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The investigation of community structures in networks is an
important issue in many domains and disciplines. This problem is
relevant for social tasks (objective analysis of relationships on the
web), biological inquiries (functional studies in metabolic and
protein networks), or technological problems (optimization of
large infrastructures). Several types of algorithms exist for reveal-
ing the community structure in networks, but a general and
quantitative definition of community is not implemented in the
algorithms, leading to an intrinsic difficulty in the interpretation of
the results without any additional nontopological information. In
this article we deal with this problem by showing how quantitative
definitions of community are implemented in practice in the
existing algorithms. In this way the algorithms for the identifica-
tion of the community structure become fully self-contained.
Furthermore, we propose a local algorithm to detect communities
which outperforms the existing algorithms with respect to com-
putational cost, keeping the same level of reliability. The algorithm
is tested on artificial and real-world graphs. In particular, we show
how the algorithm applies to a network of scientific collaborations,
which, for its size, cannot be attacked with the usual methods. This
type of local algorithm could open the way to applications to
large-scale technological and biological systems.

Evidence has rapidly grown in the past few years that very
diverse systems in many different fields can be described as

complex networks, i.e., assemblies of nodes and edges with
nontrivial topological properties (1, 2). Examples range from
technological systems [the Internet and the web (3, 4)] to
biological [epidemiology (5, 6), metabolic networks (7–9), and
ecological webs (10–13)] and social systems [scientific collabo-
rations and structure of large organizations (14, 15)].

In this article we deal with a topological property of networks,
the community structure, that has attracted a great deal of
interest recently. The concept of community is common, and it
is linked to the classification of objects in categories for the sake
of memorization or retrieval of information. From this point of
view the notion of community is general and, depending on the
context, can be synonymous with module, class, group, cluster,
etc. Among the many contexts where this notion is relevant it is
worth mentioning the problem of modularity in metabolic or
cellular networks (9, 16) or the problem of the identification of
communities in the web (17). This last issue is relevant for the
implementation of search engines of a new generation, content
filtering, automatic classification, or the automatic realization of
ontologies.

Given the relevance of the problem, it is crucial to construct
efficient procedures and algorithms for the identification of the
community structure in a generic network. This task, however,
is highly nontrivial.

Qualitatively, a community is defined as a subset of nodes
within the graph such that connections between the nodes are
denser than connections with the rest of the network. The
detection of the community structure in a network is generally
intended as a procedure for mapping the network into a tree
(Fig. 1). In this tree (called a dendrogram in the social sciences),
the leaves are the nodes whereas the branches join nodes or (at
higher level) groups of nodes, thus identifying a hierarchical
structure of communities nested within each other.

Several algorithms to perform this mapping are known in the
literature. The traditional method is the so-called hierarchical
clustering (18). For every pair i,j of nodes in the network, one
calculates a weight Wi,j, which measures how closely connected
the vertices are. Starting from the set of all nodes and no edges,
links are iteratively added between pairs of nodes in order of
decreasing weight. In this way nodes are grouped into larger and
larger communities, and the tree is built up to the root, which
represents the whole network. Algorithms of this kind are called
agglomerative.

For the other class of algorithms, called divisive, the order of
construction of the tree is reversed: one starts with the whole
graph and iteratively cuts the edges, thus dividing the network
progressively into smaller and smaller disconnected subnetworks
identified as the communities. The crucial point in a divisive
algorithm is the selection of the edges to be cut, which have to
be those connecting communities and not those within them.
Very recently, Girvan and Newman (GN) have introduced a
divisive algorithm where the selection of the edges to be cut is
based on the value of their ‘‘edge betweenness’’ (19), a gener-
alization of the centrality betweenness introduced by Anthonisse
(20) and Freeman (21). Consider the shortest paths between all
pairs of nodes in a network. The betweenness of an edge is the
number of these paths running through it. It is clear that, when
a graph is made of tightly bound clusters, loosely interconnected,
all shortest paths between nodes in different clusters have to go
through the few interclusters connections, which therefore have
a large betweenness value. The single step of the GN detection
algorithm consists in the computation of the edge betweenness
for all edges in the graph and in the removal of those with the
highest score. The iteration of this procedure leads to the
splitting of the network into disconnected subgraphs that in their
turn undergo the same procedure, until the whole graph is
divided in a set of isolated nodes. In this way the dendrogram is
built from the root to the leaves.

