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Objective: To mechanically control the wound environment and prevent cu-
taneous scar formation.
Approach: We subjected various material substrates to biomechanical test-
ing to investigate their ability to modulate skin behavior. Combinations of
elastomeric materials, adhesives, and strain applicators were evaluated to
develop topical stress-shielding devices. Noninvasive imaging modalities were
utilized to characterize anatomic site-specific differences in skin biomechani-
cal properties in humans. The devices were tested in a validated large animal
model of hypertrophic scarring. Phase I within-patient controlled clinical
trials were conducted to confirm their safety and efficacy in scar reduction
in patients undergoing abdominoplasty surgery.
Results: Among the tested materials and device applicators, a polymer device
was developed that effectively off-loaded high tension wounds and blocked pro-
fibrotic pathways and excess scar formation in red Duroc swine. In humans,
different anatomic sites exhibit unique biomechanical properties that may
correlate with the propensity to form scars. In the clinical trial, utilization of
this device significantly reduced incisional scar formation and improved scar
appearance for up to 12 months compared with control incisions that under-
went routine postoperative care.
Innovation: This is the first device that is able to precisely control the me-
chanical environment of incisional wounds and has been demonstrated in
multiple clinical trials to significantly reduce scar formation after surgery.
Conclusion: Mechanomodulatory strategies to control the incisional wound
environment can significantly reduce pathologic scarring and fibrosis after
surgery.

INTRODUCTION
Wound healing proceeds through

overlapping stages of inflammation,
proliferation, and remodeling.1 All
wounds heal with some degree of scar
formation, but the mechanisms that
govern whether the result will be a
fine thin scar, a prominent hypertro-
phic scar, or a tumor-like keloid re-
main unclear.2,3 It is estimated that
more than 230 million major surgical
procedures are performed around the

world each year, all of which result in
cutaneous wounds which heal with
scars.4 In addition, fibrotic complica-
tions after injury can cause consider-
able dysfunction and disfigurement,
costing more than $4 billion yearly in
healthcare costs in the United States
alone.5 Modern multimodality regi-
mens have produced inconsistent
outcomes, and recombinant cytokine-
based strategies have failed to pre-
vent scar formation in phase III
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Abbreviations
and Acronyms

DISC = digital image speckle
correlation

ECM = extracellular matrix

FAK = focal adhesion kinase

FEA = finite element analysis

VAS = visual analog scale
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clinical trials (www.renovo.com).6 The current
challenge for researchers and health care providers
is to develop highly effective approaches that com-
bat this significant biomedical problem.

The role of mechanical force in wound healing
was observed by anatomists and surgeons more
than a century ago.7 Subsequent clinical observa-
tions and reports have substantiated the impor-
tance of tension in scar formation after injury. For
example, sternotomy wounds develop greater fi-
brosis in the lower half of the incision that is sub-
jected to higher tensional forces.8 In breast
surgery, the amount of tension required to close an
incision directly correlates with the amount of scar
widening at 1 year.9 The development of keloids
has also been linked to high tension regions in
the body.10,11 Based on these concepts, recon-
structive surgeons align incisions along topo-
graphical maps to minimize mechanical forces
and to reduce subsequent scar formation.12 Taken
together, these studies and observations suggest
that strategies to control the mechanical envi-
ronment have the potential to block wound
fibroproliferation.

CLINICAL PROBLEM ADDRESSED

Inflammatory pathways have long been the
focus of attack for anti-scarring therapy, but
strategies that block inflammation alone have
proved suboptimal with significant side effects.
Recent studies have demonstrated that wound re-
pair is also regulated by multiple noninflammatory
mediators, including, but not limited to, mechani-
cal force, extracellular matrix (ECM) dynamics,
and oxygen tension.13,14 Our group and others
have shown that mechanical tension plays a criti-
cal role in pathologic scar formation on a cellular,
tissue, and organ level.15–19 Complex networks in
mechanotransduction (i.e., the conversion of me-
chanical stimuli into biologic responses) have been
linked to biologic pathways that drive fibrosis, in-
cluding inflammation, cell survival, and matrix
production.20–25

Using a mouse model of hypertrophic scar for-
mation, we demonstrated that mechanical forces
can activate intracellular pro-survival pathways
during repair.15 We have also shown that me-
chanical forces can maintain a ‘‘chronic’’ inflam-
matory state which is modulated by T-lymphocyte
signaling and systemic recruitment of pro-fibrotic
cell populations.26 Microarray analysis of scar
samples obtained from this model revealed a ma-
jor role for inflammatory signaling and matrix
deposition regulated by focal adhesion kinase

(FAK), a nonreceptor tyrosine kinase mechan-
osensor.25 The activation of fibrotic mechan-
otransduction pathways was critically dependent
on fibroblast-specific FAK, a target we effectively
blocked via both transgenic and small molecule
approaches. These small animal studies provided
a mechanistic framework for understanding how
biophysical signaling pathways activate scar for-
mation in vivo.

