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Mapping shape quantitative trait loci using
a radius-centroid-contour model

G Fu1,2,5, W Bo1,3,4,5, X Pang1,3,4, Z Wang1,2, L Chen3,4, Y Song3,4, Z Zhang3,4, J Li2 and R Wu1,2

As the consequence of complex interactions between different parts of an organ, shape can be used as a predictor of
structural–functional relationships implicated in changing environments. Despite such importance, however, it is no surprise
that little is known about the genetic detail involved in shape variation, because no approach is currently available for
mapping quantitative trait loci (QTLs) that control shape. Here, we address this problem by developing a statistical model that
integrates the principle of shape analysis into a mixture-model-based likelihood formulated for QTL mapping. One state-of-the-
art approach for shape analysis is to identify and analyze the polar coordinates of anatomical landmarks on a shape measured
in terms of radii from the centroid to the contour at regular intervals. A procrustes analysis is used to align shapes to filter
out position, scale and rotation effects on shape variation. To the end, the accurate and quantitative representation of a shape
is produced with aligned radius-centroid-contour (RCC) curves, that is, a function of radial angle at the centroid. The high
dimensionality of the RCC data, crucial for a comprehensive description of the geometric feature of a shape, is reduced by
principal component (PC) analysis, and the resulting PC axes are treated as phenotypic traits, allowing specific QTLs for global
and local shape variability to be mapped, respectively. The usefulness and utilization of the new model for shape mapping
in practice are validated by analyzing a mapping data collected from a natural population of poplar, Populus szechuanica var
tibetica, and identifying several QTLs for leaf shape in this species. The model provides a powerful tool to compute which
genes determine biological shape in plants, animals and humans.
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INTRODUCTION

Tremendous variation in morphological shape provides a fuel for the
evolution of biological function and the formation of new species that
best adapt to a specific environment (Albertson et al., 2005;
Klingenberg, 2010; Koenig and Sinha, 2010). Genes are thought to
have an important role in controlling phenotypic variation in shape
(van der Knapp et al., 2002; Tanksley, 2004; Scarpella et al., 2010);
according to quantitative genetic analyses in animals, shape may have
a heritability of 0.60–0.70 (Klingenberg and Leamy, 2001; Monteiro
et al., 2002; Klingenberg, 2003; Mezey and Houle, 2005; Gilchrist and
Crisafulli, 2006). With the development of genotyping techniques,
genetic mapping that dissects phenotypic variation into individual
quantitative trait loci (QTLs) (Lander and Botstein, 1989) has been
used to detect specific QTLs for morphological shape in the
mouse, Drosophila and tomato, providing many promising results
(Weber et al., 1999; Klingenberg et al., 2001, 2004, 2012; van der
Knapp et al., 2002; Mezey et al., 2005; Leamy et al., 2008). More
recently, (Fu et al., 2010) developed a binary model for shape
mapping based on computer-simulated black and white shape data.
(Langlade et al., 2005) used 19 representative points for a leaf to map
the QTLs that control the allometry of leaf shape and pioneered the
integration of shape QTLs with interspecific divergence and evolution.

Many of these shape genetic studies are based on a simple
geometric analysis and, thus, do not intend to resolve the inherently
complicated structure of a biological shape. For example, simple
morphological measures for length, width, height, ratio and angle do
not separate size and shape clearly (Rohlf and Marcus, 1993; van der
Knapp et al., 2002), although these two aspects perform different
biological functions (Tanksley, 2004). In addition, some more
advanced genetic analyses of shape mostly focus on drastic morpho-
logical changes, but do not allow a quantitative description of detailed
structures of organ morphology, such as leaf margins that can be
entire, serrated or lobed (reviewed in Klingenberg, 2010).

