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ABSTRACT The enteropathogen Campylobacter jejuni is a major worldwide health and economic burden,
being one of the leading causes of bacterial gastroenteritis and commonly linked to postinfectious onset of
autoimmune disease. Chickens are a major vector for human infection and even though variation in avian
colonization level is heritable, no previous studies have identified regions of the genome associated with
colonization resistance. We performed a genome-wide association study of resistance to C. jejuni coloni-
zation in the avian intestine by controlling for population structure, which revealed a risk locus with genome-
wide significance spanning the T-cadherin (CDH13) gene. A second possible risk locus was also identified
close to calmodulin (CALMT), a calcium-activated modulator of cadherin function. In addition, gene ex-
pression analysis of mMRNA sequencing profiles revealed that the relative expression of the two genes is
significantly associated with colonization resistance. Functional studies have previously demonstrated in-
volvement of cadherins and calmodulin in C. jejuni intracellular invasion and colonization of human in-
testinal epithelial cells in vitro. Consistent with this finding, our analysis reveals that variation surrounding
these genes is associated with avian colonization resistance in vivo and highlights their potential as possible
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targets for control of the bacterium in avian and human populations.

Campylobacter jejuni is one of the main causes of bacterial gastroin-
testinal infection worldwide (Scallan et al 2011; EFSA 2012) and
represents a major public health burden. Campylobacteriosis is usually
self-limiting but has been linked to postinfectious onset of the auto-
immune diseases Guillain-Barré syndrome (McCarthy and Giesecke
2001; Tam et al. 2007), Miller Fisher syndrome (Koga et al. 2005), and
reactive arthritis (Hill Gaston and Lillicrap 2003; Townes et al. 2008).
Consumption of contaminated poultry is a common source of human
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infection. Although pathogenic in humans, C. jejuni is an intestinal
commensal in most mammalian and avian hosts and frequently colo-
nizes the chicken intestine at extremely high densities of 108-10'° CFU/g
(Van Deun et al. 2008a; Lamb-Rosteski et al. 2008; Meade et al. 2009).

Chickens are born free of C. jejuni and only begin to acquire the
bacterium at an average age of 2—3 wk (Newell and Fearnley 2003; van
Gerwe et al. 2009). Once one individual in a flock becomes colonized,
the bacterium spreads quite rapidly, with >95% of the flock colonized
within several days (van Gerwe et al. 2009). However, C. jejuni coloni-
zation levels in the gastrointestinal tract can vary substantially between
individual chickens, both within and between populations. Several pre-
vious studies have established that this variation in C. jejuni colonization
level can be heritable, with significant differences in susceptibility ob-
served between chicken lines (Stern et al. 1990; Boyd et al. 2005; Li et al.
2008). Although a quantitative trait loci mapping study has been referred
to (Kaiser 2010), no attempts to identify the genes involved in this re-
sistance by linkage mapping, genome-wide association or candidate-gene
analysis have yet been published. The primary site of C. jejuni coloni-
zation in the chicken is within the cecum, where it populates the mucus
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layer overlying epithelial cells (Beery et al. 1988; Meade et al. 2009).
Although epithelial cell attachment was not documented in vivo (Beery
et al. 1988), attachment and invasion do occur in vitro and are thought
to be necessary for successful colonization (Byrne et al. 2007; Hermans
et al. 2011) and several adhesins involved have been identified
(Hermans et al. 2011). The invasiveness of different strains of
C. jejuni into chicken epithelial cells is correlated with systemic
colonization (van Deun et al. 2008a), which commonly occurs in the
spleen, liver, and bursa of Fabricius (Cox et al. 2005; van Deun et al.
2008a; Lamb-Rosteski et al. 2008; Meade et al. 2009) even though com-
mensal bacteria do not normally disseminate systemically. Both trans-
cellular and paracellular translocation have been described in human
epithelial cells in vitro (Konkel et al. 1992; Grant et al. 1993; Monteville
and Konkel 2002; van Deun et al. 2008b; Hu et al. 2008; Kalischuk et al.
2009; Boehm et al. 2012), and the translocation route in chicken epi-
thelial cells is unknown. Strain invasiveness into human cells is corre-
lated with chicken intestinal colonization potential (Hénel et al. 2004).