The GN algorithm represents a major step forward for the
detection of communities in networks, since it avoids many of the
shortcomings of traditional methods (19, 22). This fact explains
why it has been quickly adopted in the past year as a sort of
standard for the analysis of community structure in networks
(23–27).

This article follows a different track by proposing an alterna-
tive strategy for the identification of the community structure.
This complementary approach follows from the need to address
the two following issues.

1. In general, algorithms define communities operationally as
what the they find. A dendrogram, i.e., a community struc-
ture, is always produced by the algorithms down to the level
of single nodes, independently from the type of graph ana-
lyzed. This feature is due to the lack of explicit prescriptions

Abbreviation: GN, Girvan–Newman.

‡The list of all the communities found with our algorithm for the scientific collaboration
network is available from C.C. on request. E-mail: castella@pil.phys.uniroma1.it.

¶To whom correspondence should be addressed. E-mail: loreto@roma1.infn.it and
loreto@pil.phys.uniroma1.it.

© 2004 by The National Academy of Sciences of the USA

2658–2663 � PNAS � March 2, 2004 � vol. 101 � no. 9 www.pnas.org�cgi�doi�10.1073�pnas.0400054101



to discriminate between networks that are actually endowed
with a community structure and those that are not. As a
consequence, in practical applications, one needs additional,
nontopological information on the nature of the network to
understand which of the branches of the tree have a real
significance. Without such information it is not clear at all
whether the identification of a community is reliable. Two
noticeable proposals have been made to solve this problem.
In particular, it is worth mentioning the approach proposed
by Wilkinson and Huberman (24), which is limited to the
lowest level of the community structure and specific to
algorithms based on betweenness. More recently (22), New-
man and Girvan introduced an a posteriori measure of the
strength of the community structure, which they called mod-
ularity. More precisely, the modularity estimates the fraction
of inward links in a community minus the expectation value
of the same quantity in a network with the same community
divisions but random connections between the nodes. This
quantity definitely gives an indication of the strength of the
community structure, even though the lack of the implemen-
tation of a quantitative definition of community does not allow
the objective discrimination of meaningful communities.

2. The ‘‘edge betweenness algorithm’’ is computationally costly,
as already remarked by Girvan and Newman (19, 22). Eval-
uating the score for all edges requires a time of the order of
MN, where M is the number of edges and N the number of
nodes. The iteration of the procedure for all M edges leads in
the worst case to a total scaling of the computational time as
M2N, which makes the analysis practically unfeasible already
for moderately large networks (of the order of N � 10,000;
ref. 22).

In this article we propose solutions to both these problems.
First, we introduce a general criterion for deciding which of the
subgraphs singled out by the detection algorithms are actual
communities. We discuss in detail the case of two quantitative
definitions of community. In this way, we transform the GN
algorithm in a self-contained tool. Second, we present an
alternative algorithm, based on the computation of local quan-
tities, which gives, in controlled cases, results of accuracy similar
to the GN method, but largely outperforming it from the point
of view of computational speed. [It is worth mentioning that,
after the completion of this work, Newman proposed a new
agglomerative algorithm to address the issue of the computa-
tional efficiency (28).]

Quantitative Definitions of Community
The idea to solve the first of the problems discussed above is very
simple: the algorithm that builds the tree just selects subgraphs
that are candidates to be considered communities. One has then
to check whether they are actually such by using a precise
definition. If the subgraph does not meet the criterion, the
subgraph isolated from the network is not a community, and the
corresponding branch in the dendrogram should not be drawn.

As mentioned above, a community is generally thought of as
a part of a network where internal connections are denser than
external ones. To sharpen the use of detection algorithms a more
precise definition is needed. Many possible definitions of com-
munities exist in the literature (18). Here we consider explicitly
the implementation in the algorithms of two plausible definitions
of community which translate the sentence above into formulas.

The basic quantity to consider is ki, the degree of a generic
node i, which in terms of the adjacency matrix Ai,j of the network
G is ki � ¥jAi, j. (The adjacency matrix fully specifies the topology
of the network. In the simplest case of an unweighted, undirected
network, it is equal to 1 if i and j are directly connected; it is equal
to zero otherwise.) If we consider a subgraph V � G, to which
node i belongs, we can split the total degree in two contributions:
ki(V) � ki

in(V) � ki
out(V). ki

in(V) � ¥j�V Ai, j is the number of
edges connecting node i to other nodes belonging to V. ki

out(V)
� ¥j�� V Ai, j is clearly the number of connections toward nodes in
the rest of the network.