As an important approach for shape analysis, geometric morpho-
metrics has a capacity to quantify each piece of subtle variation that
accumulatively contributes to shape (Klingenberg, 2010). By analyzing
the polar coordinates of anatomical landmarks, shape analysis based
on the geometric morphometrics model retains geometric informa-
tion from digitized data and relates abstract, multivariate results to
the physical structure of the original specimens (Adams et al., 2004;
Slice, 2007). The development of image and digital technologies has
greatly facilitated shape recognition and shape registration based on
the theory that a shape can be represented by a number of carefully
selected and coded image patches extracted from images taken from
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different viewpoints (Belongie et al., 2002). The recent years have seen
the development of new technologies used to analyze and interpret
the molecular, mechanical and dynamic mechanisms that form shape
(Nath et al., 2003; Rolland-Lagan et al., 2003; Coen et al., 2004). Coen
et al. (2004) used clonal analysis techniques to study the dynamic
relationship between gene expression pattern and leaf shape (Rolland-
Lagan et al., 2005). Liang and Mahadevan (2009) capitalized on a
combination of scaling, stability and asymptotic analysis to quantify
leaf shape and the conditions that cause different morphologies of
leaves.

As a first step of our shape gene identification project, here, we
developed a model for studying the genetic mechanisms of morpho-
logical shape by mapping specific QTLs involved in shape variation.
This model integrates existing geometric morphometrics analysis into
a framework for QTL mapping through a series of statistical bridges.
By measuring radii from the centroid to the contour at regular
intervals, we quantify the geometric features of a shape and further
use a procrustes analysis to align shapes with different poses, scales
and rotations. The high dimension of shape data measured by a
radius-centroid-contour (RCC) analysis is reduced by principal
component (PC) analysis producing orthogonal PC axes that capture
global and local variability, respectively. Based on the PC axes of RCC
values, a QTL-mapping model is derived and then the QTL effects
detected on shape structure are transformed back to image domains
in order to intuitively visualize how QTLs affect shape variation. To
demonstrate the utility and usefulness of the new model, we used it to
analyze a mapping population of a poplar species, leading to the
detection of several significant QTLs that govern leaf shape. The new
model combines the strengths from genetic mapping and shape
analysis, providing a powerful tool for the genome-wide identification
of QTLs with varying sizes of genetic effects on shape diversity.

MATERIALS AND METHODS
The theory of shape analysis has well been established by (Kendall, 1984), in

which a finite number of landmarks are used to represent a shape of an object.

According to Kendall’s definition, ‘shape is all the geometrical information that

remains when location, scale and rotational effects are filtered out from an

object.’ Here, we integrate this theory into the genetic mapping framework that

is used to characterize the structural, functional, and developmental features of

shape.

Statistical design
A segregating population is a prerequisite for mapping trait QTLs. Consider a

natural population from which a sample of n individuals is drawn randomly.

All these individuals are genotyped for a panel of molecular markers.

Meanwhile, the shape of an organ, such as leaf, is measured for each individual

by taking a photograph of representative leaves. It is likely that a set of QTLs

controls shape, forming a total of J genotypes. Although we cannot observe

these QTL genotypes directly, they can be inferred from the markers (M) that

are linked to the QTLs. For this reason, a basic statistical model for QTL

mapping is a mixture model, in which each observation Y is assumed to have

arisen from one of the J QTL genotypes, each genotype (j) being modeled from

a density function (frequently a normal distribution is assumed). Thus, the

likelihood of Y is expressed as

Lðo;f; Z j Y ;MÞ¼
Yn

i¼ 1

XJ

j¼ 1

oj j ifjðYi j fj; ZiÞ ð1Þ

where o is composed of mixture proportions oj|i of individual i carrying a

QTL genotype j, fj is the expectation parameter vector specific to a QTL

genotype j, and Zi is the variance–covariance parameter common to all

genotype groups, and fj(Yi|fj,Zi) is the probability density function of

observations for individual i at QTL genotype j. For a natural population,

the mixture proportions (oj|i) of each QTL genotype j in likelihood (1) are

described in terms of allele frequencies at the markers and QTLs and their

linkage disequilibria (LD) (Wang and Wu, 2004). The size of LD reflects the

degree to which the markers and QTLs are associated.