In several studies, researchers have analyzed gene expression in the
chicken cecum after C. jejuni infection and have demonstrated a proin-
flammatory response (Borrmann et al. 2007; Smith et al. 2008; Larson
et al. 2008), lymphocyte involvement (Li et al. 2010; Shaughnessy et al.
2011; Li et al. 2011), and activation of Toll-like receptors (de Zoete et al.
2010), the mitogen-activated protein kinase pathway, and small GTPase-
mediated signal transduction (Li ef al. 2011). We have previously described
the separation of a single population of 255 4-wk-old Barred Rock chick-
ens into those resistant and susceptible to C. jejuni colonization 48 hr
postinfection and have investigated the caecal gene expression profiles of
resistant and susceptible chickens by using high-throughput short-read
sequencing of mRNA (RNAseq) (Connell et al. 2012). Resistance was
associated with significantly increased expression of genes involved in
the innate immune response, cytokine signaling, B-cell and T-cell activa-
tion, immunoglobulin production, and the renin-angiotensin system. In
this complementary study, a genome-wide analysis of association with
colonization status was performed with 194 chickens, selected from both
ends of the colonization spectrum and including the 28 transcriptionally
profiled birds. These were genotyped on a chicken 60K single-nucleotide
polymorphism (SNP) chip (Groenen et al. 2011). Using a case-control
model incorporating population stratification, we identified a significantly
associated resistance locus comprising four SNPs in a region of chromo-
some 11, which suggests involvement of the CDHI3 (T-cadherin) gene in
resistance to colonization. A second putative locus was also identified on
chromosome 5 close to the CALMI (calmodulin) gene, a mediator of
calcium signaling that modulates cadherin function. Investigation of gene
expression in cases and controls revealed that the relative expression of
these two genes is associated with colonization status. Together, this in-
formation strongly suggests a functional role for these genes in establish-
ment of C. jejuni colonization within the avian host.

MATERIALS AND METHODS

Population history

The population of chickens used in the study was obtained from a line
maintained at the University of Saskatchewan, Saskatoon, Canada. The
Barred Rock is a dual-purpose breed which was developed in the
middle of the 19th century. The line was acquired in the 1920s, and was
initially selected but was subsequently maintained unselected from 1965
to 2003. Mild selection for egg production was performed after 2003.
The procedure for selection involved maintaining 80 hens per
generation. A total of 50 hens and roosters from the same dams were
then selected for reproduction based on egg production. Some genetic
substructure within the population is therefore expected due to
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violations of several assumptions of Hardy-Weinberg equilibrium. This
population substructure was characterized before association analysis,
and tests used to detect significance of association were adjusted to
incorporate genetic stratification identified within the population.

Sample selection, SNP genotyping, and quality control
Caecal colonization levels were estimated for all 255 chickens in the
population 48 hr postinoculation and caecal samples collected as
reported previously (C. jejuni strain NCTC11168v1) (Connell et al
2012). Caecal samples from 196 individuals were selected for phenol-
chloroform genomic DNA extraction (Sambrook and Russell 2001) and
genotyping with the 60K chicken SNP chip (Groenen et al. 2011). Sam-
ples were genotyped commercially using the standard protocol from
Mumina Infinium iSelect Beadchips implementing BeadStudio Gen-
otyping v3.0.19.0. Forty birds with no or very minimal colonization
(C. jejuni—resistant cases) and 128 birds with very high levels of colo-
nization >107 CFU/g (C.jejuni-susceptible controls) were selected for
case—control association analysis (Figure 1). Of the total number of
57,636 SNP positions queried on the chip, 25,385 SNPs were polymor-
phic in this population. Average identity by state (IBS) was calculated
from all SNP genotypes in the R package GenABEL (Aulchenko et al.
2007). Strict quality control filtering of the data was carried out before
association analysis. In association studies of complex diseases, where
single alleles are expected to only have a small effect on the trait under
study, genotyping errors are more likely to result in false-positive or
false-negative findings of association; therefore, SNPs with low minor
allele frequency (=1.8%) were removed. All SNPs with call rate <95%
were excluded. Two individuals with call rate <95% were excluded
because they may represent poor-quality samples with unreliable geno-
types. All SNPs exhibiting substantially higher or lower heterozygosity
than expected (P value = 10~7) under Hardy-Weinberg equilibrium
were also excluded. Autosomal heterozygosity was also checked to ensure
all individuals had moderate autosomal heterozygosity but no individuals
had excessively high heterozygosity [false-discovery rate (FDR) <1%].
Genetic relatedness of all possible pairs of individuals was calculated to
identify individuals too closely related to be used in the association study.
A matrix of IBS values was created from all filtered SNPs. No pair of
individuals were >95% IBS. Subsequently, SNPs were filtered so that
SNPs in complete linkage disequilibrium (LD) on the same chromosome
were represented by only one tag SNP. Each set of SNPs in complete LD
was tested as a unit using these tag SNPs.