However, significant differences exist between
mouse and human skin, including thickness, bio-
mechanics, histological architecture, and mecha-
nisms of repair.27 Pigs have been described as an
ideal large animal model for studying human-like
wound healing. In particular, the red Duroc pig has
been proposed as a robust model for studying hy-
pertrophic scarring.28,29 Our group developed a
hypertrophic-like scar model in red Duroc pigs by
creating full-thickness excisional wounds that
were sutured closed under high tension.30 The de-
gree of scar formation directly correlated with the
amount of tension required to close the wound,
strongly suggesting that mechanical forces have a
direct effect on pathologic fibrosis (Fig. 1). Re-
sultant scars were elevated, hypervascular, and
exhibited increased cellularity and expression of
alpha-smooth muscle actin, all features of human
hypertrophic scarring.3 These findings validated
the role of mechanical force in scar formation in a
large animal known to form human-like scars.

Based on anecdotal evidence and our previous
studies, we hypothesized that dynamic off-loading
of mechanical forces within the incision would ef-
fectively reduce scar formation. After injury, the
main load-bearing components of skin (i.e., dermal
collagen fibers) should be rebuilt in the setting of
active physiologic stresses. If the immature struc-
tures cannot offset the physiologic stresses, the
scar will either dehisce or spread over time (re-
ferred to as ‘‘creep’’ in materials science). In injured
human skin, stress results in scar hypertrophy, an
active fibroproliferative process that is directly in-
duced by mechanical force.31 Thus, we sought to
develop a novel device that is capable of stress-
shielding the wound, promoting skin repair, and
blocking wound fibrosis.

MATERIALS AND METHODS

Combinations of polymer backing materials
and pressure-sensitive adhesives were constructed
and subjected to biomechanical testing. Variable
amounts of deformation (prestrain) were applied,
and constructs were photographed over time
to detect material relaxation and skin irritation.
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Deformation was detected by displacement of
inked grids stamped on the skin surface. Bio-
mechanical properties of fabricated polymers were
compared with commercially available dressing
products: EpiDerm (Biodermis, Henderson, NV),
Epi-Tape (Biodermis), Neosporin ScarSolution
(Johnson & Johnson, New Brunswick, NJ), Curad
Scar Therapy (Medline Industries, Inc., Munde-
lein, IL), and NuSil silicone sheets (NuSil Tech-
nology LLC, Carpinteria, CA).

The initial applicator was designed using two
binder clips coupled to the ends of a flexible poly-
mer material of set dimensions. A spring-loaded
applicator was fabricated using 301 stainless steel
that incorporated a latch mechanism. The spring
force stretched the dressing to generate targeted
levels of prestrain. A manual cam-driven applica-
tor was designed for the use of longer dressings via
a flexible interface that improved conformance to
nonplanar body geometry. Memory foam stamper
applicators employed a three-link armature and
locking mechanism to prestrain the polymer
dressings. Various design elements were integrated
to construct a self-straining stainless steel spring
handle equipped with a memory foam applicator. A
hinged, self-release applicator and dressing was
also developed to facilitate dressing separation from
the applicator. Timed rollers with hook and loop
fastening technology enabled facile engagement/
disengagement of the dressing. The book-style ap-
plicator was constructed as a scalable, multi-hinged
device that generated consistent strains when

opened and maintained these forces throughout
activation of its pressure sensitive adhesive.

We utilized computational finite element anal-
ysis (FEA; ADINA software v8.3; ADINA R&D,
Inc., Watertown, MA) based on nonlinear three-
dimensional analysis to model the different stress
states applied by dressings to various wound con-
figurations. Digital image speckle correlation
(DISC; 3D DISC system Q-400; Dantec Dynamics,
Skovlunde, Denmark) was used to investigate
region-specific differences in human skin biome-
chanics, as previously described.32 Briefly, DISC is a
noncontact technique that is used to optically de-
termine strain levels based on displacement of ran-
dom dot patterns on a material surface after loading
forces are applied. This noninvasive technique is
highly valuable to examine material behaviors on
dynamic surfaces such as the human body.