To capture the complicated structure of a shape, we used a high dimension

of pixels to describe its boundary and detailed inner feature. A vector of

representation for the shape can be denoted as coordinates (x(s), y(s)) (s¼ 0,

1,y, m—1) extracted from a digital image, where m is the number

of coordinates, determining the accuracy of shape representation. The steps

for shape analysis with digital images are described below.

Shape alignment
All shapes need to be aligned, in order to minimize variation caused by pose.

Shape alignment is a process that is used to establish a coordinate reference for

all shapes with respect to position, scale and rotation, commonly known as

pose. An orthogonal procrustes analysis is used to undertake this alignment

(Gower and Dijksterhuis, 2004).

To make shape representation invariant to translation, we shift all shapes to

their centroids by

ðx1ðsÞ; y1ðsÞÞ¼ ðxðsÞ� xc; yðsÞ� ycÞ; ð2Þ

where (xc, yc) is the centroid of a shape, which is defined as

xc¼
1

m

Xm� 1

s¼ 0

xðsÞ; yc¼
1

m

Xm� 1

s¼ 0

yðsÞ: ð3Þ

By using the new coordinate system (x1(s), y1(s)), all shapes have the origin at

the centroid and thus eliminate any influence caused by position.

To filter a scale effect, we normalized all shapes by dividing each shape by

its Euclidean or Frobenius norm, which produces the normalized shape:

ðx2ðsÞ; y2ðsÞÞ¼
ðx1ðsÞ; y1ðsÞÞ
x1ðsÞ; y1ðsÞk k : ð4Þ

The last and most complicated step for shape alignment is to remove the

rotation effect. The idea behind is to rotate each shape one by one so that they

can be close to a reference shape as much as possible. We use the Euclidean or

Frobenius norm to measure the distance between two shapes. The smaller the

Euclidean norm, the closer they are. In addition, the average of all shapes

is used as the reference shape (denoted as �Z). Now, we assume

Q¼ cosðyÞ �sinðyÞ
sinðyÞ cosðyÞ

� �
; ð5Þ

is the rotation matrix; after multiplying it on the right-hand side of (4), the

shape gets rotated y angles clockwise. Denote Z as (x2(s), y2(s)). By definition,

we hope to solve Q by minimizing ZQ� �Zk k: As

ZQ� �Zk k¼ traceðQTZTZQþ �ZT �ZÞ� 2traceð �ZTZQÞ

¼ traceðZTZþ �ZT �ZÞ� 2traceð �ZTZQÞ

where the first part does not contain Q, so that we only need to maximize

trace( �ZTZQ). By singular value decomposition, there exist orthogonal matrices

U and V and diagonal matrix D such that �ZTZ¼UDVT. Hence,

traceð �ZTZQÞ¼ traceðUDVTQÞ¼ traceðDV TQUÞ¼ traceðDHÞ¼
Xp

l¼ 1

ðdlhllÞ;

where H¼VTQU is an orthogonal matrix, dl is the lth diagonal element

of diagonal matrix D, and hll is the lth diagonal element of H. Therefore,

traceð �ZTZQÞ is maximized when H¼ I. This is equivalent to Q¼VUT.

It can be seen from the above derivation that we should multiply the right-

hand side of (x2(S),y2(S)) by VUT to rotate a shape to be close to the average of

all shapes. The three steps described above are repeated and iterated until the

rotated shapes provide the best fit of differences among all shapes caused by

pose. We use (~xðsÞ; ~yðsÞ) (s¼ 0, 1, y, m�1) to denote final coordinates of

each shape after alignment.
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Shape representation
As a popular contour-based method, we use landmarks for shape representa-

tion. Landmarks are a set of points on the boundary assigned by either

geometrical property (such as high curvature), or an extremum point, or

specific biological meaning (Cootes et al., 1995; Belongie et al., 2002). To make

a one-to-one correspondence between landmarks of one shape and all other

shapes, we choose the same angle or the same arc length. We select points on

the boundary spaced at equal radial angle y¼ 2p/m, where m is the number of

points. This gives an accurate and robust description of shape. A shape can be

described by RCC values (Belongie et al., 2002), that is,

rðsÞ¼ ð~x2ðsÞþ ~y2ðsÞÞ1=2; ð5Þ
which are used for QTL mapping.

