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ABSTRACT High-throughput genetic interaction screens have enabled functional genomics on a network
scale. Groups of cofunctional genes commonly exhibit similar interaction patterns across a large network,
leading to novel functional inferences for a minority of previously uncharacterized genes within a group.
However, such analyses are often unsuited to cases with a few relevant gene variants or sparse annotation.
Here we describe an alternative analysis of cell growth signaling using a computational strategy that
integrates patterns of pleiotropy and epistasis to infer how gene knockdowns enhance or suppress the
effects of other knockdowns. We analyzed the interaction network for RNAi knockdowns of a set of 93
incompletely annotated genes in a Drosophila melanogaster model of cellular signaling. We inferred novel
functional relationships between genes by modeling genetic interactions in terms of knockdown-to-knockdown
influences. The method simultaneously analyzes the effects of partially pleiotropic genes on multiple quan-
titative phenotypes to infer a consistent model of each genetic interaction. From these models we proposed
novel candidate Ras inhibitors and their Ras signaling interaction partners, and each of these hypotheses
can be inferred independent of network-wide patterns. At the same time, the network-scale interaction
patterns consistently mapped pathway organization. The analysis therefore assigns functional relevance to
individual genetic interactions while also revealing global genetic architecture.
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The systematic study of genetic interactions has proven a powerful
means to map genetic networks (Boone et al. 2007). Genome-scale
interaction analysis has provided a global view of gene function in
yeast (Costanzo et al. 2010), and studies focused on specific processes
have mapped large-scale networks in yeast (Collins et al. 2007; Drees
et al. 2005; Segre et al. 2005; St Onge et al. 2007), worm (Byrne et al.
2007; Lehner et al. 2006), and fly (Horn et al. 2011; Yamamoto et al.
2009). Analyses of statistical epistasis, the population-level manifesta-
tion of genetic interaction, have identified important effects in mouse
(Li and Churchill 2010; Reifsnyder et al. 2000; Shao et al. 2008) and
human (McKinney and Pajewski 2011; Ritchie 2011) genetics. These

studies indicate that genetic interactions reveal underlying structure in
biological networks and map complex genetic architecture. Advances
in study design and the characterization of genetic populations have
been accompanied by parallel progress in quantitative phenotyping.
Multidimensional phenotypic characterization is becoming increas-
ingly common, often including multiple physiological traits coupled
with thousands of molecular measures such as protein and transcript
abundances (Andreux et al. 2012; Chen et al. 2012). Such research
ultimately aims to provide a genetically precise and phenotypically
predictive approach to medicine. Success of this approach is contin-
gent on the development of analytical methods to extract quantitative
models from genetic interactions across multiple phenotypes. These
methods will increase the power to formulate precise biological hy-
potheses to potentially address the complex genetics that underlie
human health and disease.

To date, studies have primarily used statistical concordance of
interaction patterns across multiple genes to infer the role of
previously uncharacterized genes. This strategy is often referred to
as guilt-by-association (GBA). Advanced GBA approaches, such as
clustering genes based on correlated interaction spectra across
multiple interaction partners (Carter et al. 2009; Collins et al. 2007;
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Costanzo et al. 2010; Drees et al. 2005; Segre et al. 2005), have suc-
cessfully mapped genetic architecture on a large scale. In these net-
works genes often form highly connected communities, or gene
modules, that are enriched in one or more functional annotations.
The principle of GBA dictates that a minority of uncharacterized
genes within a module can be assigned the dominant function of
the module.

While successful on a large scale, GBA-based methods have
multiple limitations. First, they require large data sets to generate
adequate statistical power to resolve modules, and can therefore be
limited in populations with a small number of relevant mutations such
as studies of specific developmental or signaling processes, drivers of
cancer evolution, or interacting candidates in genome-wide associa-
tions. Second, GBA relies on the availability of functional annotations
for the vast majority of interacting genes. Third, GBA approaches
often generate implicit predictions of gene function without providing
explicit predictions of the effects of a mutation or combination of
mutations, thereby limiting the power to generate directly testable
hypotheses. Fourth, large-scale GBA approaches rarely take advantage
of the complementary information in multiple phenotypes. In cases
when multiple phenotypes are considered, the analysis is usually based
on coincidence of interactions derived independently for each
phenotype (Horn et al. 2011; Michaut and Bader 2012). Finally, it
has been proposed that GBA results may be driven by a small number
of critical interactions and therefore network associations are not
generally reliable (Gillis and Pavlidis 2012).

