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Abstract
Land use regression (LUR) has emerged as an effective means of estimating exposure to air
pollution in epidemiological studies. We created the first LUR models of nitric oxide (NO),
nitrogen dioxide (NO2) and nitrogen oxides (NOx) for the complex megalopolis of Los Angeles
(LA), California. Two-hundred and one sampling sites (the largest sampling design to date for
LUR estimation) for two seasons were selected using a location-allocation algorithm that
maximized the potential variability in measured pollutant concentrations and represented
populations in the health study. Traffic volumes, truck routes and road networks, land use data,
satellite-derived vegetation greenness and soil brightness, and truck route slope gradients were
used for predicting NOx concentrations. A novel model selection strategy known as “ADDRESS”
(A Distance Decay REgression Selection Strategy) was used to select optimized buffer distances
for potential predictor variables and maximize model performance.

Final regression models explained 81%, 86% and 85% of the variance in measured NO, NO2 and
NOx concentrations, respectively. Cross-validation analyses suggested a prediction accuracy of
87–91%. Remote sensing-derived variables were significantly correlated with NOx concentrations,
suggesting these data are useful surrogates for modeling traffic-related pollution when certain land
use data are unavailable. Our study also demonstrated that reactive pollutants such as NO and NO2
could have high spatial extents of influence (e.g., > 5000 m from expressway) and high
background concentrations in certain geographic areas. This paper represents the first attempt to
model traffic-related air pollutants at a fine scale within such a complex and large urban region.
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1. Introduction
With a population of 16.7 million, the Los Angeles Metropolitan Area (hereafter referred to
as LA) is the largest urban area in the state of California and the second-largest in the United
States. LA is also consistently ranked as one of the most polluted metropolitan areas in the
US, partially due to heavy reliance on automobiles for transportation, and because more than
40% of all goods transported into the United States move through the Long Beach/Los
Angeles port complex, which generates thousands of truck trips per day (Hricko, 2008). The
LA Basin is also susceptible to atmospheric inversions (Bytnerowicz and Fenn, 1996),
which trap exhaust from on-road vehicles, airplanes, and locomotives, as well as from
shipping, manufacturing and other industrial sources in the troposphere. Additionally, with
an average rainfall of only 381 mm/year, Los Angeles experiences minimal pollution
removal by precipitation. The high level of auto-dependence in LA is replicating in other
major conurbations around the world, particularly in newly industrialized countries (Walsh,
2008). Lessons learned from studying air pollution exposures and subsequent health effects
in Los Angeles may therefore have widespread applicability to other large urban areas.

This paper reports the first attempt to model NO, NO2 and NOx concentrations in LA (Fig.
1) using a land use regression (LUR) approach. The LUR was developed as part of a study
sponsored by the California Air Resources Board (CARB) to examine the impacts of
outdoor air pollution on respiratory health in children living in LA. The LUR method seeks
to predict pollution concentrations at a given site based on surrounding land use, road
network, traffic, physical environment and population characteristics using a series of
buffers (Su et al., 2009). Geospatial modeling techniques including LUR are an attractive
alternative to ambient (government) air monitoring data for assessing traffic pollutant
exposures, since they can be applied to large populations and account for neighborhood-
scale variations in pollutant concentrations. To our knowledge, LUR to date has not been
applied to large urban areas with population over 10 million for traffic-related air pollution
(NOx) but only to estimate more spatially homogenous air pollutant concentrations such as
fine particulate matter (Moore et al., 2006; Ross et al., 2007).

2. Materials and methods
2.1. Sampling location determination

We selected neighborhood monitoring locations (n = 201) using a location-allocation
algorithm (Kanaroglou et al., 2005) that took into account variability in traffic pollution and
the spatial distribution of our childhood respiratory health study population, specifically,
participants in the Los Angeles Family and Neighborhood Study (LA FANS). The
estimation domain for locating optimal sampling sites covered more than 10,000 km2 of LA.
Briefly, the location-allocation algorithm involves a two-step algorithm that (1) builds a
demand surface of spatial variation (i.e., semi-variance) and (2) solves a constrained spatial
optimization problem to determine locations for a pre-specified number of samplers.

The demand surface was created using two criteria: first, samplers should be placed where
the pollution surface is expected to exhibit high spatial variability, and second, population
density of subjects in our health study should be relatively high. To create an initial
pollution surface across the LA metropolitan area, an LUR model was applied to predict
NO2 concentrations by adapting the LA land use and transportation data to the regression
coefficients previously derived for the San Diego area (Ross et al., 2006). Given a first
estimate of the pollution surface, spatial variability of pollution Z(x, h) at location x with a
distance h is determined by the following adaptation of the semivariogram equation
(Cressie, 1993):
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(1)

This creates the demand surface that satisfies the first criterion noted above. To satisfy the
second criterion, we appropriately modified the demand surface achieved through Eq. (1) by
intensifying the demand for pollution monitors in areas with high densities of populations.
To achieve this effect, a weighting scheme is implemented according to

(2)

where PR is the population of interest in region R within the study area and PT is the
population for the entire study area.

