyses. We did not have
PUR information on pesticide use before 1972 when DDT was commonly used and prior to
its use being banned in the United States. Thus, when we chose DDE as our biomarker; we
did so under the assumption that a farmer who previously treated a crop with DDT may
most likely have substituted this agent with another OC pesticide still available. We relied
on self-report of residential and occupational history and pesticide use. However, while
there may have been recall error for exact addresses of past residences, we believe that our
method of eliciting such information in combination with the extensive maps for residential
parcels employed resulted in very accurate data. While subjects may not recall specific
pesticides well, they will recall their work practices underscoring our results for mixing/
loading of pesticides as a predictor of exposure.

DDE measures in serum may be less accurate than those derived from adipose tissue, but
lipid adjustment is expected to increase reliability.35 Exposure misclassification of DDE
levels would be expected to be nondifferential with respect to our environmental GIS–PUR-
derived measures of OC exposure, and therefore associations with DDE would likely be
attenuated.

Our GIS–PUR model based exposure assessment also had some limitations. We picked a
somewhat arbitrary buffer radius for measuring proximity of homes to land on which
pesticides have been used (1000 m). Additional factors that could influence residential
exposure to agriculturally applied pesticides include wind patterns and pesticide application
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equipment type (plane, truck, etc.), whether windows of the home are kept open, and the
amount of time the occupant spent at home.

CONCLUSION
Our GIS–PUR approach appears to provide a valid model for assessing exposures to
agricultural pesticides in the residential environment. The GIS–PUR model derived OC
estimates in conjunction with other predictor variables explained almost half of the variance
in our model for our lipid-adjusted DDE biomarker. Although our sensitivity is poor, the
specificity of our model is good, reducing exposure misclassification bias in case–control
settings commonly applied to study rare diseases.
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