Here we use an approach based on the combined analysis of
pleiotropy and epistasis to infer the genetic architecture of growth-
related signaling in Drosophila melanogaster. This strategy infers and
interprets genetic interaction data in terms of quantitative variant-to-
variant and variant-to-phenotype influences, rather than non-directional
epistasis. This results in a network model that maps how each spe-
cific variant affects each other and, in turn, multiple related pheno-
types. This method is applicable to a range of genetic diversity from
a few genes to genome-scale screens. It integrates information from
multiple phenotype measures to generate specific hypotheses for
genetic interactions. We recently demonstrated the utility of this method
in a population of yeast strains by mapping relationships of the yeast
mating pathway (Carter et al. 2012). Here, we extend the method to
a large set of double knockdowns of genes involved in signal trans-
duction on a common genetic background (Horn et al. 2011). This
represents a much larger network of potential interacting genes and
involves multiple signaling pathways. The analysis exploits the subtle
differences between the regulation of cell proliferation and nuclear
size across 93 mutations. We obtain an interaction network of knock-
down-to-knockdown influences that identifies novel suppressors and
enhancers of Ras signaling, demonstrating the method’s applicability
to complex networks and large-scale genetic screens of multiple phe-
notypes. At a local level, the network provides specific hypotheses of
how each gene knockdown modifies the activity of other gene knock-
downs in the same pathway and across antagonistic pathways, nar-
rowing the possible molecular mechanisms that underlie the observed
genetic interactions.

METHODS

Data source
Data were obtained from a study of double-stranded RNA (dsRNA)
gene knockdowns (Horn et al. 2011) that is briefly summarized as
follows. Schneider S2 cells were exposed to two independent dsRNA
molecules to knock down 93 genes in all 4278 pair-wise combinations.

Genes were chosen based on prior annotation for mitogen-activated
protein kinase (MAPK) signaling or prior annotation as a protein or
lipid phosphatase expressed in S2 cells. High-throughput fluorescent
imaging and automated image analysis were used to quantify three
non-redundant features: total cell number, mean nuclear area per cell,
and nuclear fluorescence intensity. Data for each knockdown pair
were averaged and log-transformed, and each phenotype distribution
was mean-centered and normalized to a standard deviation of 1. At
a population level, each phenotype resembled the combination of
a normal distribution and a long tail below the mean that was pop-
ulated by lines with knockdowns of a few especially strong perturba-
tions such as Pvr, pnt, and drk (Table 1 and see Supporting
Information, Figure S1).

Interaction model
Our data analysis technique is described at length in a previous
publication (Carter et al. 2012) and is summarized here. We first
perform singular value decomposition (SVD) on the phenotype ma-
trix to maximize orthogonality. In this case, we analyzed the first two
left singular vectors, referred to hereafter as eigentraits, since the third
singular value represented less than 2% of the global variance and was
therefore unlikely to encode significant biology (Results). With these
eigentraits denoted U1

i and U2
i for sample i, we performed linear

regression for each of the 93 perturbed genes in isolation to identify
strong-effect knockdowns to be treated as additive covariates in sub-
sequent pair-wise regressions. For each locus we considered the model:

U
i
j ¼ b

0
j þ xib

j þ e
i
j (1)

n Table 1 Genes with significant main effects used as covariates
for all pair-wise scans, with prior pathway annotation (FlyBase
2004)

Knockdown bET1 bET2 Pathway

alph 0.0093 Ras
CG3573 0.0141 Ras
Cka 20.0126 Ras
dome 20.0205 Ras
drk 20.0373 0.0092 Ras
Dsor1 20.0084 0.0209 Ras
Gap1 0.0152 20.0099 Ras inhibitor
lic 20.0105 JNK
mop 20.0089 Ras
msk 20.0095
mtm 0.0086 Ras inhibitor
mts 20.0255 0.0215 Ras
pnt 20.0382 20.0108 Ras
PpV 20.0101 Ras
Pten 0.0110
Ptp69D 0.0109 Ras inhibitor
PTP-ER 0.0087 Ras inhibitor
puc 20.0153 0.0133 Ras
Pvr 20.0600 20.0189 Ras
pyd 0.0091 JNK
Ras85D 20.0101 0.0108 Ras
Rho1 0.0139 0.0741
rl 20.0106 0.0106 Ras
Sos 20.0104 0.0108 Ras
Src42A 20.0163 JNK
stg 20.0123 0.0220 Ras