Dimension reduction
Many approaches can be used to decompose the original m-dimensional space

to a space of reduced dimension. Principal component analysis (PCA) is one of

such powerful approaches by removing redundant information through

mapping the high dimensional data to the subspace that best accounts for

the distribution of the original pattern. Denote n shape data by R¼ {r1, r2, y,

rn} in the Rm space, where ri is the RCC curve of the ith leaf shape with length

m. The average of these data is defined by

m¼ 1

n

Xn

i¼ 1

ri

and the maximum-likelihood estimation (MLE) of variance can be given byP
R¼ 1

n

Pn
i¼ 1 ðri�mÞðri�mÞT. Let X¼ {r1�m, r2�m, y, rn�m }, then we

have SR¼XXT, a m�m matrix, which is too big to be manipulated practically.

The main idea behind PCA is to maximize the variance by finding a

certain number of orthogonal axes, called PCs, that is much fewer than m.

Therefore, through PCA, we can use Yi¼ vT
k XT

i Xi, where vk (k¼ 1, y, K) is

the eigenvector of XTX in terms of the kth PC, to model the likelihood (1).

The first K of the largest PCs are chosen. Next, we will describe a

procedure for LD mapping of QTLs using these PC values (Wang and

Wu, 2004).

Linkage disequilibrium mapping
To map QTLs in a natural population, we need to implement LD as a

parameter that links markers with QTLs. For clarity of model description, we

assume one QTL controlling a shape that is associated with a marker, with two

alleles M (with a probability p) and m (with a probability 1�p), through a LD,

D. At the shape QTL, there are two alleles A (with a probability q) and a (with

a probability 1�q) that form three genotypes, expressed as AA (denoted as 1),

Aa (denoted as 2), and aa (denoted as 3). The marker and QTL form four

haplotypes MA, Ma, mA and ma, with the frequencies denoted as p11¼ pqþ
D, p10¼ p(1�q)�D, p01¼ (1�p)q�D, and p00¼ (1�p)(1�q)þD, respec-

tively, where max(�pq,�(1�p)(1�q))pDpmin(p(1�q), (1�p)q). The

haplotypes from maternal and paternal parents unite randomly to generate

nine marker-QTL genotypes. The conditional probabilities of a given QTL

genotype, conditional upon a marker genotype for individual j, expressed as

oj|i in the likelihood (1), can be calculated (see Wang and Wu, 2004). The

observations of three genotypes at the marker are denoted as n1 for MM, n2 for

Mm and n3 for mm.

The parameters that define the likelihood (1) are obtained by

differentiating the likelihood with respect to each parameter, letting

the derivative equal to zero, and then solving the log-likelihood equations.