RESULTS

Initially, we developed a silicone sheet-based
polymer dressing with a Teflon applicator (Dupont,
Hayward, CA) to apply *45% prestrain to the
dressing (Fig. 2A). After device deployment on
skin, *20% compressive stress-shielding was ap-
plied at the dressing center. To test the polymer
device in a preclinical setting, we utilized the pre-
viously described scar model in red Duroc pigs.30

Full-thickness excisional wounds on the dorsa of
Red Duroc swine were sutured closed and stress-
shielded for up to 8 weeks. The application of the

Figure 1. Development of a hypertrophic-like scar model in red Duroc pigs. (A) Wounds of increasing dimensions were created and sutured closed to
generate increasing levels of tension. Sutures were removed at postsurgery day 4, and wounds were followed for up to 8 weeks, resulting in varying degrees of
gross and histological scar formation. (B) Calculated strains were significantly elevated with larger wound dimensions. *p < 0.05. Figure reprinted with
permission from Gurtner et al.30 To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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polymer device to the wound surface results in
controlled compressive forces based on the mate-
rial properties of the polymer itself and the degree
of prestrained applied. This provides off-loading
forces to counteract distractive forces caused by the
configuration and natural recoil of the wound itself.
Compared with unshielded incisions that healed
under high tension, stress-shielded incisions dem-
onstrated significantly reduced scar hypertrophy,
matrix deposition, and epithelial thickening (Fig.
3). Further, stress-shielded incisions demonstrated
features that recapitulated the histological architec-
ture of unwounded skin, including restoration of
epithelial rete pegs and return of skin adnexae (Fig.
3). These preclinical studies indicate that device
stress-shielding of incisions is a safe and effective
approach that is used for reducing wound fibrosis
and for promoting regenerative repair pathways.

In continued studies of the in vivo biomechanical
behavior of human skin, we developed a second-
generation applicator device based on a metal
spring-loaded applicator to ensure more reliable
prestrain (Fig. 2B). We tested this spring-loaded

polymer device on human volunteers and studied
its material properties using noninvasive technol-
ogies. After device application, compressive strains
were measured using FEA and DISC analysis
based on line deformation of inked grids drawn on
various anatomic sites: eyelid, cheek, upper arm,
upper back, abdomen, and chest. Color heatmaps
were generated to visualize tensile forces applied to
skin beneath and adjacent to the polymer devices.
Both FEA and DISC analyses demonstrated that
deformational strains were highest in the eyelid
and cheek, and lowest in the torso region (Fig. 4).
These findings are consistent with described ana-
tomic site differences in human skin stiffness,
strongly suggesting that biomechanical properties
may dictate the propensity to form pathologic
scars in humans.33 Further, these data suggest
that region- and wound-specific off-loading devices
may be essential for optimizing scar appearance.

In the phase I clinical trial, nine female patients
who underwent abdominoplasty surgery (which in-
volves surgical closure of large soft tissue excisions)
were followed for up to 12 months, as previously

Figure 2. Early-generation polymer device. Photographs of various applicators constructed during the development of the stress-shielding device. (A) A binder clip-
based applicator. (B) A metal spring-loaded applicator. (C) A cam-driven applicator. (D–G) Various integrated foam stamper applicators. (H) A self-straining spring handle
applicator. (I) A hinged self-release applicator. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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published (Fig. 5).30 One side of the incision was
treated in standard fashion and served as the
within-patient control. A portion of the contralat-
eral side was treated with the stress-shielding
polymer device starting at approximately 1 week
postsurgery and was replaced weekly for at least 7
weeks. Professional photographs were taken of the
treatment and control incisions over time. After 6–
12 months, lay and expert panels blindly rated the
scar appearance of paired incisions using a vali-
dated visual analog scale. Device off-loading of in-
cisions significantly improved scar appearance by
up to 63% compared with within-patient controls
( p = 0.004). The device was well tolerated and was
not associated with any major side effects such as
dehiscence or delayed healing. Importantly, this
study demonstrated the safety of the polymer de-
vice for postsurgical wound healing, suggesting

that the mechanical modulation of wounds has
tremendous potential to reduce scar formation.

