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Abstract: Pump-probe microscopy is an imaging technique that delivers 
molecular contrast of pigmented samples. Here, we introduce pump-probe 
nonlinear phase dispersion spectroscopy (PP-NLDS), a method that 
leverages pump-probe microscopy and spectral-domain interferometry to 
ascertain information from dispersive and resonant nonlinear effects. PP-
NLDS extends the information content to four dimensions (phase, 
amplitude, wavelength, and pump-probe time-delay) that yield unique 
insight into a wider range of nonlinear interactions compared to 
conventional methods. This results in the ability to provide highly specific 
molecular contrast of pigmented and non-pigmented samples. A theoretical 
framework is described, and experimental results and simulations illustrate 
the potential of this method. Implications for biomedical imaging are 
discussed. 
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1. Introduction 

Recently a great deal of research has been focused on utilizing nonlinear optical interactions 
to provide molecular contrast in microscopy. For example, pump-probe microscopy measures 
the transient, excited state dynamic properties of pigmented samples resulting from 
interactions such as excited state absorption, ground state depletion, and stimulated emission; 
consequently the acquired signals exhibit unique structures that enable differentiation of 
many molecular species. This method has had a significant impact on both biomedical 
applications [1,2], particularly quantitative melanoma detection [3,4], and art conservation 
[5]. On the other hand, various techniques have been developed to provide contrast from non-
pigmented samples by using nonlinear phase changes (e.g., self/cross phase modulation), 
which provide greater detail of a sample’s morphology [6–9], but for the most part, lack 
molecular specificity. One exception is a modified pump-probe system that uses polarization 
effects to determine the diffusive motions of molecules based on the non-instantaneous 
components of the optical Kerr effect (i.e., nuclear response) [10]. 

Most nonlinear microscopy methods, however, acquire signals in the time domain and 
ignore the rich information content available from wavelength-dependent phenomena. In 
addition, few of these methods are able to analyze the complex form of optical fields, which 
can provide a better understanding of the different types of interactions that occur in a sample 
by separating the real and imaginary (dispersive and resonant, respectively) contributions. 
Interferometric methods, on the other hand, are well suited for both of these tasks. Nonlinear 
interferometric vibrational imaging (NIVI), for example, resolves the complex, wavelength-
dependent field of an anti-Stokes wave in order to remove the non-resonant background in 
coherent anti-Stokes Raman scattering (CARS), and to allow linear estimation of the third 
order optical susceptibility, χ(3)(Ω), where Ω is the vibrational frequency [11,12]. Wilson et 
al. also proposed an interferometric method that utilizes a synthetic temporal aperture to 
ascertain information regarding impulsive stimulated Raman scattering by looking at the 
temporal phase [13] or the spectral phase of chirped pulses [14]. Pump-probe optical 
coherence tomography (PP-OCT) schemes have also been employed [15,16], however no 
attempts have been made to resolve the spectral information or the complex field from 
PPOCT signals. 
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Recently, a method named nonlinear phase dispersion spectroscopy (NLDS), an extension 
of spectroscopic OCT [17,18] and spectral-domain phase microscopy [19], has demonstrated 
the ability to independently assess the real and imaginary parts of the linear refractive index 
(RI), thus separating the scattering and absorption coefficients [20], and providing a more 
sensitive measure of absorption in biological samples [21]. In this work, NLDS is extended to 
assess a sample’s nonlinear, real and imaginary, wavelength-dependent optical response to a 
pump beam (hereafter termed PP-NLDS). The method achieves this by adding a reference 
field to a conventional pump-probe setup at the same wavelength as the probe beam and 
leveraging the capabilities of interferometric detection in the spectral-domain. Different from 
PPOCT and the previous NLDS approach, both the probe and reference fields are sent 
through the sample, which isolates the desired nonlinear effects and provides a highly stable 
configuration. It is also worth noting that the nonlinear effects we seek to measure are very 
demanding on the experimental setup since the effects can be extremely small—for that 
reason, comparable interferometric schemes, such as the ones previously mentioned [11–14], 
have required the use of amplified pulses. With the approach proposed here, however, this is 
not necessary. As we will show, PP-NLDS uses the wavelength information to remove much 
of the undesired noise, particularly from the phase measurements. A theoretical framework is 
provided, and experimental results and simulations show that this method is indeed capable of 
measuring nonlinear intensity changes, similar to conventional pump-probe methods, as well 
as phase changes resulting from the instantaneous and non-instantaneous components of the 
optical Kerr effect (OKE). 