The task was to place all monitors within 500 m of the census tracts (CT) of residences
included in LA FANS and, at the same time, in areas with the most spatial variation in
traffic-related air pollution. Thus, CTs that included LA FANS residences were buffered to a
distance of 500 m and the eligible census blocks were assigned a population-weighted semi-
variance value based on the specific population counts from LA FANS. The CTs were
widely dispersed throughout the urbanized area of LA. Irregular lattice points were created
using street block centroids for locating sampling sites. Finally, monitoring locations were
selected using a maximum attendance location-allocation algorithm Eq. (3) based on the
population-weighted semi-variance.

(3)

where k is the number of demand locations and m is the number of candidate locations. In
our case, k = 201, including 15 co-located sites with the governmental monitoring stations.
The weight wi at location i represents demand, while dij is the distance between locations i
and j. Xij, is the allocation decision variable attaining the value of 1 if demand location i is
served by a station in j and 0 otherwise. Attendance linearly decreases with distance at the
rate of parameter b, a value determined by the maximum distance of influence.

2.2. Sampler preparation and field deployment
Each air sampler was loaded with two pre-coated collection pads—one pad to measure NO2
(part number PS-134) and the other for NOx (part number PS-124). NO concentrations were
derived as the difference between NO2 and NOx concentrations. To protect against rain
damage, each sampler was placed inside a plastic shelter that shielded the sampler from the
top but allowed air to flow freely through the bottom. The shelter was constructed from a 4-
in diameter PVC plumbing cap, with eye bolts on the sides and top of the shelter, which
were used to secure the shelter to the mounting locations. This was the same shelter
methodology utilized in the East Bay Children’s Respiratory Health Study (Singer et al.,
2004).

Field staff followed a strict protocol for installing and removing the samplers in the field.
We identified the exact location of installation for each sampler, using GPS readings, text
descriptions and photographs of the exact pole, fence or tree on which the sampler was to be
hung. Samplers were installed approximately 8–10 ft above the ground level (the height of
each sampler was recorded on the log sheet). Duplicate samplers were installed either side-
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by-side or on opposite sides of the pole (“back-to-back”), ensuring that duplicates were hung
at the same height. During installation and collection efforts, two additional GPS
measurements were taken at each location (a total of four measurements per site, per
season). The majority of neighborhood sites where the samplers were installed were within
50 m of the exact location selected by the location-allocation model; all sites were within
200 m of the selected location.

2.3. Pollution sampling
We used passive air samplers from Ogawa & Company USA, Inc. (Pompano Beach, FL) to
conduct monitoring in two seasons during September 2006 (late summer warm season) and
February 2007 (mid-winter rainy season). Each air sampler measuring concentrations of
NO2 and NOx was deployed for a 2-week period (maximum variability was ± 2 h). NO was
derived as the difference between NO2 and NOx. Measurement periods were specifically
selected after reviewing historical monitoring data to characterize long-term average
concentrations most accurately. In total, from the 201 samplers deployed in each season
measurements were obtained for 183 sites in September 2006 and for 181 sites in February
2007 (some monitors were stolen or vandalized, and some sites were relocated in February
2007 because access to the original site was unavailable). This left 181 sites (with
monitoring data and not relocated) available for analyses that averaged concentration data
from both seasons. In addition to these 181 samplers, we co-located 15 samplers at Southern
California Air Quality Management District (SCAQMD) air monitoring stations, deployed
50 duplicates, and collected data from 30 field blanks.

2.4. Traffic data
Three types of roadway configuration and traffic volume data were analyzed for their ability
to predict traffic-related pollution. They included Dynamap data from TeleAtlas (Global
Crossroads, Boston, MA), Highway Performance Monitoring System (HPMS) data from the
National Transportation Atlas Database and Metropolitan Planning Organization (MPO)
data from the Southern California Association of Governments (SCAG). Since each of these
data sources has some limitations and because traffic was of great importance for the
exposure contrasts, extensive efforts were made to derive the most comprehensive traffic
data available. Traffic data imputed from the Dynamap data are discussed below. A
description of the HPMS data, the traffic data conflated from HPMS to Dynamap and the
MPO data is included in Supplementary Information.