Detection of population stratification and case—control
association analysis

To investigate any population stratification that may be present in the
population, a matrix of genomic kinship was generated from all pairs
of 194 individuals in the population that passed quality control
filtering using genotypes of all filtered tag SNPs. This matrix of
genomic kinship was converted to a distance matrix that was used to
carry out classical multidimensional scaling analysis. All analysis of
population stratification was conducted in GenABEL (Aulchenko
et al. 2007). The gtscore function in GenABEL was implemented to
carry out logistic regression of the trait onto SNP genotypes using the
first three principal components of the genomic kinship matrix as
covariates in the regression model, accounting for the genetic sub-
structure within the population (Price et al. 2010). Overinflation of the
test statistic was investigated by comparison of the distribution of the
test statistic to that expected under the null hypothesis [inflation factor
N (Amin et al. 2007)]. Consistent deviation is indicative of inflation
due to population substructure.
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Gene expression analysis

Read counts of gene expression were first corrected using upper
quartile normalization and relative log expression in edgeR (Robinson
et al. 2010). No correlation between SNP genotypes and relative ex-
pression levels was found. Similarly, no correlation between SNP gen-
otypes in both genes was found. Significant differences in the ratios of
CDH13/CALMI expression (Figure 6) were observed between cases
and controls (Mann-Whitney U-test, P = 0.004). All calculations were
performed in R using the “lm” and “wilcox.test” functions.
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RESULTS

Genotyping and quality control
Querying of the study population of 196 chickens using a 60K
Mumina iSelect chip [37] revealed that of 57,636 SNP positions, just

25,385 were polymorphic in this population. All SNP genotypes and
colonization status of individuals are detailed in Supporting In-
formation, File S1 and File S2, respectively. Average IBS calculated
using all SNP genotypes was 91.5% for all pairs of individuals,
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Figure 2 Principal components revealing population stratification. All 194 individuals that passed quality control filtering are represented.
Colonization-susceptible individuals from the case-control study are shaded blue and colonization-resistant birds shaded red. Gray circles
represent individuals from the center of the colonization spectrum that were not used in the association study. All autosomal markers
were used to construct a kinship matrix of genetic relatedness or identity by descent (IBD). This matrix was converted to a distance matrix
and classical multidimensional scaling performed to detect any population substructure. There is evidence for some stratification of the
population which was resolved by the first three principal components (PC1, PC2, and PC3). The percentage variation which is
represented by each of these principal components is 18.6% (PC1), 16.8% (PC2), and 11.1% (PC3). The first two principal components
reveal separation of the population into two subpopulations—one large group with 157 individuals and one smaller group of 37

individuals.

attesting to the high inbreeding present in the population due to its
population history and maintenance as an inbred population since the
1920s. A total of 16,871 SNPs and 194 chickens passed quality control
filtering (call-rate >95%, minor allele frequency < 1.8%, Hardy-
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Weinberg P-value < 1077). After filtering out SNPs on the same
chromosome in complete LD, 5609 nonredundant tag SNPs remained
and were used in the analysis of population substructure and genome-
wide association testing.
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Multidimensional scaling reveals

population stratification

Population substructure can induce spurious associations in genetic
association studies. It is therefore essential that population stratification is
identified and adjusted for, especially in genome-wide association studies
of complex traits in which SNPs may have only a small effect on the trait
being analyzed. To characterize genetic substructure within the pop-
ulation, genomic kinship was investigated using the R package GenABEL
(Aulchenko et al. 2007). First, a matrix of IBS values was calculated
between all pairs of 194 individuals which passed quality control filtering
using genotypes of the 5609 tag SNPs. Classical multidimensional scaling
analysis was performed on the distance matrix derived from this matrix
of kinship values. The major stratification within the population was
resolved by the first three dimensions and these are plotted in Figure
2. This plot reveals some substructure within the population which is
most likely due to breeding procedures, particularly those used to select
for increased egg production (see Materials and Methods). Resistant
cases and susceptible controls are distributed randomly throughout the
plots indicating that they do not cluster together genetically.