bET1, main effect on eigentrait 1; bET2, main effect on eigentrait 2.
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The index i is from 1 to NS; and j is 1 or 2. The variable xi is the
probability of the gene variant at the locus in the strain i, bj is the
effect on the eigentrait j, and eji is the residual error. For our data all
xi were binary, corresponding to the presence (1) or absence (0) of
dsRNA that target the locus. We define strong-effect knockdowns as
those with a significant effect (see below) and condition each sub-
sequent knockdown-pair scan by including strong-effect knock-
downs as covariates for the associated phenotype. We next model
every possible knockdown pair with main effects and an interaction
term. For two knockdowns labeled 1 and 2 we have:

U
i
j ¼ b j

0
þ
X
c

xc;ibc
j

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Covariates

þ x1ib1
j þ x2ib2

j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Main Effects

þ x1ix2ib12
j|fflfflfflffl{zfflfflfflffl}

Interaction

þe
i
j (2)

The variables are defined as in Equation 1 with the additional
interaction coefficient bj

12 and sum over strong-effect knockdowns as
covariates (excluding knockdowns 1 and 2). This step is conceptually
similar to the original analysis of the data (Horn et al. 2011), which
identified pair-wise interactions for each phenotype independently.

To derive a model in terms of knockdown-to-knockdown
influences we consider how each knockdown affects the activity of
each other knockdown, first in terms of modified knockdown activity
and then in terms of the knockdown-to-knockdown influences that
account for the modified activity level. We first recast the NP inter-
action coefficients b

j
12 in terms of modified knockdown activity

parameters d1 and d2 that are independent of the eigentrait j. The
activity variables are computed by matrix inversion:

�
d1
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�
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b1
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2
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1 b2
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�21

�
�
b1
12

b2
12

�
(3)

The variables d1 and d2 are an exact reparametrization of the in-
teraction coefficients. We next compute the directional influence
coefficients that generate the modified activities. These knockdown-
to-knockdown influences, m12 and m21, are:

m12 ¼ d1
1þ d2

; m21 ¼ d2
1þ d1

(4)

By substituting the solution of Equation 3 into Equation 4 we obtain
the influence coefficients mij as a function of the regression param-
eters. This defines a model in terms of knockdown-to-knockdown
influence coefficients (mij) and main-effect, knockdown-to-eigentrait
coefficients (bj

i). Without loss of information, we multiply the eigentrait
coefficient matrix by the other center and left singular value matrices
to recompose knockdown-to-phenotype coefficients for the original
phenotypes.

Calculation of significance
We assess the significance of the influence coefficients, mij, and
knockdown-to-phenotype coefficients using standard error analysis
methods on the regression parameters (Bevington 1969). For example,
the variance of m12 is estimated by differentiating with respect to all
model parameters:
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The indices i and k run over main effect and interaction coefficients,
and j and l run from 1 to NP . The first sum is over individual

parameters and the second double sum is the cross terms. Variances
and covariances are estimated from the least-squares regression us-
ing standard methods (Bevington 1969).

After computing models for all knockdown pairs, we obtained
two knockdown-to-knockdown influence coefficients between each
knockdown pair (one in each direction) and knockdown-to-phenotype
coefficients. To determine significance we used effect size divided by
estimated standard error as our test statistic because it could be
computed for both regression coefficients and variables computed
from them (e.g., mij). We selected the coefficient of median standard
effect size to represent overall knockdown-to-phenotype coefficients.
We first determined significance for single-locus scans. We performed
2000 permutations of the genotype data and fit an extreme value
distribution (EVD) for the maximum test statistic from each permu-
tation. This accounted for multiple tests and empirically estimated the
likelihood of chance association. We determined that a test statistic of
5.18 or greater corresponds to P , 0.001. We repeated the procedure
for pair-wise scans, permuting the genotypes of the two knockdowns
being tested in tandem. This procedure retained the structure between
all other knockdowns (including covariates) and all three phenotypes,
and thereby randomized only the marginal effects after conditioning
on covariates. We collected test statistics for 700 permutations to
obtain null distributions for knockdown-to-phenotype and knock-
down-to-knockdown influence coefficients. We computed an empir-
ical P value for each coefficient. The family wise error rate was
controlled by adjusting P values using a step-down procedure (Holm
1979). Step-down EVDs were not used because the empirical distri-
butions had slightly greater support at higher values than fitted EVDs
and thus the EVDs would artificially inflate significance. A signifi-
cance cutoff of adjusted P , 0.01 was used in our network (Figure
3) and all estimated P values are reported in Table S1.