Definition of Community in a Strong Sense. The subgraph V is a
community in a strong sense if

ki
in�V� � ki

out�V�, �i � V. [1]

In a strong community each node has more connections within
the community than with the rest of the graph. This definition
coincides with the one proposed in ref. 17 in the framework of
the identification of web communities.

Definition of Community in a Weak Sense. The subgraph V is a
community in a weak sense if

�
i�V

ki
in�V� � �

i�V

ki
out�V�. [2]

In a weak community the sum of all degrees within V is larger
than the sum of all degrees toward the rest of the network.

Fig. 1. A simple network (Left) and the corresponding dendrogram (Right).
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Clearly a community in a strong sense is also a community in
a weak sense, whereas the converse is not true.

It is worth mentioning that our definitions of community,
although very natural, do not represent the only possible choice.
Several other possible definitions, possibly more appropriate in
some cases, exist and are described in ref. 18. Among them, for
instance, the definition of the so-called LS-set goes in the
direction of our strong definition even though it is extremely
more stringent. An LS-set is a set of nodes such that each of its
proper subsets has more ties to its complement within the set
than outside. On the other hand, the definition of k-core is
roughly, although not exactly, equivalent to our weak definition.
A k-core is defined as a subgraph in which each node is adjacent
to at least a minimum number, k, of the other nodes in the
subgraph.

Self-Contained Algorithms
From the definitions given above, it is apparent that, if a network
is randomly split in two parts, one very large and the other with
only few nodes, the very large part almost always fulfills the
definition of community. To deal with this problem, let us
consider the Erdös–Renyi random graph (29). If we cut at
random the graph in two parts containing �N and (1 � �)N
nodes, respectively, it is easy to evaluate analytically the prob-
ability P(�) that the subgraph containing �N nodes fulfills the
weak or the strong definition. It turns out that, as soon as N is
sufficiently large, the probability is very close to a step function
around � � 0.5. Hence, it is extremely likely that, in a random
graph randomly cut in two parts, the largest one is a community
according to the previous definitions. However, it is extremely
unlikely that both subgraphs fulfill the definitions simulta-
neously; therefore, if we accept divisions only if both groups
fulfill the definition of community, we correctly find that a
random graph has no community structure. We extend this
criterion to the general case: if less than two subgraphs obtained
from the cut satisfy the definitions, then the splitting is consid-
ered to be an artifact and is disregarded.

We can now summarize the improved self-contained version
of the GN algorithm.

1. Choose a definition of community.
2. Compute the edge betweenness for all edges and remove

those with the highest score.
3. If the removal does not split the (sub-)graph go to point 2.

4. If the removal splits the (sub-)graph, test if at least two of the
resulting subgraphs fulfill the definition. If they do, draw the
corresponding part of the dendrogram.

5. Iterate the procedure (going back to point 2) for all the
subgraphs until no edges are left in the network.

It is important to remark that the quantities appearing in Eqs. 1
and 2 must always be evaluated with respect to the full adjacency
matrix. The application of this procedure to a network produces
a tree, where every branch-splitting represents a meaningful
(with respect to the definition) separation in communities.

It is now possible to blindly test the effectiveness of the GN
algorithm. We have considered the ‘‘artificial’’ graph already
discussed by Girvan and Newman. It is a simple network with N
nodes divided into four groups: connections between pairs
within a group are present with probability pin, whereas pairs of
nodes in different groups are connected with probability pout. As
the probability pout grows from zero, the community structure in
the network becomes less well defined.

For every realization of the artificial graph, the application of
the detection algorithm generates a tree. We consider the
algorithm to be successful if the four communities are detected,
each node is classified in the right community, and the commu-
nities are not further subdivided.