We used Teleatlas’ Dynamap 2000 as our base roadway configuration and traffic volume
data because the underlying road network had the most accurate spatial representation when
compared to digital orthophotos. The Dynamap data were combined into a mosaic from
individual county files with repeated road segments removed before the analysis. The
complete Dynamap physical coverage provided traffic volumes (i.e., 24-h annual average
daily traffic (AADT) counts) for 2.5% of the road network for LA (18 504 out of 740 047
roadway segments) during the period from 1987 to 2005 (Table 1). The median AADT
value from measured road segments within a road category (e.g., highway with or without
limited access) was assigned to road segments of the same category; i.e., to impute traffic
data to road segments without measurements. The circular area distances (buffers) we chose
for LUR model development ran from 50 to 5000 m at an interval of 100 m. Such large
buffer sizes were selected because previous studies in LA indicated influence from land use
over this extended spatial range (Moore et al., 2006). Buffer statistics included total vehicle
miles traveled (VMT) (count*km) for (1) highways (including primary roads with limited
access or interstate highways (A1) and primary roads without limited access or state
highways (A2)); (2) major roads (i.e., secondary and connecting roads (A3)); (3) highways
and major roads (A1+A2+A3); and (4) all roads (A1+A2+ •+A7, A4 = local roads, A5 =
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one-way vehicle dirt trails, A6 = road ramps, A7 — bicycle or pedestrian trails) (Table 1).

Within a circular distance of j of sampler i, total vehicle miles traveled  was estimated by
summing all (k) traffic volumes (Vi,j,k) of a road segment (l) within that search distance:

(4)

VMT estimated in Eq. (4) thus include statistics for highways, major roads, highways+major
roads and all road traffic categories.

2.5. Road network and slope gradient
We used road network (including highway, major and local roads) from Dynamap as

surrogates for traffic-related pollution. The total length (m) of all road segments (k) of
road category c within a circular search distance j of sampler i was estimated by

(5)

Slope of a truck route was defined as an angle in degrees. We first converted the Dynamap
roadway network into raster cells and assigned each raster cell a slope derived from a digital
elevation model (DEM) produced by the US Geological Survey (USGS, 1999). The average
slope Mij of all the truck route segments (k) within a circular search distance j of sampler i
was estimated by

(6)

We also included distance to truck routes as a potential explanatory variable during model
selection. Truck routes were extracted from HPMS data for 2007 and straight distances to
truck routes were created for the study region. Also, the number of major road intersections
inside each circular buffer area was calculated to identify whether areas with more
intersections have higher NOx concentrations.

2.6. Tasseled-cap transformation
Current LUR models use road network information as a surrogate for levels of traffic-related
pollution; however, influences from some land use types such as parking lots, which have
similar spectral reflectance as roads, are usually unavailable in road network data and thus,
unaccounted for in LUR models. In addition, most land use variables such as industrial,
commercial and open land use applied in LUR models to date were originally derived from
remote sensed data. The most comprehensive, high-resolution (six bands finer than 30 m)
and freely available global coverage remote sensing data are Landsat Enhanced Thematic
Mapper Plus (ETM+) data. Because of the complexities involved with display and extraction
of information contained in the Landsat ETM+ data, a tasseled-cap transformation was used
to reduce the number of channels to be considered, and to provide a more direct association
between signal response and physical processes on the ground (Crist and Cicone, 1984).
Analyses of simulated and actual TM data have revealed that vegetation and soils data in the
six reflective TM bands (excluding the thermal band) primarily occupy three dimensions.
Within these three dimensions two planes are defined, which are occupied by fully vegetated
and bare soil samples, along with a “transition zone” between the two which is occupied by
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partially vegetated samples. The three features corresponding to the three data dimensions
are named brightness, greenness and wetness. Brightness, a weighted sum of all six bands, is
a measure of overall reflectance (e.g., differentiating light from dark soils). Greenness is a
contrast between near-infrared and visible reflectance, and is thus a measure of the presence
and density of green vegetation (Crist and Cicone, 1984).

Tasseled-cap indices for LA were derived from the ETM+ data collected from a nominal
altitude of 705 km in a near-polar, near-circular, sun-synchronous orbit at an inclination of
98.2°, imaging the same 183-km swath of the Earth’s surface every 16 days (http://
landsat.gsfc.nasa.gov/). The ETM+ imagery we acquired included three visible (resolution
30 m), three infrared (30 m), two thermal (60 m) and a panchromatic (15 m) band. The
scenes for LA were at path 41/row 36,41/37 and 40/37, all captured on June 21, 2001. These
images were orthorectified by the United States Geological Survey (USGS) and projected to
Universal Transverse Mercator (UTM) zone 10N coordinate system with a WGS84 datum
(World Geodetic System of 1984).

Orthorectification is the process by which the geometric distortions of the image are
modeled and accounted for, resulting in a planimetricly correct image. Because the Earth is
in 3D while most sensors are in 2D, orthorectification corrects for many of the anomalies
resulting from this conversion. The success of the orthorectification process depends on the
accuracy of the digital elevation map and the correction formulae (Bolstad, 2005). Because
the root-mean-square error is less than 30 m, the EMT+ data were not atmospherically and
topographically corrected (GLCF, 2009).

Greenness is independent of brightness and increases with increasing proportions of green
vegetation. Thus, greenness might be a better, though inversely related, surrogate for the
degree of influence of traffic or lack of stationary industrial sources, and a better marker for
variables such as open space used in earlier studies.

