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Abstract

Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and
chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly
related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such
as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor
progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2
receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events
using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell
migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific
agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells
within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response,
lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or
metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective
role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and
provide new opportunities for therapeutic targeting.
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Introduction

Melanoma is a very aggressive and metastatic tumor that does

not respond well to standard therapeutic approaches, such as

radio- and chemotherapies. Consequently, patients diagnosed at

late stages of the disease often have a very poor prognosis, with

survival averaging approximately 8 months [1]. In fact, the

acquisition of a metastatic phenotype is directly related to

incurable disease in many types of tumors, making tumor

metastasis the main cause of death in cancer patients. To reach

secondary organs, tumor cells must acquire the ability to detach

from the primary site, invade the host stroma and reach lymphatic

or blood vessels. Once in the circulation, tumor cells must still

evade the host immune response, survive in the absence of cell

attachment, and be able to adhere and trans-migrate through the

endothelium to reach the target organs [2]. Although the

mechanisms behind each of these multi-step processes are not

completely elucidated, it is known that many tumor cells can

hijack the physiological function of G-protein-coupled receptors

(GPCR) and take advantage of their multiple functions to

proliferate, promote angiogensis, evade immune response and

invade host tissues to colonize secondary organs [3]. However,

emerging information suggests that host cells deploy counterbal-

ance mechanisms to avoid tumor dissemination. To date, a small

number of metastatic suppressor genes have been described that

significantly reduce metastasis in vitro and in vivo [4–5]. One of

these metastasis suppressor genes is KiSS1, the precursor of the

ligand for the Gaq – protein coupled receptor GPR54 [6], which

was originally shown to inhibit melanoma metastasis [4] and more

recently to inhibit CXCR4-mediated chemotactic response in

breast cancer cells [7] and endometrial cancer metastasis [8].

Kinins are important inflammatory mediators that are involved

in many pathophysiological processes. The kallikrein-kinin system

(KKS) response is initiated via the kallikrein-mediated cleavage of

kininogen into bradykinin (BK) or kallidin (KD). These two

peptides are biologically active; however, they can also act as

substrates of carboxypeptidases, originating desArg9-BK and

desArg10-KD. The kinin mediated response occurs through the

GPCRs known as the B1 and B2 receptors [9,10]. While the B2

receptor is ubiquitously expressed and has a high affinity for BK

and KD, the expression of the B1 receptor is inducible by

activation of CREB, AP1 and NFkB transcriptional factors [11],

and once expressed, this receptor binds preferentially to des-Arg9-

BK and des-Arg10-KD. While the role of kinin receptors in
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tumorigenesis is still poorly understood, it has been shown that

angiotensin-I converting enzyme (ACE) inhibitors – a widely used

family of anti-hypertensive drugs – have anti-tumor properties

[12–13]. This finding has been mainly attributed to decreased

angiotensin-II (AngII) formation, which is an octapeptide that

binds to two different G-coupled receptors known as AT1 and

AT2. AT1 is the receptor responsible for the classical effects of

AngII such as vasoconstriction [14] and has also been shown to

play a role in proliferation, tumorigenesis and metastasis [15–16].

Therefore, most of the anti-tumor properties of ACE inhibitors

have been eventually attributed to a decreased AT1 receptor

activation [17–18]. However, ACE also has kininase II activity,

which means that ACE inhibition not only reduces AngII

formation, but also impairs kinin degradation, which ultimately

leads to an increase in kinin availability [19–20]. The presence of

kinin receptors has been reported in several tumors, and a pro-

tumor role has been attributed to kinin B2 receptor [21–22].

Much less is known about the B1 receptor, although it has been

reported that the B1 receptor is up-regulated in pre-malignant and

malignant prostate lesions [23] and that its expression is associated

with better prognosis in estrogen-negative breast cancer patients

[24]. Conversely, it has also been reported that B1 receptor

activation induces expression of COX2 [25], MMP-2 and MMP-9

[26] and that B1 receptor specific antagonists diminish prolifer-

ation in breast cancer cells [27] and decrease primary tumor

growth in lung and prostate xenografts [28] and Ehrlich tumor

models [29]. However, a common feature among these previous

studies is the expression of the kinin B2 receptor. It has been

reported that the B1 receptor may play a pro-tumoral role via

cross-talk with the B2 receptor [30].