RESULTS
The assayed phenotypes shared many genetic components and
therefore exhibited substantial pleiotropy. All three phenotypes were
significantly correlated, with Pearson coefficients as follows: cell
number and nuclear area, 0.65; cell number and nuclear intensity,
0.90; and nuclear area and nuclear intensity, 0.85. However, there was
variation across the tested knockdowns. For example, the Rho1 defect
in cytokinesis caused decreased cell numbers and increased nuclear
area, whereas Ras signaling knockdowns such as drk decreased both
numbers and area (Horn et al. 2011). To maximize complementarity
and dimensionally reduce the phenotype data, we performed singular
value decomposition (SVD) to define two composite eigentraits, each
an orthogonal combination of the phenotypes (Methods). The eigen-
traits were orthogonal, normalized combinations of the phenotypes
(Figure 1) and represented 87%, 11.5%, and 1.5% of the variance in
the data. Since the bulk of the variance was present in the first two
eigentraits we discarded the third. We refer to these composite phe-
notypes as eigentrait 1 (ET1) and eigentrait 2 (ET2). ET1 is a common
signal to all three phenotypes, whereas ET2 primarily differentiates
nuclear area from cell number and nuclear intensity. Thus, the infer-
ences made for genetic interactions will be mostly based on combining
an overall common signal with a signal that separates nuclear area
from the other two, highly correlated phenotypes.

For each eigentrait we performed linear regression for each
knockdown individually, similar to the method in the original study
(Horn et al. 2011). This identified significant knockdowns to be used
as covariates in pair-wise scans (Methods). We identified 21 knock-
downs as covariates for ET1 and 17 knockdowns for ET2 (Table 1,
Figure S1 and Figure S2). We next computed a pair-wise model for
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each of the 4278 knockdown pairs to obtain quantitative interactions
between knockdowns (Table S1). We reparametrized the two interac-
tion coefficients from pair-wise linear regression on the eigentraits
(Methods, Equation 2) in terms of two knockdown-to-knockdown
influences between perturbations (Methods, Equation 4) (Carter
et al. 2012). To determine the allelic effects on the original cellular
phenotypes, we recomposed the phenotype SVD for each pair-wise
model and averaged all models to obtain knockdown-to-phenotype
influence coefficients (Methods). Errors were estimated for all coeffi-
cients using standard least-squares regression and error propagation
formulas for quantities computed from regression coefficients (Meth-
ods, Equation 5).

A representative interaction is illustrated in Figure 2. The drk and
Rho1 knockdowns have opposite effects on the first eigentrait (Figure
2A) and a negative regression interaction coefficient (Figure 2B). For
the second eigentrait, both knockdowns have positive effects and the
regression interaction coefficient is negative and larger than that for
ET1. Reparametrizing these results in terms of our genetic influence
coefficients inferred a significant negative influence from drk to Rho1
(Figure 2C); that is, the drk knockdown suppressed the effects of the
Rho1 knockdown. The complementary information in the two eigen-
traits ruled out alternative hypotheses such as a Rho1 enhancement of
the drk effect that would have been consistent with ET1 but not ET2.
Finally, we recomposed the eigentraits into the original phenotypes
(Figure 2D), an operation that does not modify the inferred genetic
interaction. This analysis recapitulates the interpretation in Horn et al.
(2011) with the advantage of a mathematically defined procedure that
has been systematically applied to all pairs of knockdowns in the data
set. In total, we obtained a network of 290 significant knockdown-to-
knockdown edges and 146 significant knockdown-to-phenotype edges.
Interactions for 61 genes with existing or novel (see below) functional
annotations are shown in Figure 3.