2.7. Land use characteristics
Land use data for LA were acquired from the Southern California Association of
Governments for the year 2000. Major land use types included commercial, residential,
industrial and open land use. The total area Aij of a land use type within a circular buffer
search distance j of sampler i was estimated by summing over all (k) areas of a land use type
inside the buffer:

(7)

Additionally, physical geographic variables such as distance to coast, elevation and
coordinates of latitude and longitude were calculated for each sampler location and used as
covariates for our ADDRESS (A Distance Decay REgression Selection Strategy) modeling
process.

2.8. Model selection and diagnostics
For the model selection process we used the ADDRESS selection strategy (Su et al., 2009)
based on series of distance decay curves created by correlation coefficients of spatial
covariates with the measured (first step) or the predicted residuals (from the second step
onward) of exposure concentrations. Guided by the visual distance decay curves of
correlation coefficients, with ADDRESS we identified the optimized distances of influence
for all variables during the model selection process. Using a forward manual stepwise

Su et al. Page 6

Environ Res. Author manuscript; available in PMC 2013 May 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://landsat.gsfc.nasa.gov/
http://landsat.gsfc.nasa.gov/


procedure, a spatial covariate with the highest correlation at each search distance was added
to the LUR model based on its statistical significance level (p = 0.05). The variable selection
process continued until no further spatial covariates were selected for inclusion in the model.
Because primary and secondary highways and major roads are densely distributed
throughout LA, any subject’s exposure at their residence is influenced not only by the
nearest roadways and traffic but likely also by urban-scale traffic patterns that vary over
ranges of 5 km or more. Thus, the maximum distance of a buffer was set to 5000 m.
However, if a distance decay curve still showed an upward trend at 5000 m, the maximum
buffer distance was further extended until a downward trend was identified. In an urban
environment, correlations might not be zero even at very high buffer distances because of
the influence of background pollutant concentrations; however, we expected to see a
decrease in the influence of certain emission sources, such as emissions from a roadway,
after a large enough distance.

To test the efficacy of the prediction models, model diagnostics included (1) evaluating
whether selected variables were collinear based on variance inflation factors (VIFs); (2)
outliers assessment, i.e., determining Cook’s distances to assess whether a single
observation changed the regression estimates; (3) examining whether spatial
autocorrelations of the prediction residuals in our final optimized models existed based on
the Moran’s I statistic (Bailey and Gatrell, 1995); (4) assessing whether predictions satisfy
the US EPA (Environmental Protection Agency) requirements of a prediction model (US
EPA, 1991) by adopting normalized mean bias (NMB) (see Eq. (5)) and normalized mean
error (NME) (see Eq. (6)) tests below; (5) conducting a Chow (1960) test to assess whether
large sample sites would benefit LUR modeling results; and (6) applying cross-validation
techniques to 16 random samples for model reliability tests.

(8)

(9)

where  and Ci refer to the predicted and observed pollutant concentrations at sampler i.

Moran’s I statistics were conducted on a first- and second-order Rook contiguity matrix to
the Thiessen polygons created from the sampler sites. Statistical significance was tested
using a permutation test with 999 iterations. Although a location-allocation algorithm was
applied to locate samplers, the samplers were also restricted to residential census tracts of
subjects in the LA FANS health study. If samplers were clustered within census tracts of
residence, it would be difficult to remove the near-range autocorrelation with fixed effects or
with standard autoregressive techniques. Therefore all models were refit in STATA 8.0
adding a cluster parameter (based on census tract ID) to our ADDRESS models and also
using generalized estimating equations (GEE) (Liang and Zeger, 1986) clustered on the
census tracts where the monitors were located. Sensitivity analyses were also done with
robust standard error estimation using census tract as the cluster unit.

The EPA’s suggested performance criterion for NMB is ± 5% to ±15%, and for NME 30–
35% of pollutant levels greater than 60 ppb (Ci≥60 ppb) (US EPA, 1991). For the Chow test,
half of the total sites available were randomly selected from each of four quartile groups of
NOx concentrations and the remaining measurements were used separately to model NO,
NO2 and NOx using the same spatial covariates from the full dataset. The Chow test
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identifies structural stability of regression models of the two subsets compared to the pooled
full dataset (Gujarati, 1995). To test the transferability of the models, we also standardized
prediction across the three models: using variables common to the three models and a
variable across the three LUR models was set to have the same buffer distance.

To identify similarities and differences in spatial distribution patterns of NO, NO2 and NOx
as well as in their emissions sources, the prediction coefficients used to model the three
pollutants were also compared for significant predictors.