Considering that ACE inhibition eventually increases kinin

availability, that activation of B1 receptor has been reported to

inhibit cell migration in normal cells [31], and the fact that the B1

receptor is also a Gaq protein coupled receptor, similar to the

metastatic suppressor receptor GPR54, we hypothesized that B1

receptor activation, in the absence of B2 receptor activation, could

play a host protective role in tumor progression. In this study, we

show that B1 receptor activation inhibits cell migration in vitro and

decreases tumor growth in vivo. Moreover, tumors generated by

neoplastic cells that have been stimulated with B1 receptor agonist

prior to injection in mice are significantly less aggressive, with a

smaller number of tumor cells undergoing cell division, a reduced

vascular network and complete absence of metastatic lymph

nodes, which ultimately leads to an increase in animal survival.

Materials and Methods

Ethics statement
All the experiments were approved and performed in strict

accordance with the guidelines of the Ethics Committee on

Animal Experimentation from Faculty of Medicine at Ribeirão

Preto, University of São Paulo, (CETEA; protocol 025-2007).

Mice were bred and housed in a specific pathogen-free facility,

with room temperature controlled at 23uC, in a 12 h light/dark

circle, and received food and water ad libitum. Euthanasia was

conducted by cervical dislocation at study endpoint or earlier if

animals met any early removal criteria (lethargy, hunched posture,

or ruffled coat).

Materials
The B1 receptor specific agonist DABK was purchased from

Sigma. The peptide antagonist desArg9 [Leu8]-BK (DLBK) was

synthesized using the Fmoc solid phase strategy [32], hydrolyzed

[33], analyzed to confirm its amino acid sequence by ionic

exchange chromatography and purified by HPLC. To confirm its

biological activity, we tested the antagonist in a rabbit aorta

contraction assay as described previously [34]. All peptides were

solubilized in sterile water. DNAse, all PCR reagents and the

fluorescent probe for intracellular calcium FLUO-3/AM were

purchased from Sigma. Improm II for reverse transcription was

purchased from Promega. Anti-phospho-ERK, anti-ERK1/2,

horseradish peroxidase-conjugated secondary antibodies and an

ECL kit were all purchased from Santa Cruz Biotechnology. B1

receptor antibody was purchased from Abgent and cell culture

media and supplements were purchased from Gibco. cDNA

coding for B2 receptor, which was used to transfect Tm5 cells was

provided by Dr. Joao B. Pesquero [35]. Immunohistochemistry

reagents, including anti-Ki67, anti-CD31, secondary antibodies,

ABC kit and substrate (3,39-diaminobenzidine) were purchased

from Dako, BD Bioscience, Vector Lab and Sigma, respectively.

Cell culture
The Tm5 melanoma cell line and the non-tumorigenic melan-a

cell line were previously characterized and reported by Dr.

Miriam G. Jasiulionis and were maintained in RPMI 1640 pH 6.9

containing 5% FBS and 10 mg/mL of gentamicin, as previously

described [36]. The melan-a cells received 200 nM of phorbol 12-

myristate 13-acetate (PMA). All experiments using cells were

performed using subconfluent cultures (80–90%), and stimulation

was performed in serum-free media. Cells were treated with

antagonist (DLBK 10 mM) 30 min prior to treatment with the

agonist (DABK 1 mM) unless otherwise noted.

In vivo studies
Tm5 cells were stimulated with vehicle or DABK 1 mM in vitro

in serum free media for 24 h and then injected subcutaneously in

the dorsal superior region of C57/BL6 male mice weighting

approximately 25 g. All used drugs, peptides, and medium were

removed by extensively washing cells with PBS prior to injection.