2. Experimental system and methods 

The experimental system, shown in Fig. 1, consists of a pump-probe setup combined with a 
Michelson interferometer in the probe arm, similar to that described in [13]. Specifically, the 
output of a mode-locked Ti:Sapphire laser (Tsunami, Spectra Physics, 80 MHz), with a 
centered wavelength of 808 nm, is split into two beams: The first beam pumps an optical 
parametric oscillator (Mira OPO, Coherent) that is tuned to 720 nm and serves as the pump 
beam. These wavelengths are chosen since they are routinely used for biological imaging with 
pump-probe microscopy [1–4]. The second beam from the Ti:Sapph laser is further split into 
two using a Michelson interferometer to provide a probe field and a reference field, separated 
by a constant time T = 1.25 mm/c = 4.16 ps, where c is the speed of light in vacuum. The 
three beams are combined using a dichroic mirror and are sent collinearly to a microscope 
objective (10X, 0.25 numerical aperture), which focuses the light onto the sample. Then, light 
is collimated, filtered to remove the pump beam, coupled into a single mode fiber (SMF), and 
sent to a spectrometer (HR4000, Ocean Optics) for detection. Note that while the pump beam 
does not interfere with the reference field and it is spectrally resolved on the spectrometer, it 
must be filtered out to prevent potential nonlinear interactions in the SMF. Further, the 
reference must precede the pump, otherwise the reference field would experience changes 
from long-lived exited states induced on the sample by the pump. 

In conventional pump-probe experiments, the pump beam is typically modulated (turned 
on and off) at relatively high frequencies (e.g., 2 MHz) to enable detection of intensity 
changes resulting from nonlinear interactions using a lock-in-amplifier (LIA). For the present 
work, however, no modulation is introduced on the pump beam since a LIA is not employed. 
Instead, the pump is in the ‘on’ position when it arrives at the sample at the same time or 
before the probe (τ ≥ 0), and ‘off’ when the pump arrives after the probe (τ < -τpr, where τpr is 
the duration of the probe beam), which ensures that the observed behavior is not a result of 
thermal effects. This is achieved by introducing a cover glass onto the pump’s path, which 
produces a delay of 700 fs. The ‘on’/’off’ time delay is fixed at τ ~0 fs for the experimental 
results discussed in section 4. Both pulses have a duration (full width at half maximum, 
FWHM) of 140 fs, and are well described by a hyperbolic secant function. 
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For this proof-of-principle study, four experimental samples are considered: carbon 
disulfide (CS2), pure water, 30 mM rhodamine 6G (R6G) in methanol, and pure methanol, 
each placed in separate glass cuvettes. Water and CS2 are chosen because their nonlinear 
properties have been well studied and can be modeled using a classical approach that allows 
validation of the method (see section 3). In addition, water is a relevant target for biomedical 
applications. Methanol and R6G are chosen to directly compare the effects of two-photon 
absorption, since R6G has a large cross section for this type of interaction. 

 

Fig. 1. The PP-NLDS system combines a pump-probe setup with a Michelson interferometer. 
Dotted line in inset depicts the phase dynamics of the sample induced by the pump. SP: 
spectrometer, SMF: single mode fiber, T: time delay between reference and probe beams, τ: 
time delay between pump and probe beams. 

3. Theory 

To understand how PP-NLDS measures wavelength-dependent intensity and phase changes 
from nonlinear interactions, consider a probe field that passes through a medium at the same 
time or after it has interacted with a pump beam (i.e., pump is ‘on’ with an arbitrary time-
delay τ ≥ 0), 

 ( ( , ) 2 / )
0( , ) ( ) NL ri n z ci T

prE E e e ω τ ωωω τ ω − ⋅−= ⋅ ⋅    (1) 

where 0E  is the complex reference field, zr is the Rayleigh range of the focused beam, and 