3. Results
3.1. NOx measurements

Based on the field blank measures, sampler detection limits were <0.14µg for NO2 and
<0.76µg for NOx. Our duplicate measurements indicated that the average coefficient of
variation was low (3.3% for NO2 and 2.1% for NOx). Measured pollutant levels ranged from
5.33 to 42.73 ppb for NO2 (median = 27.29 ppb) and from 8.08 to 156.95 ppb for NOx
(median = 60.88 ppb), after correcting for blank concentrations. Annual means measured by
14 monitors in the Southern California Air Quality Management District regulatory network
showed strong relationships with the campaign-specific means. We calculated the intraclass
correlation coefficient (ICC) using a generalized linear model with compound symmetry
covariance, clustered by site, and found high correlations between our 2, 2-week average
measurements and annual averages based on measurements at the government monitoring
stations (ICC = 0.93 for NO, 0.87 for NO2, and 0.96 for NOx). Comparison of February
2007 measurements made by Ogawa samplers collocated at government sites (which are
chemiluminescence samplers) produced slopes of 0.82 (R2 = 0.91), 0.72 (R2 = 0.64) and
0.81 (R2 = 0.92) for NO and NO2 and NOx, respectively. The relationships between
collocated measurements in September 2006 were also strong, with slopes of 1.16 (R2 =
0.82), 0.82 (R2 = 0.84) and 1.01 (R2 = 0.89) for NO, NO2 and NOx, respectively. To
compare the duplicate measurements for both seasons combined, we calculated the ICC as
above, clustering by site and season, and found high correlations for all three pollutants of
interest (ICC = 0.97 for NO, 0.92 for NO2, and 0.98 for NOx). These results suggest that the
short-term monitoring captures the longer term spatial pattern of exposure well in the Los
Angeles area.

3.2. Distance decay curves
Because distance decay curves for NO, NO2 and NOx showed an upward trend for all traffic
estimates at the pre-specified 5000 m buffer distance, we extended the maximum buffer
distance to 15 km to identify the optimal distance of influence from traffic sources. Among
the four types of traffic density estimates we considered, traffic measures imputed from
TeleAtlas Dynamap data were found to have the highest correlations with measured NO,
NO2 and NOx concentrations and were therefore used in the ADDRESS model selection
process. As illustrated in the distance decay curves presented in Fig. 2a, correlations
between VMT and traffic-related air pollution concentrations increased steeply out to 10 km
and reached a peak around 11 km, especially for NOx. Highway vehicle density within 11
km alone explained 46.6% of the model variance for NOx. After a buffer distance of 11 km,
correlations trended to slope downward. The explanatory power of highway vehicle density
within 11 km suggests the increasing contribution from background NOx transport within
that distance, a finding consistent with earlier integrated meteorological models calibrated
for LA (Wu et al., 2005). Since previous studies identified the maximum distance of
influence from a roadway to be 1500 m (Jerrett et al., 2005), we created semivariograms of
NO and NO2 concentrations (Fig. 3) using the 201 monitoring site measurements to identify
distances of spatial dependency for the two pollutants. Based on these analyses, the distance
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of spatial dependency for NO was about 11 km, while NO2 concentrations experienced an
even slower decrease, reaching the range where there was no spatial association until about
20 km.

For local effects, we saw a sharp drop of influence of major road from near source (100 m)
to a distance of 500–700 m; however, for highways, highways and major roads combined,
and all road categories, we saw a sharp increase of influence from near source to a 500 m
buffer distance (not shown on figures).

Compared to all other variables we explored, distance to truck routes (not shown on figures)
correlated most strongly with NO, NO2 and NOX measures (correlation coefficient = 0.57–
0.67), and explained 44.2% of the model variance for NO2. Remote sensing-derived
greenness (Fig. 2b – d) also correlated highly with the three pollutant concentrations and
was seen as a much better predictor than open space, even though soil brightness (Fig. 2b –
d) correlations were lower than those for greenness. The greenness and soil brightness
images, shown in Fig. 4a and b, demonstrate that they could be used as surrogates for road
networks when such information is unavailable and have the potential to identify off-road
vehicle usage such as traffic in parking lots. Truck route slope gradient explained up to 9%
of NOx concentration variance.

Based on the distance decay correlation curves, we found that the majority of the variables
analyzed influenced concentrations at a spatial extent greater than 3000 m, especially traffic-
related variables. This is inconsistent with previous research findings from medium- or
smaller-size urban areas (e.g., traffic influence < 1500m). Using the highway network in LA
as an example, Figs. 5 and 6 show the distance decay of NO and NO2 concentrations with
increasing distance from highways (the bar charts show average measured pollutant
concentrations with a bin size 200 m). Based on the trend curves, if we use a 50% reduction
in concentration as a standard for spatial extent identification, then the spatial extents for NO
and NO2 would be 3000 and 5000 m from highways, respectively. If 10% were used as a
threshold, then the spatial extent for both pollutants would be greater than 10 000 m. When
treating the 15 SCAQMD monitoring sites as background, the so-called background
concentrations are 24.7 and 24.3 ppb for NO and NO2, and they correspond to 45.8% and
73.2% of the near road concentrations (NO 53.916 ppb and NO2 33.2 ppb) using the first bin
in Figs. 5 and 6.

3.3. ADDRESS modeling results
Before we modeled the NO, NO2 and NOx concentrations, we chose 16 monitoring sites
randomly for cross-validation, four sites from each of four quartile groups of NOx
concentrations. The remaining 167 sites were used in ADDRESS to model annual
concentrations of NO, NO2 and NOx, based on the mean concentrations from the two
measurement periods.