Fig. 2 presents the comparison of the fraction of successes for
the modified GN algorithm with the expected value computed
analytically. We see that the GN algorithm captures very well the
existence of communities in a strong sense, whereas it performs
less well for the weak definition. However, one should not be
misguided by the quantity presented in Fig. 2. By looking at a
softer measure of success, the fraction f of nodes not correctly
classified, one realizes that, when the algorithm with weak
definition seems to fail, it correctly identifies the four commu-
nities and it misclassifies only a few nodes up to much higher
values of pout. The deviations from the theoretical behavior
observed for small values of pout are due to the possibility that
one or more of the four communities are further split in smaller
subcommunities. This event, not taken into account in the
analytical calculation, becomes very unlikely as the size of the
system increases.

A Fast Algorithm
The GN algorithm is computationally expensive because it
requires the repeated evaluation, for each edge in the system, of

Fig. 2. Test of the efficiency of the different algorithms in the analysis of the artificial graph with four communities. The construction of the graph is described
in the text. Here N � 128 and pin is changed with pout to keep the average degree equal to 16. (Left) Strong definition: fraction of successes for the different
algorithms compared with the analytical probability that four communities are actually defined. (Right) Weak definition: in addition to the same quantities
plotted in Left, here we report, for every algorithm, the fraction f of nodes not correctly classified.
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a global quantity, the betweenness, whose value depends on the
properties of the whole system. Despite smart methods to
compute the edge betweenness simultaneously for all edges (30,
31), the evaluation of such a quantity is the time-consuming part
of the procedure. As a consequence, the time to completely
analyze a network turns out to grow fast with its size, making the
analysis unfeasible for networks larger than �10,000 nodes (22).

To overcome this problem we introduce a divisive algorithm
that requires the consideration of local quantities only and is
therefore much faster than the GN algorithm. The fundamental
ingredient of a divisive algorithm is a quantity that can single out
edges connecting nodes belonging to different communities. We
consider the edge-clustering coefficient, defined, in analogy with
the usual node-clustering coefficient, as the number of triangles
to which a given edge belongs, divided by the number of triangles
that might potentially include it, given the degrees of the
adjacent nodes. More formally, for the edge-connecting node i
to node j, the edge-clustering coefficient is

Ci, j
�3� �

zi, j
�3�

min��ki � 1�, �kj � 1��
, [3]

where zi, j
(3) is the number of triangles built on that edge and

min[(ki � 1),(kj � 1)] is the maximal possible number of them.
The idea behind the use of this quantity in a divisive algorithm

is that edges connecting nodes in different communities are
included in few or no triangles and tend to have small values of
Ci, j

(3). On the other hand, many triangles exist within clusters.
Hence, the coefficient Ci, j

(3) is a measure of how intercommuni-
tarian a link is. A problem arises when the number of triangles
is zero, because Ci, j

(3) � 0, irrespective of ki and kj {or even Ci, j
(3)

is indeterminate, when min[(ki � 1),(kj � 1)] � 0}. To remove
this degeneracy we consider a slightly modified quantity by using,
at the numerator, the number of triangles plus one:

C̃i, j
�3� �

zi, j
�3� � 1

min��ki � 1�, �kj � 1��
. [4]

By considering higher order cycles we can define, in much the
same way, coefficients of order g as:

C̃i, j
�g� �

zi, j
�g� � 1

si, j
�g� , [5]

where zi, j
(g) is the number of cyclic structures of order g the edge

(i, j) belongs to, and si, j
(g) is the number of possible cyclic

structures of order g that can be built given the degrees of the
nodes.

We can now define, for every g, a detection algorithm that
works exactly as the GN method with the difference that, at every
step, the removed edges are those with the smallest value of C̃i, j

(g).
By considering increasing values of g, one can smoothly inter-
polate between a local and a nonlocal algorithm. Notice that the
definition of C̃i, j

(g) guarantees that nodes with only one connection
are not considered as isolated communities by the algorithm,
since for their unique edge C̃i, j

(g) is infinite.
We have checked the accuracy of this algorithm by comparing

its performance with the GN method. Fig. 2 reports the results
for the artificial test graph with four communities. It turns out
that, with respect to the strong definition, this algorithm is as
accurate as the GN algorithm, both in the cycles of order g � 3
(triangles) and g � 4 (squares).

On the other hand, for the weak definition the best accuracy
is achieved with this algorithm with g � 4. Another test is
performed by considering the examples of social networks
already studied by GN. Fig. 3 shows the trees resulting from the
application of the GN algorithm and of the g � 4 algorithm to
the network of college football teams. Again, the results are very
similar, indicating that the local algorithm captures well the
presence of communities in that network.