NLn denotes a complex nonlinear RI resulting from any nonlinear interaction (including 

second or third order). Note that NLn  depends on the wavelength of light, 2 /cλ π ω= , as 

well as on the time-delay between the pump and probe, τ. Further, this parameter may be 
expressed in terms of its real and imaginary parts, ( , ) ( , ) ( , )NL NL NLn n ikω τ ω τ ω τ= −  . The 

second term of Eq. (1) describes the time-delay between the probe and reference fields, while 
the third term contains all the information regarding the nonlinear interactions in the medium. 
Hence, when the pump is ‘off,’ the probe field is described by the first two terms of Eq. (1). 
In addition, all linear effects (attenuation and RI changes) are inherently imbedded in 0E , 

since the reference field follows the same path through the sample as the probe. By defining 
( , ) ( , ) 2 /NL rn z cω τ ω τ ωΦ = − ⋅  and ( , ) ( , ) 2 /NL rK k z cω τ ω τ ω= ⋅  , the probe field may be 

written as, 

 ( , ) ( ( , ))
0( , ) ( ) K i T

prE E e eω τ ω ω τω τ ω − − −Φ= ⋅ ⋅   (2) 

and the signal detected by the spectrometer may be expressed as, 

 

2

0

2 2 22 ( , ) ( , )
0 0 0

( , ) ( ) ( , )

( ) ( ) 2 ( ) cos( ( , ))

pr

K K
r

I E E

E E e E e Tω τ ω τ

ω τ ω ω τ

ω ω ω ω ϕ ω τ− −

= +

= + ⋅ + ⋅ ⋅ + − Φ

 

  
 (3) 
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Here, we have introduced a random variable, ϕr, to account for shot-to-shot phase variations 
arising from instabilities in the interferometer. The effect of ϕr will be discussed in more 
detail below. 

The inverse Fourier transform of Eq. (3) will produce three terms, one centered at t = 0 
(DC term) and two others at t =  ± T. If only one of the two non-DC terms is considered, then 
the signal (in the spectral-domain) may be described as, 

 
2 ( ( , ))( , )

0( , ) ( ) ri TKI E e e ω ϕ ω τω τω τ ω − + −Φ−= ⋅ ⋅   (4) 

Similarly, when the pump is ‘off,’ the signal is described as 

 
2 ( )

0( ) ( ) ri T
offI E e ω ϕω ω − += ⋅   (5) 

Therefore, the nonlinear amplitude change—described by ( ),K ω τ , which gives the 

imaginary part of ñNL—may be directly assessed using Eqs. (4) and (5), 

 
( , )

( , ) ln
( )off

I
K

I

ω τ
ω τ

ω

 
 = −
 
 



  (6) 

Pump-probe methods, however, measure the probe’s transmission change due to nonlinear 
effects, thus we also define the fractional transmission change as, 

 

2 2 2 2

0 2 ( , )
2 2

0

( , ) ( ) ( , ) ( )
1

( ) ( )

pr off K

off

E E I I
e

E I

ω τ
ω τ ω ω τ ω

ω ω
−

− −ΔΓ ≡ = = −
Γ

   

 
 (7) 

For small K, Eq. (7) reduces to −2 ( , )K ω τ . 

Isolating the nonlinear phase changes, Φ(ω,τ), which describe the real part of the 
nonlinear RI, is more challenging due to the random phase term, ϕr. In the linear regime, this 
term is eliminated by unwrapping the phase and subtracting a straight line, which isolates the 
wavelength-dependent (dispersive) terms of the linear RI [20]. However Φ(ω,τ) may contain 
linear components, thus this approach would only assess second and higher order terms of 
Φ(ω,τ) with respect to ω. Here, a different approach is taken to avoid this problem, where the 
random phase term is eliminated by subtracting the average phase as a function of wavelength 
from both the ‘on’ and ‘off’ signals. This process yields Eq. (8) 

 ( ) ( )'( , ) ( , ) ( ) ( , ) ( ) ( )off offI I I Iω τ ω τ τ ω τ τ ωΦ ≡ Φ − Φ = ∠ − ∠ − ∠ − ∠     (8) 

where ∠  denotes the phase angle and the bar denotes the average over ω. The end parameter, 
Φ’(ω,τ), retains the spectral shape of Φ(ω,τ), including linear components, and significantly 
reduces the noise on the measured signal. Experimentally, the phase deviation (noise) per 
wavelength on Φ’(ω,τ) is two orders of magnitude lower than Φ(ω,τ), due to the elimination 
of ϕr (see section 4). This enables experimental evaluation of the small wavelength-dependent 
phase changes resulting from nonlinear interactions that are typically obscured by noise. 