Based on the impressive early results with the
device, we implemented clinically informed device
improvements toward the consistent delivery of
predetermined strains. A reusable spring-type ap-
plicator was developed but proved difficult to ma-
nipulate and required precision mounting of the
polymer onto the metal spring device. We proto-
typed other reusable applicator models to enhance
the consistency and ease of prestrain application
and to improve the commercial viability of the
product. However, prototypes based on a cam-
driven applicator were too rigid for nonplanar
surfaces and difficult to apply a consistent strain
(Fig. 2C). Various foam stamper applicators were
also hard to use on nonplanar surfaces and had
high part counts that were not amenable for effi-
cient large-scale production (Fig. 2D–G). A spring
handle applicator was found to be cost effective and
imparted consistent strains, but was limited by its
abrupt polymer release mechanism (Fig. 2H). A
hinged self-release applicator applied even pres-
sures to nonplanar surfaces but had a high part
count and was too complex to use (Fig. 2I).

After extensive testing and device modification,
we developed a highly novel book-type applicator
with the polymer sheet incorporated into the device
(Embrace� Advanced Scar Therapy, Neodyne
Biosciences, Inc., Menlo Park, CA; Fig. 6). The
disposable, single-use applicator applies a consis-
tent strain on the polymer when opened. The flex-
ibility and transparency of the applicator allows for
easy deployment of the polymer device onto non-
planar surfaces. Disengagement of the polymer
device from the applicator is highly intuitive and
readily achieved by the action of two pull strings.
Feedback from patients and healthcare providers
has confirmed a high level of satisfaction with de-
vice comfort and ease of use.

DISCUSSION

The biomedical market for postsurgical wound
management devices is immense and includes vari-
ous types of topical dressings, adhesives, and tapes.34

However, these products have been designed to
‘‘manage wounds’’ and not to prevent scarring. The
aggregate body of scientific literature and clinical
experience strongly supports a primary role for me-
chanical forces in fibrogenesis and cutaneous scar
formation. Thus, we hypothesized that an active,
stress-shielding device based on elastomeric polymer
technology would be able to prevent excess scar for-
mation by controlling wound mechanical forces.

Figure 3. Device validation in a large animal model. Schematic of wound
model (A–C), photographs (D–F), scar histology (G–I), and epithelial histology
(J–L) of pig skin under different mechanical tension conditions. (A, D, G, J)

Unwounded skin subjected to physiologic stresses. (B, E, H, K) Elevated stress
incisions after closure of large excisional wounds. (C, F, I, L) The same elevated
stress incision, but off-loaded with the stress-shielding device during repair.
Note the recapitulation of unwounded epithelial architecture in stress-shielded
wounds (J–L), suggesting that regenerative wound healing pathways may be
activated. Figure reprinted with permission from Gurtner et al.30 Scale bars:
(D–F) 5 mm; (G–I) 500 lm; (J–L) 50 lm. To see this illustration in color, the reader
is referred to the web version of this article at www.liebertpub.com/wound
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Based on our testing results, we developed a
polymer device that precisely offloaded pro-fibrotic
tensile forces throughout the remodeling phase of
repair, resulting in scars that are markedly less hy-
pertrophic and wide. The preclinical and early clini-
cal results led us to propose a conceptual model for
scar formation based on mechanical homeostasis. We
proposed that wound fibrosis is a direct biological

response for restoring mechanical equilibrium across
the wound after injury. Elevated levels of distractive
forces are counteracted by the deposition of stiffer
and stronger scar matrix to maintain skin integrity
and re-establish mechanical homeostasis.

It is possible that by altering the mechanical
environment throughout wound remodeling (i.e.,
offloading the dermal matrix and minimizing