Case—control study identifies loci associated

with colonization resistance

The qtscore function in GenABEL was applied to perform logistic
regression of colonization status onto SNP genotypes. Population
stratification was corrected for by using the first three principal
components of the kinship matrix as covariates in the regression
model. This yields a genomic inflation factor N = 1.06 (compared with
N\ = 1.42 without adjustment for population stratification) indicating
that the major substructure has been adjusted for. The quantile-quan-
tile plot of observed P-values vs. the expected null distribution (Figure
3) did not reveal deviation from the null, apart from 12 SNP outliers at
the tail of the distribution exhibiting the most significant P-values,
which all lie within three regions of the genome—on chromosomes
11, 5, and 1. When these SNPs are not included the genomic inflation
factor N = 0.995. Combined, this finding suggests that these SNPs may
represent truly associated regions of the genome and deviations are
not due to over-inflation of the test statistic.
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The genome-wide plot of SNP association significance is shown in
Figure 4, where these three regions are again visible outliers in this
plot, displaying high association P-values. The most significant asso-
ciations identified involved SNPs on chromosome 11, where four
SNPs reached genome-wide significance, after we controlled for mul-
tiple testing (FDR = 0.04), and odds ratios of 2.33—2.50 (Table 1).
These SNPs are all in high LD, with two adjacent SNPs being in
complete LD. They are located within a region spanning 80 kbp,
are intergenic, and surround the CDHI3 gene on chromosome 11
(Figure 5).

Association with gene expression profiles

We have previously analyzed the gene expression profiles of 28 of
these chickens (14 resistant cases with no C. jejuni colonization and
14 controls with the highest C. jejuni colonization levels) through
mRNA sequencing (i.e., RNAseq) (Connell et al. 2012). All data from
RNA sequencing gene expression analysis, including raw sequence files,
can be downloaded from NCBI GEO accession no. GSE44341. As the
second most significant region identified in this study approaches
significance and surrounds another Ca?*regulated gene, CALM1, asso-
ciations between gene expression and SNP genotypes in both regions
were investigated. No correlation with SNP genotypes was detected.
Neither of these genes was differentially expressed between cases
and controls. However relative CDH13/CALM1 gene expression is
significantly associated with resistance to colonization (Mann-
Whitney U-test, P = 0.004), with resistant birds displaying lower
CDH13 and higher CALM1I relative expression levels (Figure 6).

DISCUSSION

Several studies have demonstrated that resistance to C. jejuni coloni-
zation of the chicken gastrointestinal tract can be heritable, but this is
the first to identify specific regions of the genome associated with
colonization resistance. Association analysis treating colonization sta-
tus as a binomial trait was performed and identified a resistance locus
for C. jejuni colonization on chromosome 11 containing four sig-
nificantly associated SNPs. This locus centers on the CDHI13 (T-
cadherin) gene, suggesting a functional role for this gene in the

Figure 3 Quantile-Quantile plot of observed vs. expected P-values.
The g-q plot of observed P-values shows they follow the expected null
distribution apart from 12 SNPs with the most significant P-values.
These are located within three regions: chromosomes 11 (red squares),
5 (blue triangles), and 1 (yellow circles).
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Figure 4 Manhattan plot of genome-wide association. All 16,871 SNPs that passed quality control are shown. Genomic location is plotted against
—log1o(P). Four SNPs on chromosome 11 reached genome-wide significance (FDR = 0.04).

colonization process. In previous studies, authors have demonstrated
a direct interaction between C. jejuni HtrA protease and another
member of the cadherin superfamily, E-cadherin (cadherin 1, CDHI),
in which cleavage of the protein facilitates transmigration across po-
larized epithelial cells in vivo (Hoy et al. 2012; Boehm et al. 2012).
Because T-cadherin is expressed on the apical surface of chicken
intestinal epithelial cells in vivo (Koller and Ranscht 1996) and has
a highly similar ectodomain to E-cadherin, the interaction of T-
cadherin with C. jejuni in the intestinal lumen is highly likely and
variations altering the function or expression of this gene may plau-
sibly affect caecal colonization status.