The final optimized models explained 81, 86 and 85% model variance for NO, NO2 and
NOx, respectively (Table 2). All three models had near source traffic influence with a buffer
distance of 100 m from major road. The local traffic influence was also found for the three
models, such as the influence of buffer distance of 400 m for traffic on all the roadways.
Strong presence of background concentrations were also captured by the three models, for
example, the influence of buffer distance of 11 km for highway and major roads. Closer
distance to truck routes was also associated with higher traffic-related pollutant
concentrations. Industrial and commercial land usage were also positively correlated with
pollutant concentrations (industrial buffer distance 1700 m for NO2 and 2700 m for NO and
NOx; for commercial land use they were 1200 m for NO and 1000 m for NO2 and NOx). In
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addition, X coordinate and soil brightness were also found to be significant in predicting
NOx concentrations.

Because ADDRESS assumed independency of each sampling measurement, spatial
clustering was not considered. By contrast, the correlation of samplers within a census tract
was taken into consideration on the GEE models; the standard errors were therefore smaller
than with ADDRESS.

All the chosen spatial covariates were statistically significant at a 0.05 level with expected
signs. The average VIF for NO, NO2 and NOx were 1.25, 1.31 and 1.22, respectively, with
the maximum VIF being 1.56, demonstrating a lack of significant collinearity between the
chosen spatial covariates. The prediction scatter plots displayed in Fig. 7a (for NO), b (NO2)
and c (NOx) further demonstrate that the prediction models were not influenced by
significant outliers and the model prediction residuals were normally distributed.

The maximum Cook’s distance for NO, NO2 and NOx was 0.10, 0.36 and 0.23, respectively,
also confirming the absence of influential outliers in each model. After selecting these
parsimonious models, we tested for spatial autocorrelation based on first-and second-order
Thiessen polygon connectivity matrices with Moran’s I. There was significant
autocorrelation with the first-order matrix in all models, but not in the second-order tests
(with I being equal to −0.008 (p = 0.48), −0.023 (p = 0.35) and 0.031 (p = 0.18) for NO,
NO2 and NOx model residuals). The ADDRESS models with an extra cluster parameter and
the GEE models (Table 2 second and third columns) showed similar results to corresponding
ADDRESS models that did not incorporate adjustment for clustering, except some small
changes to the standard errors.

In our cross-validation models (Fig. 7d, e and f), the 16 randomly picked samples explained
91%, 87% and 92% of the model variances for NO, NO2 and NOx, respectively. The Chow
test showed that there was no significant difference between the models with the full and
half dataset for NO, NO2 and NOx, indicating model stability to subset selection.

The prediction coefficients in Table 3 reflected that a spatial covariate of the same buffer
distance showed great similarity in significant digits in prediction of NO, NO2 and NOx.
Generally, land use variables had smaller variation compared with traffic-related ones.

The final prediction surfaces for NO, NO2 and NOx are displayed in from Fig. 8a–d. Fig. 8a
(for NO) and 8d (for NOx) show similar concentration patterns, i.e., higher NO and NOx
levels near to emission sources such as highways and industrial land use. Similarly, in
calculating the correlation coefficients between NO, NO2 and NOx prediction surfaces, we
found that NO has the highest correlation with NOx (r = 0.93), while the correlation between
NO and NO2 was smaller (r = 0.85). There were greater differences in spatial patterns
between NO and NO2 than between NO and NOx. Fig. 8b is the predicted NO2
concentration surfaces with and Fig. 8c without highway and major road traffic at a buffer
distance of 11 km included in the model. The NO2 prediction surface without the 11 km
spatial variable for traffic predicts higher NO2 gradients, even though the total
concentrations are slightly lower.