We implemented the EM algorithm to estimate the parameters. The E

step is designed to calculate the posterior probability with which individual i

carries QTL genotype j given its marker and phenotypic information,

expressed as

Oij¼
oj j ifjðYiÞP3

j0 ¼ 1

oj0 j ifj0 ðYiÞ
ð6Þ

Using the calculated posterior probabilities, the M step is derived to solve the

haplotype frequencies expressed as

mj¼

Pn
i¼ 1

ðOijYiÞ

Pn
i¼ 1

Oij

;8j¼ 1; 2; 3 ð7Þ

s2 ¼ 1

n

Xn

i¼ 1

Oi1ðYi�m1Þ2þOi2ðYi�m2Þ2 þOi3ðYi� m3Þ2
� �

; ð8Þ

p̂11¼
1

2n

Xn1

i¼ 1

ð2Oi1þOi2Þþ
Xn2

i¼ 1

ðOi1þ yOi2Þ
" #

; ð9Þ

p̂10¼
1

2n

Xn1

i¼ 1

ðOi2þ 2Oi3Þþ
Xn2

i¼ 1

ðOi3þð1� yÞOi2Þ
" #

; ð10Þ

p̂01¼
1

2n

Xn3

i¼ 1

ð2Oi1þOi2Þþ
Xn2

i¼ 1

ðOi1þð1� yÞOi2Þ
" #

; ð11Þ

p̂00¼
1

2n

Xn3

i¼ 1

ðOi2þ 2Oi1Þþ
Xn2

i¼ 1

ðOi3þ yOi2Þ
" #

; ð12Þ

where y¼ p11p00/(p11p00þ p10p01). The iteration are repeated between includ-

ing equation (6) and equations (7�12) until the estimates converge to stable

values. These stables values are the maximum likelihood estimates (MLEs) of

parameters.

Hypothesis tests
Based on likelihood (1), the significance of a shape QTL can be tested by using

the following hypotheses:

H0: mj�m 8j¼ 1, 2, 3

H1: At least one of the equalities above does not hold; (13)

where the H0 corresponds to the reduced model, in which the data can be fit by a

single shape, and the H1 corresponds to the full model, in which three QTL

genotype-specific shapes exist to fit these data. The log-likelihood ratio (LR) of

the full to reduced model is calculated as the test statistics for the above

hypotheses. An empirical approach based on permutation tests is used to

determine the critical threshold (Churchill and Doerge, 1994). The significance

level was further corrected for multiple comparisons using Bonferroni’s criterion.

After a significant QTL is found to exist, we need to test whether this QTL

can be detected by a given marker using the hypotheses:

H0: D¼ 0 vs H1: Da0; (14)

where the H0 corresponds to the reduced model, in which the marker and

QTL are at the linkage equilibrium, and the H1 corresponds to the full model,

in which there is a LD between the marker and QTL. The test statistics for this

hypothesis is calculated as w2¼ 2nD2/[p(1–p)q(1–q)], which is w2-distributed

with one degree of freedom. The significance level was corrected for multiple

comparisons using Bonferroni’s criterion.

RESULTS

The new model was used to analyze leaf shape data for a mapping
population of poplar, Populus szechuanica var. tibetica. Belonging to
the Tacamahaca section, P. szechuanica is naturally distributed
throughout the Tibet Plateau, growing in mountains at an altitude
of 1100�4600 m, over a wide range of regions in Gansu, Shaanxi,
Sichuan, Xizang and Yunnan Provinces of China (Hamzeh and
Dayanandan, 2004). The wide ecological adaptation of this species,
along with its pronounced variation in leaf size and shape (Figure 1),
makes this species ideal to study the genetic variation of leaf
morphology using molecular markers. The overall shape of leaf blade
in P. szechuanica var. tibetica varies markedly from broadly ovate to
ovate-orbicular to ovate-lanceolate. The bases of leaf blades are
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rounded, cuneate or shallowly cordate with glandular dentate margins
at the first ciliate. Leaves grow from short branchlets with petioles
2.5�8 cm. A precise shape analysis approach is needed to identify and
quantify such a diversity of leaf shape.

Langlade et al., 2005 pioneered a numerical analysis for shape
variation in leaves by placing 19 key landmarks on the leaf margin
and leaf mid-vein from digital images. However, joining these
19 points with straight lines can only capture the global feature of
a leaf outline. The choice of sparse anatomical landmarks by this
approach is extremely difficult when some leaves (see examples in
Figures 2a–c) are abruptly curved. This part of leaf shape variation

may be linked with some particular ecological function (Kessler and
Sinha, 2004) and, therefore, should be taken into account. Further-
more, in (Langlade et al., 2005), a straight mid-vein was used to align
leaf shapes (see their Figure 2). In our example, however, many leaves
display a curved mid-vein (Figure 2d), making it difficult to align
shapes using the mid-vein as a reference.