Sixty-three knockdowns had a significant main effect (P , 0.01;
Methods) on at least one of the three phenotypes, and 29 had signif-

icant influences on all three phenotypes (Figure 3). Knockdowns of
the 18 genes previously annotated for Ras signaling had 48 negative
effects, compared to only one positive effect [CG3573 (Ocrl) knock-
down on nuclear area]. In contrast, knockdowns of the 29 genes
previously annotated for JNK cascade and Ras inhibition had 48
positive main effects, compared to 13 negative effects. These findings
are consistent with Ras signaling activation of cell proliferation and
growth and the generally antagonistic relationship between Ras and
JNK signaling. For each knockdown, main effects were generally con-
sistent across all partners in each pair-wise scan; no specific combi-
nation of knockdowns revealed a uniquely significant effect for one of
the genes.

Our total of 290 significant knockdown-to-knockdown interac-
tions out of 8556 possible (two for each pair) was numerically
comparable to the 531 significant interactions out of 12,834 possible
(three phenotypes for each pair) obtained with the same threshold in
the previous study (Horn et al. 2011). Gene pairs with at least one
significant interaction in both analyses strongly overlapped, as 55%
(126 of 229 pairs) of our significant pairs were also significant in at
least one phenotype in Horn, et al. (8 · 10288, Fisher’s exact test).
Pairs that did not overlap nevertheless tended to have low q values in
Horn, et al. For each of our pairs we identified the lowest q value
across all three phenotypes, and found a median of 0.006 as compared
to a global median lowest q value of 0.38. This demonstrates that our
analysis generally agreed with more standard measures of epistasis
and, in some cases, improved significance by reformulation in terms
of directional model parameters.

Global genetic interaction patterns revealed large-scale gene
function and module/pathway organization (Figure 3 and Figure
S3). Knockdown-to-knockdown influences between knockdowns of
documented Ras signaling genes were fairly common (63% of possible
interactions were significant) and always negative. We interpret this as
genes with redundant signaling functions. Although it is suggestive
that downstream knockdowns should suppress upstream knockdowns
(Avery and Wasserman 1992; Carter et al. 2012), the majority of pair-
wise knockdowns of known Ras genes exhibited significant negative
interactions in both directions. In cases of unidirectional suppression,
some known downstream knockdowns (e.g., pnt) tended to suppress
upstream proteins (e.g., Ras85D and Sos) but others (e.g., rl) were
suppression targets more often than not. Overall, there is a clear
pattern of negative interactions between within-pathway genes. In
contrast, Ras inhibitor knockdowns tended to enhance the effect of
knockdowns of Ras signaling genes. This is consistent with standard
interpretations of genetic interactions in signaling. For example, PTP-
ER is named for its mutant alleles that enhance Ras signaling in eye
development (Karim and Rubin 1999). Furthermore, knockdowns of
genes documented or predicted to be involved in JNK signaling

Figure 1 Eigentrait compositions in terms of measured phenotypes.
Eigentrait 1 (ET1) is the signal common to all three phenotypes,
whereas eigentrait 2 (ET2) encodes the differences.

Figure 2 Genetic interactions between drk and
Rho1 knockdowns. (A) Inferred main and interac-
tion effects of drk and Rho1 mutations on eig-
entraits ET1 and ET2. (B) Significant main and
interaction effects shown in terms of positive
(green) and negative (red) influences. Edge width
represents interaction strength. (C) Interaction
model consistent with both ET1 and ET2, in
which drk knockdown suppresses Rho1 knock-
down. (D) The same model expressed in terms
of the original phenotypes of total cell number
and nuclear area (total fluorescent intensity is
similar to cell number and not shown).
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generally enhanced Ras mutations, consistent with the antagonistic
relationship between JNK and Ras signaling.

Specific edges in the interaction network allowed us to infer the
function of many uncharacterized genes, based on the rule that
knockdowns functioning in the same signaling process will exhibit
suppressive interactions whereas knockdowns functioning in antagonistic
processes will exhibit enhancing interactions (Avery and Wasserman
1992). We assessed the interactions for 45 genes not previously
associated with Ras or JNK signaling and one gene (Rho1) which
had been annotated for both (Flybase 2004; Noselli and Agnes 1999).
Novel pathway assignments were made when an unannotated knock-
down exhibited interactions with Ras knockdowns annotated in Horn,
et al. (Horn et al. 2011) or curated data (Flybase 2004). Negative
interaction partners were candidate Ras signaling genes while positive
interaction partners were designated as Ras inhibitors. We assigned