Now we describe how Φ(ω,τ) and K(ω,τ) are modeled. To achieve this, it is convenient to 
switch from the frequency-domain to the time-domain, where the probe field may now be 
described as, 

 ( ) ( )
0( , ) ( ) t i t

prE t E t T e κ τ φ ττ − + + += − ⋅   (9) 
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where κ and φ denote the time-domain intensity and phase changes, respectively, resulting 
from nonlinear interactions. For non-absorbing samples, the phase changes may be described 
using a phenomenological model of the OKE dynamics [22], 

 1( ) ( ) ( ) ( )pu m
m

t c I t t r tφ δ = ⋅ ⊗ +  
  (10) 

Here, the first term describes the system’s response, where c1 is a proportionality constant, Ipu 
is the pump intensity, and ⊗ denotes a convolution. The terms in brackets represent the 
sample’s OKE response: the delta function describes the instantaneous electronic response 
and the second term describes the dynamic nuclear response. For the latter, typically three 
terms (m = 3) are used, which describe (1) intermolecular interactions, (2) librational motion, 
and (3) free rotation [22]. These three terms usually take the form of single or double 
exponentials with a buildup response time. For the exact form used in this work for CS2 and 
water, we refer the readers to refs [23] and [24], respectively [the signals are shown 
graphically in Fig. 2(d)]. Further, CS2 and water do not exhibit any time-domain intensity 
changes, since they are non-absorbing, thus κ = 0. For samples that do exhibit intensity 
changes in the time-domain, more complete models that take quantum mechanics into 
account must be employed [25]. However, the R6G solution is subject to both resonant and 
dispersive effects (which have not been derived from first principles [22,23]), thus no 
attempts are made in this work to model the cumulative effects. 

To gain some insight into the expected forms of Φ’(ω,τ) and K(ω,τ), consider a non-
absorbing sample with a quadratic temporal phase change, given by φ(t) = - "φ ⋅(t + τ)2, 

which yields a simple analytical solution (see appendix). This form of the temporal phase 
provides a good approximation for Eq. (10) at pump-probe time-delays near the temporal 
phase maximum, at t = 50 fs and 165 fs for water and CS2, respectively, as well as t = 0 for a 
purely electronic response. The analytical solution (detailed in the appendix) shows that the 
phase changes in the spectral-domain exhibit a quadratic dependence with respect to ω given 
by Φ’(ω,τ)∝ "φ ⋅(ω - ω0)

2, where ω0 is the center frequency. Thus the concavity (up or down) 

of the spectral phase depends on the sign of φ ''  or, more generally, on the second derivative 

of φ(t). In comparison, the transmission changes are given by K(ω,τ)∝τφ '' ⋅(ω - ω0), which 
has a linear dependence with respect to ω that deviates about the center frequency (i.e., no 
transmission change at ω0). An intuitive way of viewing the transmission changes is that even 
though no intensity changes take place in the time-domain, the Fourier transform of the time-
varying phase produces real and imaginary terms, where the imaginary term will manifest 
itself as spectral intensity changes. In addition, the spectrum must be an odd function about 
ω0, to ensure that the net effect disappears in the conjugate domain. It is also worth noting 
that the slope of K(ω) at a given time-delay,τ, changes signs when the temporal phase, φ(t), 
reaches a maximum (φ(τ = 0) in this case). 

As a last theoretical note, it is important to understand that the pump induces a time-
dependent polarization change on the medium that precedes the probe field; as a result, the 
causality conditions between the probe field and the induced polarization are no longer 
fulfilled [25,26]. Consequently, the real and imaginary parts of the polarization (and hence 
nonlinear complex refractive index) are, in general, not related via the Kramers-Kroning 
relations. This is significant for the present work because it implies that both measured 
parameters, Φ and K, contain ‘new’ information regarding the nonlinear response of the 
medium. 
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4. Results and discussion 

A representative raw signal (from water and τ = 0) is shown in Fig. 2(a). As described in 
section 3, this signal is Fourier transformed and filtered in the time-domain to isolate the 
interferometric term. This has the added benefit of removing any other signals that may be 
produced from reflections along the beams’ path. Here, a 10th order Butterworth filter is 
used. The signal is then transformed back to the frequency-domain, which yields the complex 
field as described by Eqs. (4) and (5). Figures 2(b) and 2(c) illustrate this process. 