Cadherins are a superfamily of calcium-dependent proteins with
prominent roles in homophilic cell - cell adhesion and maintenance of
structural and functional tissue integrity (Halbleib and Nelson 2006).
Classical cadherins are composed of an ectodomain containing 5 ex-
tracellular cadherin repeats, a transmembrane anchor, and an in-
tracellular domain. The most extensively studied of the cadherins,
E-cadherin (cadherin 1, CDH1), is a cell adhesion molecule and tumor

Table 1 Case-control study: top SNPs

suppressor that localizes to adherens junctions on the basolateral
membrane of epithelial cells. Despite its typical location below tight
junctions, it interacts with several bacteria, facilitating internalization
and colonization. The protein can act as a receptor for Listeria mono-
cytogenes and Candida albicans, allowing these pathogens to gain
access into the cell (Mengaud et al. 1996; Phan et al. 2007). Cleavage
of the protein is also a common feature of epithelial cell invasion.
Candida albicans (Frank and Hostetter 2007; Villar et al. 2007), Hel-
icobacter pylori (Hoy et al. 2010; Hoy et al. 2012), Shigella flexneri
(Sansonetti et al. 1994; Hoy et al. 2012), Porphyromonas gingivalis
(Katz et al. 2000; Katz et al. 2002), Bacteroides fragilis (Wu et al.
1998), and enteropathogenic Escherichia coli (Hoy et al. 2012) all
cleave E-cadherin on the surface of human epithelial cells, leading
to loss of the adherens junction and cell—cell adhesion, thus disrupt-
ing the epithelial barrier. Streptococcus pneumoniae (Anderton et al.
2007) and Clostridium botulinum (Sugawara et al. 2010) also produce
proteins that bind and disrupt E-cadherin—mediated cell—cell adhe-
sion without cleavage. A direct interaction with C. jejuni HtrA

SNP ID Chr Position N Allele Frequency Odds Ratio (95% Confidence Interval) [P FDR
Gga_rs15622247 11 17594419 166 0.40/0.21 2.50 (1.45—-4.30) 1.61E-05 0.0426
GGaluGA079086 11 18376977 166 0.40/0.22 2.33(1.35-3.99) 1.78E-05 0.0426
Gga_rs15622362 11 17655435 166 0.40/0.21 2.50 (1.41-4.19) 2.28E-05 0.0426
Gga_rs14027234 11 17657890 166 0.40/0.21 2.50 (1.41-4.19) 2.28E-05 0.0426

SNPs exhibiting the most significant association with colonization status are listed, along with chromosome position. Four SNPs exhibited genome-wide significance
after FDR control for multiple testing (FDR = 0.04). Minor allele frequencies in cases/controls and odds ratios with 95% confidence intervals are shown. Two SNPs
(Gga_rs15622362 and Gga_rs14027234) are in complete LD. SNP, single-nucleotide polymorphism; FDR, false-discovery rate; LD, linkage disequilibrium.
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protease has recently been shown in which E-cadherin is cleaved by
the bacterial protease, resulting in inhibition of intercellular epithelial
adhesion (Hoy et al. 2012). Deletion of C. jejuni HtrA leads to loss of
E-cadherin cleavage and highly defective invasion and paracellular
transmigration (Hoy et al. 2012; Boehm et al. 2012).

Inactivation of E-cadherin in the mouse intestine has indicated
that the protein plays a crucial role in maintenance of homeostasis not
only through development of epithelial cell adherens junctions and
desmosomes but also in maturation and localization of Paneth and
goblet cells (Schneider et al. 2010). These cells are involved in the first
line of host defense against pathogenic invasion and secrete a variety
of protective antimicrobial molecules into the intestinal lumen in re-
sponse to pathogenic challenge (Bevins and Salzman 2011; Gill et al.
2011; Forman et al. 2012). Inactivation of E-cadherin subsequently
results in increased susceptibility to intestinal bacterial infection
(Schneider et al. 2010).

T-cadherin is a unique member of the cadherin family which lacks
the highly conserved cytoplasmic and transmembrane domains, and
attaches to the cell membrane through a glycosylphosphatidylinositol
anchor (Philippova et al. 2009). In vivo, T-cadherin is expressed
on the apical surface of chicken intestinal epithelial cells (Koller
and Ranscht 1996) (unlike classical cadherins, which are expressed
basolaterally). The ectodomain (extracellular domain) shares high
sequence homology with those of classical cadherins such as E-cadherin.