Additional insight into the relationship between the GN
algorithm and this algorithm based on edge clustering is pro-
vided by Fig. 4, where the edge betweenness is plotted versus C̃i, j

(4)

for each edge of the graph of scientific collaborations studied in
ref. 15. It is clear that an anticorrelation exists between the two
quantities; edges with low values of C̃i, j

(4) tend to have high values
of betweenness. The anticorrelation is not perfect; the edge with
minimum C̃i, j

(4) is not the one with maximal betweenness. There-
fore, we expect the two algorithms to yield similar community
structures although not perfectly coinciding.

In this framework it is important to recall the parallel drawn
by Burt (32) between betweenness centrality and the so-called
redundancy. The definition of redundancy is very close to that of
node clustering and, much in the spirit of our work, Burt first
pointed out that nodes that belong to few loops are central in the
betweenness sense.

Fig. 3. Plot of the dendrograms for the network of college football teams, obtained by using the GN algorithm (Left) and our algorithm with g � 4 (Right).
Different symbols denote teams belonging to different conferences. In both cases, the observed communities perfectly correspond to the conferences, with the
exception of the six members of the Independent conference, which are misclassified.
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Let us now turn our attention to the question of the compu-
tational efficiency of our local algorithm. One can roughly
estimate the scaling of the computational time as follows. When
an edge is removed one has to check whether the whole system
has been separated in disconnected components and update the
value of C̃i, j

(g) in a small neighborhood of the removed edge. The
first operation requires a time of the order of M, the total number
of edges present in the network, whereas the time required by the
second operation does not scale with M. Because this operation
has to be repeated for all edges, we can estimate the scaling of
the total time as aM � bM2. We thus expect computational time
to depend linearly on M for small systems and to crossover to an
M2 regime for large sizes.

We have measured the velocity of this algorithm by computing
the time needed to generate the whole tree for a random graph
of increasing size N and fixed average degree (M 	 N). Results,
reported in Fig. 5, confirm that the algorithm based on the
computation of the edge-clustering coefficient is much faster
than the one based on edge betweenness, both for g � 3 and g �
4. The crossover between the initial linear dependence on N to
the N2 growth for the local algorithm is evident for g � 3.

Community Structure in a Network of Scientific Collaborations
In this section we consider an application of the fast algorithm
discussed in A Fast Algorithm to a network of scientific collab-
orations. In particular, we have considered the network of
scientists who signed at least one paper submitted to the E-print
Archive relative to Condensed Matter in the period 1995–1999
(http:��xxx.lanl.gov�archive�cond-mat). Data have been kindly
provided by Mark Newman (University of Michigan, Ann
Arbor, MI).

The network includes 15,616 nodes (scientists) but it has a
giant connected component that includes only n � 12,722
scientists. We have focused our attention on this giant compo-
nent, and we have applied to it our algorithm for g � 3 and g �
4. The time needed for the generation of the dendrogram for g �
3 is �3 min on a desktop computer with a 800-MHz CPU. The
algorithm detects, at the same time, the communities satisfying
the weak and the strong criteria. At the end of the procedure one
obtains, for every value of g, a list of communities identified in
a weak sense and another list of communities identified in a
strong sense. By definition, the second list is a subset of the first
one. Fig. 6 reports the size distributions (for g � 3 and g � 4) of
all the communities identified in a weak sense. These distribu-
tions feature a power-law behavior P(S) � S�� with � � 2, an
indication of the self-similar community structure of this net-
work (33). The exponent we observed coincides with the one
obtained, using the GN algorithm, in the framework of a recently
proposed model of social network formation (34).

For what concerns a more detailed analysis of the communi-
ties found, validation of the results is far from trivial, because no
quantitative criterion exists to assess their accuracy. One may
directly inspect the dendrogram to answer questions like: Are the
communities representative of real collaborations between the
corresponding scientists? Do they identify specific research
areas? Would a generic scientist agree about his or her belonging
to a given community? Obviously, all these questions cannot be
answered in a definitive and quantitative way. We have followed
this path, in part, and we have checked several subsets of the
network at different levels in the hierarchy. To the best of our
knowledge, the results seem reasonable to us. Of course, this
result does not represent a proof of the efficiency of the
algorithm. We refer the reader to the detailed results of our
analysis that we make available as additional supporting
information.