Figure 4. Biomechanical analyses of human skin behavior in vivo. (A, B) Strain analyses were conducted based on grid line displacement before (A) and after (B)

device application. Red arrows indicate axis of device compression. (C) Digital image speckle correlation analysis was used to measure skin strains non-invasively.
Red/white arrows indicate axis of device compression. (D) Tensile (red/orange color) and compressive (blue/purple color) skin strains were mapped after device
application. (E) Measured strains and (F) calculated stresses on different anatomic sites. Data are means – standard deviations from three healthy adult men. Figure
reprinted with permission from Wong et al.32 To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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collagen deposition), resultant wounds may be
weaker and prone to failure. However, in our ex-
tensive preclinical and clinical studies, we did not
observe any instances of wound dehiscence or de-
layed healing for more than a year. This strongly
indicates that the off-loading forces applied by the
polymer device do not have negative clinical con-
sequences on wound healing and dermal strength.
In addition, as the wound matures, its intrinsic
mechanical properties also change, suggesting that
the stress-shielding requirements may likewise
change. Our data suggest that the off-loading de-
mands of a wound only decrease over time and that
any additional compressive forces applied by the
polymer do not adversely impact healing. However,

we are currently investigating an expanded range
of products for the unique biomechanical demands
among different anatomic regions, patient charac-
teristics, wound dimensions, and repair stages.

In addition to physically blocking mechanical
forces with a device, recent studies suggest that
inhibiting mechanotransduction pathways via
biochemical means may also prove effective. These
nondevice strategies would be highly relevant in
massively injured (e.g., burn wound) or irregularly
contoured wounds (e.g., hand or face) that are not
amenable to a topical device. For example, small
interfering RNA, transgenic techniques, and
small-molecule inhibitors of the cell-matrix me-
chanosensor FAK have been successfully used to

Figure 5. Phase I clinical trial in abdominal surgery patients. (A) Schematic of abdominoplasty surgery (i) involving the excision of skin and subcutaneous fat and
surgical closure under high mechanical forces that predispose wounds to robust scar formation. Clinical study schematic (ii) demonstrates application of the stress-
shielding polymer to one side of the incision, whereas the within-patient control side is left unshielded. (B) Photographs of paired abdominal incisions at 6–12 months
postsurgery (paired rows). Note the significant scar elevation, widening, discoloration, and irregularity in unshielded control incisions (i, iii, v, vii, ix, xi, xiii, xv,

xvii) compared with device stress-shielded treatment incisions (ii, iv, vi, viii, x, xii, xiv, xvi, xviii). (C) Quantification of expert and lay panel analyses using a
visual analog scale (VAS), with lower scores indicating improved scar appearance. Data are means – standard errors of the mean. Scale bar is 1 cm. *p < 0.01. Figure
reprinted with permission from Gurtner et al.30 To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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reduce skin, pulmonary, and cardiac fibrosis in
mouse models.35,36 These studies demonstrate
proof of principle that targeted blockade of scar
mechanotransduction pathways with molecular
pharmaceuticals may prove effective clinically.

Another promising approach to control scar for-
mation is the use of scaffolds. The ECM transmits
mechanical forces to fibroblasts (the end effector of
matrix production) and other wound cells, and is
known to regulate cell function based on its physical
properties and specific matrix ligands.37–39 Novel
wound scaffolds that can regulate the biomechanical
and architectural environment during repair have
considerable potential to reduce scarring, whether
used alone or in conjunction with delivery of molec-
ular anti-fibrotics. As the complex pathways linking
mechanotransduction, inflammation, and fibrosis
are further elucidated, researchers will be able to
develop targeted therapies to modulate specific as-
pects of the wound repair process.

INNOVATION

Current strategies to reduce fibroproliferative
wound healing remain suboptimal. The novel stress-
shielding technology used in these studies is safe,
well tolerated, and highly effective in improving in-
cisional scar appearance after surgery. To our

knowledge, this is the first demonstration that
physically off-loading wounds with a topical device
can dramatically reduce fibroproliferative scarring.
More broadly, these findings substantiate the im-
portance of mechanical forces in cutaneous disease
and highlight the therapeutic potential of mechan-
omodulatory approaches to control wound healing.
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KEY FINDINGS

� Mechanical forces are a major determinant of pathologic
scar formation after surgery.

� Different regions of the body exhibit unique biomaterial
properties that may predispose wounds to form exuber-
ant scars.

� A topical stress-shielding polymer can safely control the
biophysical wound environment and block pro-fibrotic
pathways.

Figure 6. Development of current stress-shielding polymer device. (A) Blueprint schematic and (B) photograph of the polymer device loaded into the book-
style strain applicator. (C) The polymer device has been developed in several sizes to accommodate various size wounds in different body regions. (D)

Photograph of the polymer device after application to the lower abdomen. Images courtesy of Neodyne Biosciences, Inc. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/wound
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