ZZG3-Genes | Genomes | Genetics
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It also lacks the cytoplasmic region, which is usually required for
classical cadherin-mediated cell—cell adhesion but induces homo-
philic cell—cell adhesion through an alternative binding mechanism
(Vestal and Ranscht 1992; Ciatto et al. 2010). The protein may play
a major role in signal transduction due to its location within lipid rafts
which regulate signal transduction (Simons and Toomre 2000). Due
to its expression on the apical surface of polarized epithelial cells at the
interface with the intestinal lumen and the high sequence homology of
its ectodomain with that of E-cadherin, we hypothesize that it may
interact with C. jejuni and consequentially affect resistance to coloni-
zation either by facilitating internalization or inciting a protective host
response.

Although the locus exhibiting the second-most significant associ-
ation with colonization resistance did not reach genome-wide
significance after multiple testing adjustment (FDR = 0.24), it localized
close to the calmodulin (CALM1I) gene, which encodes a modulator of
cadherin-mediated cell-cell adhesion (Li et al. 1999). Calmodulin is
a mediator of calcium signaling that binds calcium Ca** jons and
subsequently regulates the activity of calcium-dependent enzymes,
including cadherins, involved in a wide variety of cellular processes.
An increase in cytosolic Ca** concentration is associated with intra-
cellular invasion and pathogenicity of a wide range of bacteria in-
cluding C. jejuni (Pace et al. 1993; Hu et al. 2005; Gekara et al.
2007; Kim et al. 2008; Bandyopadhaya et al. 2009; Asmat et al.

CDH13/CALM1 Associated With C. jejuni | 887
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Figure 6 Relative expression levels of CDH13 and CALM1. Boxplots
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based on CDH13/CALM1 expression (Mann-Whitney U-test, P =
0.004) and no bias in relative ratios due to sequencing depth. The
ratio of CDH13/CALM1 expression for all 28 transcriptionally profiled
birds is plotted, with shading reflecting depth of sequencing.

2011; Konar and Ghosh 2012). Invasion of human intestinal epithelial
cells by C. jejuni in vitro requires release of Ca?* from intracellular
stores and inhibition of calmodulin using a calmodulin agonist inhib-
its C. jejuni intracellular epithelial cell invasion in vitro (Hu et al
2005). This finding suggests there may be a relationship with the
association observed surrounding the T-cadherin gene, although no
correlation between SNP genotypes from the two regions was found.
This association study was carried out subsequent to a study on a sub-
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set of the birds analyzed here which characterized differences in gene
expression between resistant and susceptible chickens. Correlation
between the SNP genotypes observed here and gene expression levels
was not found and neither of these genes displayed significantly dif-
ferential expression. However, a significant correlation between colo-
nization status and the ratio of expression levels of the two genes is
seen. Interestingly, the gene displaying the most significant differential
expression in this study, which demonstrated fourfold higher expres-
sion in resistant birds (paq; = 5.6e72°), encodes an epithelial calcium-
activated chloride channel (LOC424523)(Connell et al. 2012).

To our knowledge, this is the first study to identify a gene
significantly associated with resistance to C. jejuni colonization of the
chicken. The study was based on a population of Barred Rock chick-
ens, a dual-purpose breed that originated in the United States in the
1800s and one of the founder breeds of the broiler industry. The breed
has contributed significantly to the genetics of modern commercial
broiler and brown egg layer breeds, most notably in extensive use of
the White Plymouth Rock, which was developed from the Barred
Rock, in maternal commercial broiler grandparent lines (Crawford
1990). Due to the high inbreeding present within the population,
the likelihood of shared mechanisms of resistance to colonization
and repetition of these findings with commercial populations is un-
certain. The resistance locus identified centers on T-cadherin, and
although of marginal significance and requiring further validation,
suggests this gene plays a prominent role in the colonization process.
This is supported by the importance of the related protein, E-cadherin
in epithelial cell invasion of several bacteria, including C. jejuni and in
the maintenance of intestinal homeostasis. A putative risk locus cen-
tering on the calmodulin gene, which can regulate cadherin function,
and previous evidence for differential expression of a calcium acti-
vated chloride channel associated with colonization provide additional
evidence for Ca**-regulated cadherin involvement. C. jejuni is one of
the most commonly reported causes of food-borne illness worldwide
and chickens are a major vector for infection. We believe the results
reported here highlight the significance of cadherins, and specifically
T-cadherin, in control of the bacterium within the chicken cecum.
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