Each animal received 36105 Tm5 cells in 100 ml of serum free

media. Tumor size and weight were monitored daily.

Gene expression analysis
Gene expression was analyzed by either semi-quantitative

(sqPCR) or quantitative PCR (qPCR). Tumor samples from in

vivo experiments were immediately frozen in liquid nitrogen and

then pulverized before extracting total RNA using Trizol reagent

(Invitrogen). One microgram of total RNA was used for DNAse

treatment and subsequent reverse transcription using the Improm

II protocol. For sqPCR analysis, target genes were amplified using

50 ng of cDNA and Taq platinum DNA polymerase. The

amplification procedure consisted of 26 cycles (cyclophilin B) or

40 cycles (all target genes) (1 min294uC, 1 min255uC and

1 min272uC). Samples were loaded into a 1.5% agarose gel

stained with ethidium bromide (1 mg/mL). For qPCR, 10–50 ng

of cDNA, platinum SYBR green qPCR supermix UDG with Rox

and the ABI Prism 7000 sequence detection system were used. We

quantified transcripts relative to the housekeeping gene cyclophilin

B as described previously [37]. All oligonucleotide primers used in

sq and qPCR analyses are listed in table S1 (GAPDH primers

were used as described in [38]).

Western Blotting
Melanoma cells were serum starved for 24 h and received either

vehicle or 1 mM of the B1 receptor agonist DABK for 0, 10, 30, 60

or 180 minutes for ERK activation assay, or 24 h to address kinin

B1 receptor levels. The cells were later lysed in a lysis buffer

Anti-Tumor Effect of the Kinin B1 Receptor
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consisting of Tris-HCl 10 mM, pH 7.5; NaCl 150 mM; EDTA

1 mM; EGTA 1 mM; SDS 0.1%; Nonidet P-40 1%; 1 mM

PMSF, 10 mg/mL leupeptin, 100 mg/mL aprotinin, 10 mM

benzamidine, 1 mM NaF, 1 mM sodium orthovanadate, and

1 mM DTT. The lysate was swirled for 30 minutes at 5uC and

centrifuged at 120006 g for 15 minutes. The supernatant was

subsequently analyzed for protein content. Samples were loaded

into 12% acrylamide gels and separated by SDS-PAGE. Next, the

proteins were transferred onto a nitrocellulose membrane. The

membranes were blocked with BSA 0.1% and incubated with

either anti-pERK, anti-ERK or anti-B1 receptor antibodies

followed by anti-mouse (pERK) or anti-rabbit (ERK and B1

receptor) secondary horseradish peroxidase-conjugated antibodies.

Immunoblots were visualized using an ECL kit and quantified by

densitometry using the software ImageJ (http://rsb.info.nhi.gov/

ij/).

Calcium mobilization assay
Fifty percent confluent cells were loaded with the fluorescent

probe FLUO3/AM (1 mM for 30 minutes at 37uC) and then kept

in a buffer solution containing NaCl 135 mM, KCl 5 mM,

HEPES 10 mM, MgCl2 1 mM, glucose 2 mM, and CaCl2 2 mM

at pH 7.2. Cells were stimulated with either DABK (1 mM),

DLBK (10 mM) or both at the moment of image. Fluorescence

imaging experiments were performed with a scanning laser

confocal microscope (Leica SP5, Leica, Bensheim, Germany) with

a 63X water immersion objective. The fluo-3 fluorescence dye was

excited at 488 nm using an argon ion laser, and the emitted

fluorescence was measured at 510 nm. Time-course software was

used to capture images of the cells (zyt) in the Live Data Mode

acquisition. All experiments were done at room temperature (23–

25uC).