Conclusions
The detection of the community structure in large complex
networks is a promising field of research with many open

Fig. 4. Edge betweenness vs. the modified edge-clustering coefficient C̃i, j
(4),

for the network of scientific collaborations considered in Community Struc-
ture in a Network of Scientific Collaborations. Each dot represents an edge in
the network. See Community Structure in a Network of Scientific Collabora-
tions for details.

Fig. 5. Plot of the average time (in seconds) needed to analyze a random
graph of N nodes and fixed average degree 
k� � 5. The time refers to the
construction of the full tree down to single nodes (Fig. 1). No criterion to
validate the communities was imposed. The runs are performed on a desktop
computer with a 800-MHz CPU.

Fig. 6. Normalized size distribution of all the communities of scientists
identified in a weak sense by the algorithm described in A Fast Algorithm for
g � 3 (circles) and g � 4 (squares). In both cases, the behavior is well
reproduced by a power law with exponent �2.
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challenges. The concept of community is qualitatively intuitive.
However, to analyze a network it is necessary to specify quan-
titatively and unambiguously what a community is. Once a
definition is given it is in principle possible to determine all
subgraphs of a given network that fulfill the definition. However,
in practice, this task is computationally out of reach even for
small systems. Therefore, the search for the community structure
has generally a more limited goal: selecting, among all possible
communities, a subset of them organized hierarchically, a den-
drogram. Divisive and agglomerative algorithms carry out this
task. A comparison of the performances of such algorithms is
nontrivial. In some simple cases, as the artificial graph with four
subsets considered above, it is possible to assess quantitatively
the validity of the results. In other cases, like the network of
scientific collaborations, no quantitative measure exists to de-
cide, given a precise definition of community, how good a
dendrogram is. Typically, one may check whether the results
appear sensible. However, this assessment is far from objective,
being mediated by the observer’s own perception and by his�her
intuitive concept of community.

In this work we have proposed two improvements in the
construction of the dendrogram. First, we have devised a way to
implement, in a generic divisive algorithm, a quantitative defi-
nition of community. In this way algorithms become fully
self-contained, i.e., they do not need nontopological input to
generate the dendrogram. Then we have introduced a divisive
algorithm, which is based on local quantities and therefore is
extremely fast. Both these improvements have been tested
successfully in controlled cases. The analysis of the large network
of scientific collaborations gives results that appear reasonable.
However, it is clear that, as discussed above, this statement is
subjective and cannot be made more precise at present. Defi-
nitely, a quantitative measure for the evaluation of dendrograms
would be a major step forward in this field.

At this point a remark is in order. So far, we have only
discussed examples of the so-called social networks. It has been

shown (35) that social networks substantially differ from other
types of networks, namely technological or biological networks.
Among other differences, they exhibit a positive correlation
between the degree of adjacent vertices (assortativity), whereas
most nonsocial networks are disassortative. Although these
results are consistent with our and other’s findings about com-
munity structures in social networks, they put into question the
very existence of a community structure in nonsocial networks
and the possibility of detecting it with the existing algorithms.
From the perspective of our local algorithm, which relies on the
existence of closed loops, disassortative networks could, in
principle, be problematic because of the small number of short
cycles. However, interesting insight comes from the study of the
loops of arbitrary order (36). In particular, for four different
types of networks (two social and assortative and two nonsocial
and disassortative), measured values for the so-called average
grid coefficient (the extension of the concept of clustering
coefficient to cycles of order four) are two to four orders of
magnitude larger than the corresponding coefficients of a random
graph with the same average degree and size N. This argues in favor
of the presence of some sort of hierarchical structure and well
defined communities also in disassortative networks. It also hints
that our algorithm could be fruitfully applied also to nonsocial
(disassortative) networks, although future work is needed in this
direction.

We believe that the elements presented in this article can be
of great help in the analysis of networks. On the one hand, the
implementation of a quantitative definition of community makes
algorithms self-contained and allows analysis of the community
structure based only on the network topology. On the other
hand, the introduction of a class of local and fast algorithms
could open the way for applications to large-scale systems.

We thank Mark Newman for providing data on the networks of college
football teams and of scientific collaborations and Alain Barrat for useful
suggestions and discussions.
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