After processing both the ‘on’ and ‘off’ signals, the amplitude and phase changes resulting 
from nonlinear interactions can be ascertained using Eqs. (7) and (8), respectively. To avoid 
high noise levels in the experimental signals, we only consider a spectral region where the 

amplitude of ( )I ω  is above 0.4 (as was done in [20,21]). For the theoretical simulations, the 

fields are first defined in the time-domain and then Fourier transformed to give the fields in 
the frequency-domain [which gives Eq. (1)]. The theoretical results, given by Eqs. (7) and (8), 
can be determined directly from the simulated complex field in the frequency-domain. 
Further, the proportionality constant c1 in Eq. (10) is adjusted to qualitatively match the 
amplitude of the experimental phase changes—we find that values of 0.02 and 0.035 provide 
good agreement for water and CS2, respectively. The modeled OKE responses [Eq. (10)] are 
illustrated in Fig. 2(d). Figures 3-4 show the experimental results of 10 independent 
measurements from water and CS2 along with the theoretical simulated signals. 

 

Fig. 2. Processing method for PP-NLDS. The raw signal measured by the spectrometer (a) is 
Fourier transformed and filtered in the time-domain to isolate the interferometric term (b). The 
signal is then transformed back to the frequency-domain to gain access to the complex form of 
the field (c). (d) Simulated OKE response for water and CS2 [23,24]. 

The experimental results and the theoretical simulations at τ = 0 for Φ’ (solid red curves 
in Figs. 3-4) are in excellent agreement, where both show the same concavity (up or down) 
and slight asymmetry in the parabolic shape for each sample. These results can be understood 
by using the approximation provided in section 3 (and appendix): Specifically, the difference 
in concavity between the two samples results from the fact that the OKE response of CS2 
peaks at a later time compared to water, which causes the second derivatives to have opposite 
signs at τ = 0. These are drastic changes that reflect important features of the OKE response, 
and highlights how Φ’ can readily reveal the diffusive motions of molecules. We also note 
that the average standard deviation of Φ’ per wavelength (spectral phase noise) is ~0.1 mrads. 
In comparison, the spectral phase noise of Φ, which does not take the random phase term (ϕr) 
into account, is ~20 mrads, and thus this parameter significantly obscures the spectral features 
of interest. This result underscores the importance of accounting for the random phase noise 
term using the spectral information [as described by Eq. (8)]. Figure 3(c) shows Φ for CS2, 
where the influence of ϕr is clearly visible. 
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The transmission changes as a function of wavelength also show relatively good 
agreement, though a small discrepancy is observed for the water sample. Nevertheless, the 
important features here are that (1) the spectra are approximately linear, with zero 
transmission change at the center wavelength, in good agreement with the analytical analysis; 
and (2) matching the amplitude of the phase between the experiment and simulation using the 
constant c1 in Eq. (10), also provides good agreement between the amplitude of the 
transmission changes (i.e., both experiment and simulation span a range of ~ ± 1%). The 
discrepancy in the slope of the water transmission spectrum at τ = 0 can be attributed to error 
in the pump-probe time delay. For example, according to our OKE model for water [24], the 
maximum temporal phase change occurs at ~50 fs, at which point, the slope of the 
transmission spectrum will change from positive to negative. Such small pump-probe time-
delay error in the experiment is not unreasonable considering that the cross-correlation of the 
pump and probe, used to find τ = 0, has a FWHM of ~200 fs (shift of +/− 100 fs are within 
experimental error). Figure 4(c) illustrates the theoretical transmission and phase changes 
modeled at a time-delay τ = 75 fs. The simulation displays transmission changes with a 
negative slope and phase changes with negative concavity, in excellent agreement with the 
experimental measurements. 

The transmission data also show that the signal-to-noise ratio (noise is ~1% averaged over 
wavelength) is worse than that of the phase spectrum. This is not surprising because the 
transmission noise cannot be eliminated in the same way as the phase noise, since we are 
generally interested in transmission offsets. In addition, absorption measurements in the linear 
regime using NLDS have shown that the amplitude of the field is two orders of magnitude 
less sensitive compared the phase [21]. To reduce the noise in the transmission signal in the 
nonlinear regime, further development of the experimental setup is needed; for example, 
modulating the pump and using lock-in-detection would significantly reduce the low 
frequency noise of the source, which is likely the main contributing factor here (see section 5: 
conclusion and future work). 