Ras signaling function to three knockdowns that suppressed the effect
of one or more Ras signaling knockdowns and/or had its effect en-
hanced by one or more Ras inhibitor knockdowns (Table 2). These
novel Ras signaling knockdowns had generally negative influences on
cell number and nuclear area (Figure 3), consistent with other Ras
signaling knockdowns. The multiannotated gene Rho1 was in this
group, suggesting that for the measured phenotypes it operates as
a Ras signaling component. We assigned Ras inhibitor function to
13 knockdowns that enhanced the effect of one or more Ras signaling
knockdowns and/or had its effect enhanced by one or more Ras
signaling knockdowns (Table 2 and Figure 3). In most cases these
novel Ras inhibitor knockdowns suppressed the knockdown of a fellow
Ras inhibitor knockdown and the vast majority had a positive influ-
ence on cell number and nuclear area (Figure 3), consistent with other
Ras inhibitors. Ten of these genes are annotated as phosphatases

Figure 3 Adjacency matrix of significant inter-
actions for knockdowns of Ras (blue labels), Ras
inhibitors (red labels), and JNK (green labels)
genes. Previously uncharacterized gene names
are in italics. Color denotes interaction sign and
intensity of directional interactions. Overall,
within-pathway interactions are overwhelmingly
suppressive (blue squares), whereas interactions
across antagonistic pathways are enhancing (yel-
low squares). Ras knockdowns generally reduce
cellular phenotypes, while Ras inhibitors and JNK
knockdowns increase phenotypes. Empty squares
did not meet the significance threshold of P ,
0.01 (see text).
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and, in many cases, we identified specific Ras signaling kinases for
which knockdown effects are unidirectionally enriched by one or
more phosphatase knockdowns (Figure 4). These provide specific
hypotheses for the prioritization of phosphatase-kinase targeting
experiments. The inferred Ras-inhibitor phosphatase PpD3 exhibited
mutual enhancing interactions with Ras knockdowns Sos, Ras85D,
and rl (Figure 3), which suggests a more complex role in Ras inhibi-
tion. Taken in sum, these 16 new functional hypotheses can be added
to the set of approximately 20 novel pathway assignments inferred in
the original, classifier-based analysis of the interaction data (Horn
et al. 2011).

DISCUSSION
We have used a strategy that combines patterns of epistasis and
pleiotropy to derive a large-scale network mapping how mutations in
signaling genes interact to affect distinct phenotypes. The approach
integrates information in multiple phenotypes to resolve ambiguities
in model interpretation that arise when individual phenotypes are
analyzed in isolation. We have demonstrated the applicability of this
strategy to large-scale data, in this case involving 4278 cell lines that
mix 93 genetic perturbations. Significant knockdown-to-knockdown
interactions were obtained among 68 knockdowns even though each
was fairly rare in the population (present in 2.2% of lines). While the
original analysis of these data (Horn et al. 2011) revealed patterns of
genetic interactions separately for each phenotype, this analysis com-
bines the multiphenotype patterns of epistasis to derive directional
models of genetic interactions that are consistent across all three
phenotypes. This additional mathematical analysis recovered previous
findings and was used to propose additional functional relationships
between gene pairs.

Many of the interactions in the network (Figure 3) recapitulated
known relationships. Genes that function in the same pathways show
consistent, suppressive genetic interactions across a spectrum of in-
teraction partners. This is consistent with the idea that mutations with
redundant effects suppress each other, particularly in signaling path-

ways. The spectral consistency for interactions, which has been pre-
viously referred to as “genetic monochromaticity” (Segre et al. 2005),
is maintained after their reparametrization in terms of directional
influences. A similar spectral consistency is demonstrated for enhanc-
ing interactions from pairs spanning multiple pathways. We interpret
this enhancement as a signature of an antagonistic relationship. For
instance, a knockdown of a Ras inhibitor will increase Ras signaling
activity, and therefore a subsequent Ras knockdown will have an
enhanced effect since the signaling baseline is increased (cf. PTP-ER,
Results). Following this interpretation, in addition to spectral consis-
tency, these interactions can map activation and suppression across
the Ras and JNK pathways. The specificity represents de novo deriva-
tion of key functional relationships that are more difficult to detect
when analyzing each phenotype independently.