4. Discussion and conclusions
In this paper, we modeled NO, NO2 and NOx concentrations for the LA metropolitan area
using the ADDRESS modeling strategy. Our final three prediction models explained 81%,
86% and 85% of NO, NO2 and NOx variances, respectively. The models presented here
have a higher power of prediction (R2) than a large majority of previously developed LUR
models (Jerrett et al., 2007; Henderson et al., 2007; Hoek et al., 2008). To our knowledge,
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this is the first application of an intensive air pollution monitoring campaign (with 201
samplers) to model traffic-related air pollution in a mega city. Our LUR models and
semivariograms suggest that the distance of influence for highway and major roads density
around the monitors is greater than 10 km. Earlier regional studies in England similarly
reported even larger influence areas for NO2—suggesting that regional patterns are an
important contributor to NO2 levels in this locale (Stedman et al., 1997). Because of LA’s
geography, infrastructure, road network and population characteristics, background
concentrations were high even though both NO and NO2 are generally considered as
reactive pollutants. As the background concentration increases, the spatial extent of
influence from the source increases correspondingly (Zhou and Levy, 2007). In addition,
high emission rates also increase the spatial extent of impact for absolute comparisons (Zhou
and Levy, 2007). Land use regression models based on a limited number of buffer distances
(up to 5000 m) were found to be less predictive of the spatial distribution of traffic-related
air pollution in the LA metropolitan area. Most previous LUR models considered circular
area buffers of less than 1500m for examining roadway and traffic variables, and land use
and population density within a maximum distance of 3000m (Jerrett et al., 2005; Henderson
et al., 2007). Typically, for a medium–large size city (2–5 million population), the influence
of traffic diminishes with increasing distance nearest roads, and local sources of pollution
dominate over background effects (Jerrett et al., 2005, 2007). Highways (including primary
and secondary) have a total length of more than 3000 km and highway and major road
densities are 435 and 1669m/km2, respectively, in the LA Basin, much higher than
corresponding road categories for a typical medium size city. Levels of NOx pollution at a
residence in a mega city may be influenced by local sources, and in addition may depend
strongly on urban-scale and even regional background sources. These results indicate that
beyond the distance decay gradients suggested in recent studies of between 300 and 1500m
(see, e.g., Jerrett et al., 2007; Zhou and Levy, 2007) that there is a cumulative impact of
traffic and density around the monitors and that the range of influences is probably much
greater in mega cities than in smaller urban areas. These findings suggest that for mega
cities, larger zones of influence may be necessary to predict traffic pollution accurately in
future studies.

It is also important to note that a higher correlation (R) between a given explanatory variable
within a given buffer distance and a pollutant concentration does not correspond to a higher
pollutant concentration at that buffer distance. A correlation coefficient of a buffer distance
reflects the influence of total traffic or land use within that buffer, not at that buffer distance.
The pollutant concentration at that buffer distance could be much smaller than
concentrations at locations closer to the source of pollution. In land use regression modeling
and exposure analysis, it is of interest for potential health effects to include all information
within the optimized buffer distances. The LUR models were optimized to give a best
estimate of total NO and NO2 concentrations regardless of source. Regional, urban and local
contributions were all taken into consideration. This is consistent with current exposure
analysis that treats the scope of influence as a function of the regional background, an urban
background and the local traffic (e.g., near a major road) (Hoek et al., 2001). When near a
roadway, the influence of local traffic is the dominant source and the contribution from
background might be negligible; however, further away from the roadway, the influence of
local traffic decreases relative to the background. It is in our study that the background
concentrations had a higher proportion of contribution to the overall concentration of a point
of interest.

Satellite remote sensing of trace gases and aerosols for air quality applications has a rich
history. Three major applications are analyses and forecasts of events that affect air quality,
inference of surface air quality itself and estimates of emissions. The pollutants monitored
include particular matter (PM10 and PM2.5, aerodynamic diameter <10 and 2.5µm,
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respectively), O3, NOx, CO (carbon monoxide), HCHO (formaldehyde), and SO2 (sulfur
dioxide) and VOCs (volatile organic compounds). However, the spatial resolution of
satellite remote sensing is usually coarser than 1 km (see Martin, 2008 for a detailed review
of satellite remote sensing of surface air quality). Su et al. (2008, 2009) found that remote
sensed data such as those from Landsat ETM+ (spatial resolution 30 m) can be used to
enhance land use regression models in identifying small area variation of ambient pollutant
concentrations. The Landsat-derived satellite data may overestimate roadway emissions to
some degree, but will not be overwhelmingly biased because the spectral information
between a tar-roofed building and busy vehicle-traveled roadway/parking lot are different.
Places with high vegetation cover have the effect of reducing pollutant concentrations, while
roadways and tar-roofed buildings do not. The slight over-estimation of pollutant
concentrations at places with tar-roofed buildings might better represent the spatial pattern
of pollutant concentrations at those places. Compared to open land use, the degree of
greenness or soil brightness from remote sensed data should be more accurately
characterizing ground land use. Overall, we demonstrated that remote sensing-derived data
such as vegetation greenness and soil brightness can be useful model inputs that will
improve the estimation of spatial variability in NO, NO2 and NOx concentrations, especially
greenness which correlated highly with these concentrations (r = 0.40–0.50). Advantage of
using ETM+ data for LUR include its global coverage and free access (http://
landsat.gsfc.nasa.gov/). In locations where other spatial covariates are not readily available
such as certain land use data, Landsat ETM+ data might provide effective surrogate
measures. Many of the world’s megacities are in poorer countries with less-developed
geospatial infrastructure, making this method for deriving land cover information potentially
useful in many other regions. Remote sensing-derived data could also help identify other
environments with traffic, such as parking lots. The other advantage is the comparability
between places with regard to land use classification. The model we developed here
provides a relatively easy and feasible way to improve exposure analysis.