As a pilot study of shape mapping, we selected 107 trees randomly
from a natural population of P. szechuanica var. tibetica, and from
each tree, three representative leaves were sampled to take photos. The
sampled trees were genotyped for 29 microsatellite markers to be used
to detect leaf shape QTLs. By reading 600� 900 pixels from a leaf

Figure 1 A set of original leaf images (with IDs given at the bottoms) chosen from the mapping population for P. szechuanica var. tibetica, showing

pronounced variation in leaf shape.

Figure 2 Four typical leaf shapes detected from the mapping population. In (a–c), leaf margins are not always smoothly curved, as shown by green lines,

which makes it difficult to determine anatomical landmarks on the leaf outlines using traditional approaches. In (d), the mid-vein is crooked, which cannot

be used as a reference to align leaf shapes.
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digital image, we obtained three matrices for red, green and black
colors that discern the object and background (Figure 3a), from which
binary smaller matrix was generated to capture the leaf shape by

recording its contour (Figure 3b). Using the procedure for shape
alignment described in Materials and methods, we obtained a vector
of 360 coordinates ð~xðsÞ; ~yðsÞÞ (s¼ 0, 1, y, 359) to represent leaf
shape. It turns out that 360 points can well describe the leaf boundary
(Figures 3c and D). Figure 4 is the diagrammatic representation of
several key steps (A, B, C and D) described in Figure 3. The 360
representative points shown in a vector (Figure 3d) can be actually
expressed as a RCC curve (Figure 4d).

Leaf shape shows considerable variation caused by scale, rotation
and translation (Figure 5a). Through alignment (see Materials and
methods), all this has been filtered out from the objects (Figure 5b).
A high dimension of leaf shape data described by RCC values, that is,
the coordinates along the leaf boundaries, is reduced using PCA. It
was found from PCA that six orthogonal axes, termed PCs, could
explain 88.1% of the variation among the samples, which, ordered
according to the percentages of variance they explained, are PC1,
47.3%; PC2, 23.2%; PC3, 6.7%; PC4, 5.1%; PC5, 3.5%; and PC6,
2.3%. These PCs can describe each leaf shape by capturing different
aspects of leaf shape variability including global and local.

To map the QTLs that affect leaf shape, the PC values were
associated with 29 microsatellite markers. Table 1 tabulates the names
of significant markers, their allele frequencies, the allele frequencies of
the QTLs detected by these markers and marker-QTL LD. PC1, PC3,
PC4 and PC5 were each found to exhibit significant associations with
three markers, whereas PC6 is associated with one marker. Some
markers may be associated with different types of PC axes, suggesting
that the same QTLs have a pleiotropic effect on different features of a

Figure 3 The procedure of extracting leaf-shape information from a leaf

image. In (a), the leaf is read by 900�600 pixels based on different

colors, red (R), green (G) and black (B) for the object and background. In

(b), the leaf outline is read as a 1/0 binary variable with a dimension-

reduced matrix. In (c), the Cartesian coordinates of points on the leaf

outline are calculated. In (d), all coordinates in (c) are expressed as single

RCC values.
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Figure 4 Diagrammatic representation of the extracting procedure described in Figure 3. a–d in this figure correspond to those in Figure 3, respectively.

The vector of RCC values in Figure 3d is expressed as a curve, which is a function of radial angle (y) (see the text).
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leaf shape. For example, marker GCPM_1063 is significantly asso-
ciated with PC1 (P¼ 1.01� 10�10), PC3 (P¼ 1.88� 10�8), PC4
(P¼ 1.14� 10�7) and PC5 (P¼ 3.55� 10�7). It is possible that the
same QTL causes the association of GCPM_1063 with these four PC
axes because the QTLs detected for all the four PC axes have a similar
allele frequency (0.49–0.51) and LD (0.09–0.12).