Wound healing assay
The protocol described previously was used with minor

modifications [39]. Briefly, confluent Tm5 or B16F10 cell cultures

were serum starved for 24 h. In experiments that required

expression of B2 receptor, cells were transfected 24 h prior to

serum starvation using lipofectamine and 1ug of DNA (empty

vector or vector cloned with the cDNA coding for the B2

receptor). Monolayers were wounded in a cross shape with a sterile

10 ml pipette tip, washed twice with PBS to remove detached cells

and stimulated with either vehicle or DABK (1 mM) in serum free

media. The crosses were photographed by phase-contrast micros-

copy immediately after wounding and after 24 h of healing. All

pictures were quantified at least three different points using Image

J software to determine the size of the wound. Values from time

zero were subtracted from the 24 h measurements to obtain the

percentage of closure. In addition, it has been observed that cells

lacking E-cadherin frequently break free from the advancing

‘‘wall’’ of cells and migrate into the wound area as lone cells [40], a

process known as single-cell migration. These cells were quantified

by subtracting the number of lone cells in the wound area before

and after 24 h of healing.

Cell viability assay
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium salt)

was added to a final concentration of 0.5 mg/mL into the culture

media and incubated for 3 h at 37uC. Viable cells are able to

reduce MTT, which creates a violet color. The addition of acid

isopropanol (0.04 M HCl) solubilizes the reduced product, which

can be quantified by measuring the absorbance at 570 nm.

Histopathological analyses
Tumor samples were collected with 1 cm of adjacent tissue to

preserve the tumor micro-environment and fixed in 10% formalin.

Paraffin blocks were prepared, sectioned (4 mm) and stained with

hematoxylin and eosin (H&E). Slides were analyzed using a Leitz

Model Aristoplan microscope (Germany) coupled to a Leica

Model DFC280 color camera (Heerbrugg, Germany). Mitotic

cells, and vessels from the tumor as well as peritumor

macrophages, neutrophils and lymphocytes were quantified at a

magnification of 4006 across 10 random, non-coincident micros-

copy fields.

Immunohistochemistry analyses
Sections from paraffin blocks (4 mm) were dewaxed, endogenous

peroxidase was blocked using 3% H2O2 in ethanol 70% and

antigens were retrieved using 10 mM of citric acid. Next, slides

were blocked in PBS/BSA 2.5% and first antibody against Ki67 or

CD31 were diluted in blocking solution 1:50 and incubated

overnight at 4uC. After washes, slides were incubated with

biotinylated anti-rat (Ki67) or anti-mouse (CD31) secondary

antibodies 30 minutes at room temperature and ABC kit for

another 30 minutes also at room temperature. Color development

was performed using 3,39-diaminobenzidine under microscopic

supervision. Once developed, reaction was topped by distillated

water washes, and slides were counterstained with Hematoxylin,

dehydrated and mounted in permanent mounting media. All slides

were scanned using Aperio CS at 4006 magnification and

quantification was assessed using Aperio algorithms.

Statistical analyses
Statistical significance was evaluated by either Student’s t-test

when only two groups were compared or by one-way analysis of

variance (ANOVA) using the Student-Newman-Keuls post-test for

multiple comparison. Differences between mean values were

considered significant when p,0.05.

Results

The kinin B1 receptor is functionally expressed in Tm5
melanoma cells
To investigate the contribution of the kinin B1 receptor in