We also found that at increasing distances from steeper gradient truck routes, the influence
of the slope gradients decreases suggesting that steeper gradient truck routes exerted higher
NOx emissions and had a positive influence on concentrations. However, the maximum
correlation between truck route slope gradients and NOx concentrations was 0.27, while
statistically significant, a correlation much smaller than we previously identified, i.e., 0.50
(Su et al., 2009). When using slope gradients as variables in the LUR model, we assumed
that all highways with steeper slope gradients have higher emissions (because of the
acceleration effect) but that the transportation of goods and services is roughly equal in each
direction of a highway. Because slope gradient is a proxy for hard acceleration driving
patterns, it may supply a useful approximation for elevated emissions in some study areas.
In LA, the biggest contributor to air pollution is traffic, and NO was found to be highly
concentrated near highways and major roadways, especially near truck routes on which most
of the goods and services vehicles travel. Because of the onshore sea breeze and secondary
formation of NO2 associated with inland air transportation processes, NO2 concentrations
were found to be higher in the northern and eastern parts of the metropolitan area, and lower
in the western areas. Concentrations of NOx (i.e., NO+NO2) were also higher near emission
sources due to the higher proportion of NO compared to NO2 contributing to the NOx
composition (22.37 ppb vs 18.96 ppb for the basin). With the inclusion of highway traffic
within a buffer distance of 11 km, the modeled NO2 concentration surface was higher and at
the same time smoother (Fig. 8b) compared to the model that did not consider the influence
of highway traffic within this distance (Fig. 8c).

Most previous land use regression models (Jerrett et al., 2005; Henderson et al., 2007) have
included population density as a predictor. However, in our modeling process, population
density was not included for all three prediction models because of the high VIFs (VIF>2).
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Our sensitivity analyses demonstrated that when population density was included, the model
prediction power increased only by 0.50%, 1.28% and 0.71%, respectively, for NO, NO2
and NOx; thus, omitting population density from our LUR did not substantially decrease the
predictive power of our models.

This study illustrated that enhanced LUR model selection and data input can produce much
higher prediction powers when modeling traffic-related air pollution in the extraordinarily
complex cityscape of Los Angeles. The models developed here and the substantive insights
gained into the relevance of factors for the modeling process may supply guidance for future
studies in other mega cities. For rapidly industrializing areas with increasing traffic and
relatively sparse land use or traffic data, the remote sensing data we included in our model
promises improvements in exposure assessment. Similarly, depending on the topology of an
area, roadway slope gradients can be derived from readily available DEMs and can either
augment or partially replace ground-level data. The ADDRESS modeling strategy provides
a feasible method to evaluate models across a range of complex urban environments (Jerrett
et al., 2005, 2007). The enhanced exposure modeling strategy may increase our prediction of
human exposure to traffic-related pollution for epidemiologic studies in many urban locales.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The Los Angeles Study Area.
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Fig. 2.
Distance decay curves of correlation between selected spatial covariates and measured air
pollution concentrations (a) for traffic volumes-total vehicle miles traveled, (b) for NO, (c)
for NO2 and (d) for NOx.

Su et al. Page 17

Environ Res. Author manuscript; available in PMC 2013 May 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
The semivariograms of NO and NO2 based on measurements from the 201 monitoring sites.
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Fig. 4.
Tasseled-cap greenness (a) and soil brightness (b).
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Fig. 5.
The distance decay of NO concentrations further away from highway (Al and A2) based on
the 201 monitoring sites in the LA metropolitan area.
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Fig. 6.
The distance decay of NO2 concentrations further away from highway (Al and A2) based on
the 201 monitoring sites in the LA metropolitan area.
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Fig. 7.
Model predictions of natural log-transformed NO, NO2 and NOx (a, b and c) and
corresponding cross-validation results (d, e and f).
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Fig. 8.
Model prediction surfaces of NO (a), NO2 (b, c) and NOx (d) through an ADDRESS
selection process. The difference between 5b and 5c is that 5c represents the modeling result
omitting highway buffer distance 11 km as a predictor.
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Table 3

Prediction coefficients of significant spatial covariates used to predict pollutant concentrations of NO, NO2

and NOx.

Variable Pollutanta

NO NO2 NOx

Intercept −2.64072400 −11.28253000 −0.05903250

TeleAtlas traffic highway and major roads (11000 m) 0.00000003 0.00000001 0.00000002

TeleAtlas traffic all roads (400 m) 0.00000210 0.00000072 0.00000144

Distance to truck routes (m) −0.00003880 −0.00004390 −0.00004500

Major road (100 m) 0.00053750 0.00018990 0.00002710

Local road (1400) 0.00000234

Industrial (1700m) 0.00059240

Industrial (2700 m) 0.00036130 0.00029010

Commercial (1000 m) 0.00261960 0.00328070

Commercial (1200m) 0.00277730

Soil brightness (700 m) 0.01005310

Soil brightness (1700m) 0.00442720

X coordinate (m) 0.00000660 0.00000515 0.00000572

Y coordinate (m) 0.00000316

Open (100 m) −0.15426250

a
NO, NO2 and NOx are natural log transformed.
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