In general, the QTLs detected by PC1 control overall leaf shape
variation, whereas the QTLs detected by the other PCs are responsible
for local leaf variation. Figure 6 illustrates the fitness of PC1 curves
(A) and PC3 curves (B) to the RCC curves of all poplar trees,
respectively, for three genotypes, AA, Aa and aa, at the QTL detected
by marker GCPM_1063. Difference in leaf shape explained by PC1
and PC3 curves of the same QTL genotype is diagrammed in Figure 7
where such a difference is found to be genotype-specific. Generally
speaking, the QTL detected by marker GCPM_1063 alters leaf shape
from lanceolate (AA) to ovate-orbicular (Aa) to ovate (aa) through
PC1 (Figure 8a), whereas this QTL determines the detailed structure
of broadly ovate leaf shape, for example, different degrees of
deltoidness at leaf base among the three genotypes (Figure 8b).

The LD of markers with the QTLs are highly significant (P¼ 1.57
� 10�3�0), suggesting that these QTLs can possibly map to a
narrow genomic region. Of the two other PC1 QTLs that control
overall leaf shape in a similar manner, but with a lesser extent, one
detected by marker GCPM_1026-1 displays a larger effect on shape
variation and is also closer to the QTL than one detected by marker
GCPM_1093-1 (Table 1). The QTLs associated with the other PCs
tend to affect the local variation of leaf shape at various positions of
leaves. Although it is subtle, such local variation may be tightly linked
with gradient changes of some environmental factors. Thus, ecological
functions of ‘local’ QTLs deserve further investigations.

DISCUSSION

Knowledge about the genetic mechanisms for shape variation has far-
reaching implications for a range spectrum of scientific disciplines
(Ricklefs and Miles, 1994; Klingenberg, 2010). Comparing the
anatomical and shape feature of organisms has been a central element
of biology for centuries (Bookstein, 1978; Klingenberg and Leamy,
2001; Monteiro et al., 2002; Adams et al., 2004). For example, as one
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Figure 5 Linking 360 coordinates on the leaf outlines for leaves of all

sampled trees from the mapping population. In (a), raw leaf shapes,

showing variation in scale, position and orientation. In (b), this variation is

removed from the objects through shape alignment.

Table 1 Detection of leaf shape QTLs by the linkage disequilibrium analysis of microsatellite markers in a natural population of poplar

PC (%explained) Microsatellite marker Effect, P-value q p D LD, P-value

PC1 (47.3) GCPM_1063 1.01�10�10 0.74 0.49 0.12 1.77�10�15

GCPM_1026-1 2.42�10�10 0.31 0.43 �0.12 2.42�10�13

GCPM_1093-1 1.93�10�5 0.43 0.47 �0.05 1.57�10�3

PC3 (6.7%) GCPM_1063 1.88�10�8 0.81 0.51 0.09 2.94�10�13

GCPM_1064-1 1.68�10�5 0.44 0.43 �0.05 8.20�10�6

GCPM_1-1 3.42�10�4 0.73 0.56 0.08 1.72�10�11

PC4 (5.1%) GCPM_1063 1.14�10�7 0.77 0.51 0.13 0
GCPM_1026-1 9.56�10�7 0.60 0.23 0.07 4.64�10�13

GCPM_1034-1 8.54�10�4 0.45 0.14 �0.06 3.49�10�7

PC5 (3.5%) GCPM_1063 3.55�10�7 0.79 0.51 0.10 0
GCPM_1064-1 1.63�10�4 0.72 0.43 0.11 0
GCPM_1025-1 4.95�10�4 0.73 0.44 0.11 0

PC6 (2.3%) GCPM_1053-1 2.11�10�4 0.26 0.49 �0.12 0

Abbreviations: D, linkage disequilibrium between the marker and QTL; p, allele frequency of a marker; q, allele frequency of a QTL detected by the marker.
The effects of QTLs are tested by hypothesis (13), and the LD between markers and QTLs tested by hypothesis (14).
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of the most conspicuous aspects of a plant’s phenotype, leaf shape has
been used to provide an intricate link between biological structure
and function in changing environments (Tsukaya, 2005). With an
increasing interest in studying shape genetics (Weber et al., 1999;
Langlade et al., 2005; Mezey et al., 2005; Leamy et al., 2008), we have
now developed a computational model for mapping specific QTLs
that contribute to shape variation by using leaf shape as an example of
demonstration.