We note that classical synthetic effects, in which two perturbations
with insignificant main effects generate a strong effect in combination,
would also produce enhancing interactions. We did not observe any
such cases in our data. When we broaden the definition to include

n Table 2 New candidate Ras signaling genes and Ras inhibitors, with relevant GO annotations for the knockdown (Ashburner et al. 2000;
FlyBase 2004)

Pathway Knockdown Interaction Partner(s) Annotated Function

Ras signaling CG9391 Pvr Inositol monophosphate 1-phosphatase
msk mts Ran GTPase binding, protein transport
Rho1 drk, Dsor1, mts, pnt, Pvr, Ras85D, rl, Sos, stg Kinase binding (JNK cascade and GTPase signal

transduction both predicted)
Ras inhibitor CG3530 pnt, Pvr Protein tyrosine/serine/threonine phosphatase

CG3632 Cka, drk, mop, mts, puc, Sos Protein tyrosine/serine/threonine phosphatase
CG7115 drk, mts, puc, Ras85D, rl, Sos Protein serine/threonine phosphatase, cell adhesion
CG9784 dome Inositol trisphosphate phosphatase
grk drk, mts, Sos Epidermal growth factor receptor binding
l(1)G0232 pnt, Pvr Non-membrane spanning protein tyrosine phosphatase
mbt Dsor1, Ras85D, rl, Sos, stg Protein serine/threonine kinase, negative regulation

of cell size
p38b Dsor1 Protein serine/threonine MAP kinase, stress response,

positive regulation of cell size
Pdp Cka, drk, mts, pnt, Ras85D, rl, Sos Protein serine/threonine phosphatase
PpD3 drk, mts, Ras85D, rl, Sos Protein serine/threonine phosphatase, mitotic cell cycle
PRL-1 mts, puc, rl, Sos Prenylated protein tyrosine phosphatase
Ptp10D drk, mts, puc, Ras85D, Sos Protein tyrosine phosphatase, central nervous

system development
Ptp99A Cka, drk, mts, Sos Transmembrane receptor protein tyrosine phosphatase,

motor axon guidance

GO, gene ontology.

Figure 4 Network of novel candidate Ras inhibitor phosphatases and
Ras kinases inferred from interaction patterns. Knockdowns of phos-
phatase genes (orange nodes) enhance the effects of Ras kinase
knockdowns (blue nodes), similar to known Ras inhibitors and JNK
signaling genes (Figure 3). Edge width denotes relative strength of
enhancement.
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knockdowns with main effects and greater than additive combinato-
rial effects, all with the same sign (positive or negative), we find only
two candidate interactions. Gap1 knockdown enhances Rho1 knock-
down activity and both positively affect nuclear area and nuclear inten-
sity; however they show opposite effects on cell number and therefore
the effect is not consistently synthetic (Figure 3). A less ambiguous can-
didate is the strong enhancement of kay knockdown effects by Src42A
knockdown. Both perturbations significantly decrease nuclear intensity,
and this effect becomes significantly greater when the knockdowns are
combined. These genes, both annotated as JNK pathway elements, pro-
vide the only unambiguous instance of synthesis in the data.

Our analysis provides new and refined information on gene-gene
relationships and places this information in a network context. At
a single-interaction level, we identified novel candidate Ras inhibitors
and coactivators (Table 2 and Figure 4). At a network-wide level, these
genes were spectrally consistent with other genes of similar known
function (Figure 3 and Figure S3). Thus, although prior information is
usually helpful in placing new candidate mutations in a functional
context, the interactions we inferred represent a de novo model of
enhancement or suppression with functional implications. Further-
more, some of the network inferences propose refinements of current
knowledge, such as the hypothesis that Rho1 is primarily a Ras sig-
naling gene in the context of the measured phenotypes. Likewise, the
interaction patterns and phenotype influences of the kayak (kay)
knockdown suggest that its functional role in cell proliferation is more
similar to Ras signaling genes than JNK cascade genes, in contrast to
its similarity to JNK in dorsal closure (Harden 2002). Specifically, the
kay knockdown resembled Ras signaling genes by suppressing the
knockdown effect of multiple Ras signaling genes, being enhanced
by the knockdown of multiple JNK cascade genes, and having a neg-
ative main effect on cell number (Figure 3).