 

Fig. 3. Experiment (a) and numerical simulations at τ = 0 fs (b) for CS2. The experiment and 
simulated signals are in excellent agreement. (c) Spectral phase Φ, which does not account for 
the random phase term, ϕr. Thin dashed lines represent the standard deviation of 10 
measurements. 

 

Fig. 4. Experiment (a) and numerical simulations at τ = 0 fs (b) and τ = 75 fs (c) for water. A 
discrepancy is observed in the transmission signal of water at τ = 0. This can be rectified by 
considering small errors in the setup that may shift τ to different values (shift of +/− 100 fs are 
within experimental error, limited by the cross correlation of the pump and probe pulses ~200 
fs). A simulated signal at τ = 75 fs provides excellent agreement (c). Thin dashed lines 
represent the standard deviation of 10 measurements. 
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To better understand these results, we compare theoretical simulations of the phase and 
transmission changes as a function of wavelength and time-delay between the pump and 
probe, τ, for pure water, CS2 and an instantaneous electronic response [delta term in Eq. (10)]. 
The results are shown in Fig. 5, where in general the phase behavior shows a parabolic shape 
as a function of wavelength, and the transmission changes show a linear dependence. 
Moreover, the concavity (up or down) of the spectral phase corresponds to the sign of the 
second derivative of the temporal OKE response, thus the points of inflection give an 
indication of the time when the spectral phase changes concavity. Similarly, these inflection 
points correspond to when the slope of the spectral-transmission-changes reach a maximum, 
which is in good agreement with spectral shifting methods [8]. The time when the spectral 
transmission changes go to zero (and thus when the transmission slope changes signs) 
resembles the time when the OKE response is at a maximum (i.e., first derivative is zero). It 
is important to note that the instantaneous electronic response, shown in Figs. 5(c) and 5(f), 
produces spectral phase and transmission dynamics that are symmetrical about τ = 0, unlike 
water and CS2, also shown in Fig. 5. The nuclear repose of OKE causes this imbalance. Thus, 
the rich structure of the spectral phase and transmission changes offer a wealth of information 
that provides molecular contrast of non-pigmented samples. 

 

Fig. 5. Simulated nonlinear response of water, CS2 and an instantaneous electronic response 
[delta term in Eq. (10)] as a function of wavelength and time-delay between pump and probe, 
τ. Red dashed lines are located at τ = 0, corresponding to the delay of the 
experimental/simulated results shown in Figs. 3 and 4. 

Lastly, we investigate the effects of two-photon absorption (a resonant interaction) by 
comparing methanol and R6G (in methanol), which contains a large two-photon cross section. 
Figure 6(a) shows that both samples have similar spectral phase dependence, which is not 
unexpected considering that both samples contain methanol. However, the transmission 
spectra [Fig. 6(b)] show important differences, where R6G exhibits a loss in transmission at 
all wavelengths, which captures the effects of two photon absorption. For pure methanol, the 
transmission spectrum deviates about zero, as with the other non-absorbing samples. The loss 
in transmission for R6G is also clearly observed in the in the time-domain [Fig. 6(c)]—this 
illustrate how PP-OCT draws its molecular contrast. 
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Fig. 6. Experimentally measured nonlinear optical response of methanol and R6G. Phase (a) 
and transmission (b) changes as a function of wavelength, and transmission changes in the 
time-domain (c). 

5. Conclusion and future work 

The experimental results presented here demonstrate that PP-NLDS can ascertain a sample’s 
dispersive and resonant (real and imaginary, respectively) nonlinear optical response to a 
pump beam. The theoretical framework for non-resonant samples provides a relatively simple 
explanation of the observed behavior that is in good agreement with the experimental 
measurements. An important feature of this method is its ability to gain access to small 
nonlinear spectral-phase changes, which is only possible when the random phase noise is 
accounted for. The resulting dynamics accentuate important features of the OKE response, 
and offer a wealth of information for molecular contrast. The method is also sensitive to 
resonant effects, and can therefore obtain the same information as conventional pump-probe 
methods, with added information from two other dimensions (wavelength and phase). 