Unlike traditional morphological data that concern single measure-
ments of an object, such as size or weight, shape data that capture the
proportions and relative positions of various parts of the object are
viewed as a photograph (Klingenberg, 2010). We incorporate statis-
tical models for extracting shape information from photographs
into a mixture-model framework for QTL mapping. Different aspects
of a shape are specified by orthogonal PCs. Statistical parameters
that define genotype-specific differences in shape-related PCs are
estimated by implementing the EM algorithm. This so-called shape-
mapping model enables geneticists to examine the control patterns of
specific QTLs on the origin, properties and functions of leaf shape.

Our model is, to some extent, similar to the approaches for shape-
QTL mapping by (Langlade et al., 2005 and Klingenberg 2003, 2010)
in terms of the use of PCA to reduce data dimension. However, our
model is distinct from the latter two types of shape modeling. First,
rather than using a limited number of sparse anatomical landmarks,
that is, those points, assigned by an expert, that corresponds between
objects of study in a way meaningful in the disciplinary context, our
model detects and capitalizes on mathematical landmarks that are
located on an object according to its specific mathematical or
geometrical property. In the examples shown in Figure 2, it is difficult
to find anatomical landmarks at those outlines where leaf margins are
abruptly lobed. This shape variation can be well described
by mathematical landmarks. Second, our model expresses a series
of coordinates taken on an object as a RCC curve (that is, a function
of radial angle y at the centroid). Thus, more powerful statistical
approaches, such as longitudinal data analysis of RCC, can
be incorporated into a QTL mapping framework, enhancing the
biological relevance of shape mapping.

To demonstrate its application, shape mapping was used to map
QTLs for leaf shape with the data collected from a natural population
of P. szechuanica var. tibetica. This poplar species is naturally
distributed in the mountains at an altitude of 1100�4600 m in
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southwestern China (Hamzeh and Dayanandan, 2004), providing an
ideal model system to study the genetics of leaf morphology and
its relationship with ecological adaptations. Interestingly, we detected
a number of shape QTLs associated with microsatellite markers by
shape mapping. From the PCA of shape data extracted from leaf
images, six major PCs were detected to together explain 88.1% of the
variation among leaf shapes. By mapping these PCs, we identified the
QTLs that control leaf shape from various morphological aspects. Of
these QTLs, those obtained through the major PC that account for
almost a half of the variation determine the overall or global shape
variation of leaves, whereas those through the other minor PCs
control the local shape variation. It is worthwhile to further
investigate specific QTLs that determine the ecological relationships
of leaf shape and environmental factors by sampling more poplar
trees from different populations.

Different from the work of Langlade et al. (2005), shape mapping
focuses on mapping leaf shape by separating it from leaf size through

uniformly scaling leaf images. Although this helps to clarify the
genetic control of leaf shape in its own right, the biological functions
of leaf size and shape may be inherently linked (Wang et al., 2010).
Our model can be readily extended to perform simultaneous mapping
of leaf shape and leaf size within a unifying framework, allowing the
pleiotropic test of QTL effects on these two leaf traits. Also, given its
critical role in trait control (Wang et al., 2010), epistasis between
different QTLs should be modeled and tested by implementing multi-
QTL genotypes into the mixture likelihood (1). With the availability
of data collected for large-scale and complex problems in genetic,
ecological and physiological research, our shape-mapping model
described will provide a powerful analytical tool to effectively and
efficiently test and build hypotheses, and extract useful information
for scientific inferences and prediction.
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Figure 8 Three representative leaf shapes of P. szechuanica var. tibetica corresponding to three different genotypes, AA, Aa and aa, at the QTL detected by

marker GCPM_1063. PC1 defines overall leaf shape (a), whereas PC3 defines local shape variability (b). In (b), three genotypes all have broadly ovate leaf
shape, but genotypes AA and Aa are more deltoid than genotype aa at leaf base.
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