In particular, our analysis suggested novel Ras inhibitors not
detected the previous study using the same data (Horn et al. 2011). In
most cases, inhibitor knockdowns redundantly enhanced multiple
kinases (Figure 4). This could be due to non-specific phosphatase
activity, but is potentially a result of functional redundancy among
the kinases that leads to similar genetic interactions between a phos-
phatase and both its direct target and genes that cofunction with that
target in a signaling cascade. One possible avenue to resolve this
ambiguous redundancy would be to extend the interaction analysis
beyond independent pair-wise analysis to models that find the most
parsimonious model for three or more genes (Carter et al. 2007). We
note that the majority of these phosphatase knockdowns significantly
suppressed the Gap1 knockdown, providing evidence of redundant
function with a known Ras85D inhibitor. We also note that a number
of additional enhancing interactions from phosphatases to kinases
that did not meet our significance threshold were also detected, pro-
viding additional evidence of functional coherence but target non-
specificity. However, there does seem to be limited specificity in that
CG3632 and Ptp99A enhance drk and Sos, genes that fall relatively
upstream in the KEGG-annotated Ras pathway, while CG7115 and
Pdp knockdowns most strongly enhance the relatively downstream
pathway knockdown Ras85D. In contrast, phosphatase knockdowns
l(1)G0232 and CG3530 enhance the Pvr knockdown, which is not
placed in the KEGG-annotated Ras cascade. The additional informa-
tion that the Pvr knockdown tends to unidirectionally suppress the
KEGG pathway genes suggests that Pvr potentially acts downstream of
the KEGG-annotated pathway and is deactivated by the phosphatases
l(1)G0232 and CG3530. Thus, even with the ambiguities arising from
pair-wise models, we obtained a degree of specificity in hypotheses for
Ras inhibitor activity.

The network of directional influences suggests hypotheses that are
often amenable to experimental testing (Carter et al. 2007). In contrast
with non-directional associations such as coexpression, statistical epis-
tasis, or synthetic lethality, a directional influence identifies a driver
mutation that affects the activity of its target, a second gene that, in
turn, affects the phenotype. With this in mind, we can predict that
removing the influence with an experimental perturbation, such as an
exogenous inhibitor molecule, would nullify the effect of mutations in
the target gene. Furthermore, the effect type (enhancement or sup-
pression) specifies the nature of the effect on the target gene. We can
therefore predict that overexpression of a novel Ras inhibitor will not
only affect, but specifically reduce the relevant activity of its enhanced
targets, whereas perturbations of the targets are not expected to affect
the Ras inhibitor. For example, overexpression of Ptp99A will specif-
ically inhibit the activity of Ras signaling proteins Cka, drk, mts, and
Sos. In this way, a network of directional genetic interactions could
prove useful in the selection of candidate genes for validation and, in
disease-related networks, the prioritization of therapeutic targets.

Our analysis was limited by the genotypes and specific phenotypes
selected in the original study. Although the three phenotypes used
exhibit differential interaction patterns (Horn et al. 2011), their high
correlation limited the complementary information that could better
resolve directional interactions. By probing additional phenotypes,
new interactions might be detected and existing interactions refined.
For instance, we speculate that mutual cosuppression among Ras
signal knockdowns is potentially due to measuring insufficiently dis-
tinct outputs. Combining detailed assays of eye development and
terminal patterns might have revealed more specific roles and pathway
order for canonical Ras signaling proteins. Furthermore, although the
genetic perturbations are limited to MAPK signaling genes, the meth-
ods could be applied to a wider screen or population-based analysis to
identify additional pathway relationships. As data collection in exper-
imental systems and clinical studies becomes more diverse and quan-
titative, our analytical method has the potential to derive more refined
and precise network models.

The approach we have applied derives quantitative, directional
models of how each gene knockdown modifies the effects of each other
knockdown. It represents an alternative to guilt-by-association methods
that infer function by scoring correlations across large-scale data. Taken
together as a network, the interactions form consistent patterns between
and within gene modules. Large-scale data and prior information is
helpful but not necessary because guilt precedes association in our
analysis. This allowed us, for instance, to propose new candidate Ras
inhibitors that are consistent with known Ras inhibitors, but do not
necessarily depend on this prior knowledge for functional inference.
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