Future work will focus on further developing the system for imaging biological samples. 
Specifically, the pump beam will be placed on a variable time delay stage, which will grant 
experimental access to the fourth dimension, τ, and should help mitigate setup errors. 
Backscattering geometries will also be explored to enable in-vivo applications. Finally, the 
pump beam will be modulated to reduce low frequency noise from the source. This is 
expected to provide better SNR, in addition to potentially enabling assessment of the average 
phase as a function of time-delay (i.e., Φ(ω,τ) instead of Φ’(ω,τ)). 

In conclusion, we expect that the ability to sample four dimensions (phase, amplitude, 
wavelength, and pump-probe time delay) will enable extremely specific and sensitive contrast 
for a wide range of molecules for biomedical imaging. 

Appendix 

In this section we derive an analytical expression for the phase and amplitude, frequency-
dependent changes on an optical field that result from nonlinear interactions with a non-
absorbing sample. First, consider the unperturbed field in the time-domain with a Gaussian 
envelope: 

 
2

0
0 ( ) i tatE t e e ω−= ⋅  (11) 

where a describes the width of the Gaussian pulse and 0ω is the center frequency. In the 

frequency domain the field is described as, 

 

( )

2
0( )

0

2

( )

1
exp / (4 )

2

i tatE e e dt

a
a

ω ωω
∞

− −−

−∞

= ⋅

= ⋅ −Ω



 (12) 

#185319 - $15.00 USD Received 13 Feb 2013; revised 1 Apr 2013; accepted 4 Apr 2013; published 9 Apr 2013
(C) 2013 OSA 22 April 2013 | Vol. 21,  No. 8 | DOI:10.1364/OE.21.009353 | OPTICS EXPRESS  9362



with 0ω ωΩ = −  . When the pump beam interacts with the sample, the pump introduces a 

transient perturbation on the refractive index of the sample via the optical Kerr effect, n = n0 
+ δn. As the probe field propagates through the perturbation, it acquires a time-dependent 
phase modulation, which may be express as a Tyler series, 

 2
0( ) ' '' ...t t tφ φ φ φ= + + +  (13) 

where the primes denote a derivative with respect to time, t (constants are ignored for 
simplicity). Because the method described in this work is insensitive to phase offsets, φ0 can 
be ignored. Further, if we consider the electronic response near time delays when the pump 
and probe are temporally overlapped, then φ’~0 since the response can be well represented by 
a second order function. Higher order terms are assumed to be negligible. The resulting 
temporal phase change experienced by the probe field is described by, 

 ( )2
( ) ''t tφ φ τ= − ⋅ +  (14) 

where φ” is a positive constant that depends on the sample. Note that we have explicitly 
accounted for the pump-probe time delay, τ. This form of the temporal phase provides a good 
approximation for Eq. (10) at pump-probe time-delays near the temporal phase maximum at t 
= 50 fs and 165 fs for water and CS2, respectively, as well as t = 0 for a purely electronic 
response. Following Eq. (9), the field in the Fourier domain is now given by, 

 ( )22
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To separate the real and imaginary parts, we multiply the terms in the exponential by the 
complex conjugate of the denominator, which yields: 
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Therefore, Eq. (16) can be expressed as, 
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where  0C  is a complex constant. Equation (18) gives the familiar form of a spectral shift, as 
previously described in Ref [8], along with a quadratic phase change with respect to 
frequency. Equation (18) can be further simplified to yield a solution of the resulting probe 
field that fits the form of Eq. (2). In other words, we want to write the resulting field as the 
original unperturbed field multiplied by an absorptive and dispersive term. By expanding the 

exponentials and only retaining the largest terms (with ( )22 / 4 '' ''φ τ φ τΩ >> Ω >> , since 

"φ and τ are small constants) we finally obtain, 

 ( )2
'' / 2'' /

0( ) i aa
prE CE e e φφ τ − ⋅ ΩΩΩ ≈ ⋅ ⋅   (19) 

Here C  is a different complex constant that accounts for all the frequency-independent terms. 
The analytical solution shows a quadratic phase dependence with respect to frequency, and an 
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exponential response that varies linearly with frequency. Note that the slope of the spectral 
transmission also depends on τ, which means that when the pump beam is temporally 
overlapped with the probe (τ = 0) the amplitude is unmodulated. This is in agreement with the 
experiments and numerical simulations shown in Figs. 3-5. This analytical treatment gives an 
accurate description of the frequency-dependent phase and amplitude changes observed for 
non-absorbing samples. 
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