tumor progression, we first evaluated the expression of key

components of kallikrein-kinin in normal (melan-a) and tumor

(Tm5) cells. We used RT-sqPCR to assess the expression of the

kinin B1 and B2 receptors. Figure 1A shows that none of the cell

lines express the kinin B2 receptor, while they do express the kinin

B1 receptor. Both melan-a and Tm5 cell lines also express

carboxypeptidase M, one of the main enzymes responsible for the

generation of DABK, the selective B1 receptor agonist. In

addition, we also confirmed the expression of B1 receptor in

Tm5 cells at the protein level by western blotting either at basal

state or after agonist stimulation. As seen in figure 1B–C, kinin B1

receptor is present in Tm5 cells and, although its mRNA is up-

regulated after DABK treatment for 24 h, we observed no changes

in the protein levels after the same time of stimulation. Next, to

evaluate if the B1 receptor was functionally active in the Tm5 cells,

we evaluated the intracellular pathways that are activated

following B1 receptor stimulation with its agonist. We first

examined ERK phosphorylation kinetics, obtaining a typical

activation profile following agonist stimulation (figure 1D). In

addition, we measured intracellular calcium concentration, which

rapidly and transiently increased upon agonist stimulation, as

expected for a Gaq-coupled receptor, which is completely

impaired in the presence of the B1 receptor antagonist

Anti-Tumor Effect of the Kinin B1 Receptor
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Figure 1. The kinin B1 receptor is functionally expressed in Tm5 melanoma cells. (A) Expression levels of the kinin B1 and B2 receptors,
carboxypeptidase M (CPM) and cyclophilin B as a housekeeping gene in melanocytes (melan-a) and melanoma cells (Tm5) evaluated by RT-sqPCR.
cDNA from mice hearts was used as a positive control, and water was used as a negative control. (B–C) Kinin B1 receptor is present at protein level in
Tm5 cells. Agonist stimulation of the cells has no effect in B1 receptor protein level, however a significant increase in mRNA level was detected. The
activity of the B1 receptor in Tm5 cells was accessed by western blotting for ERK phosphorylation (D) and confocal microscopy using FLUO3-AM to
evaluate intracellular calcium mobilization (E) after stimulation with the agonist DABK and blockage by the antagonist DLBK. All results are
representative or quantification of 3–5 independent experiments. Data are expressed as the mean 6 SEM; * p,0.05, with respect to non-stimulated
cells; DABK: desArg9-bradykinin; DLBK: desArg9-[Leu8]-bradykinin.
doi:10.1371/journal.pone.0064453.g001
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(figure 1E). These results indicated that the Tm5 tumor cell line

provides the possibility to study the role of the B1 receptor in

tumor progression without the interference of B2 receptor

signaling.

Activation of the kinin B1 receptor in the absence of B2
receptor impairs melanoma cells migration in vitro
To address the functional role of the B1 receptor in cellular

events related to tumor progression, we first evaluated the effect of

its agonist DABK in modulating cell migration. According to the in

vitro wound healing assay shown in figure 2A–B, incubation with

DABK for 24 h leads to ,50% reduction in wound closure with

partial recovery when pre-incubated with the antagonist. Evalu-

ation of the single cell migration profile from the same assay also

yielded ,50% reduction in the group treated with DABK

(figure 2C). To rule out the possibility that the observed

impairment in migration could be due to a possible cytostatic/

cytotoxic effect, we evaluated cell viability up to 48 h in the

presence of the aforementioned ligands. As shown in figure 2D,

neither incubation with DABK nor with DLBK changed the

number of viable cells. In addition, we also observed that the

inhibitory effects of B1 receptor activation in cell migration is likely

to be related to E-cadherin because activation of the B1 receptor

resulted in increased expression of this adhesion molecule

(p = 0.0642) (figure 2E). To evaluate a possible cell line specific

effect of DABK over Tm5 cell migration, we also evaluated

B16F10 cells. Accordingly, B16F10 murine melanoma cells were

screened for kinin receptors profile and, as shown in figure S1A,

these cells do express B1 receptor and do not have detectable levels

of B2 receptor mRNA. Moreover, similarly to Tm5 cells, B16F10

cells showed impaired migration in the presence of DABK

(figure S1B–C) as well as reduced single cell migration in the

wound healing assay (figure S1D). Interestingly, such inhibitory

effect of B1 receptor on cell migration is dependent on the absence

of B2 receptor, as expression of B2 receptor in Tm5 cells

completely rescued their full migration profile after stimulation

with DABK (figure 2F–H).

Activation of the B1 receptor in pre-implanted tumor
cells decreases tumor formation and peritumor
inflammatory infiltrate in vivo
To evaluate the role of the B1 receptor in tumor progression in

vivo, we stimulated Tm5 melanoma cells in vitro with DABK, the

B1 receptor agonist, prior to implantation in mice [16]. While

approximately 80% of the animals that received non-treated

control cells developed tumors up to 28 days after implantation,

only approximately 40% of animals that received DABK-treated

melanoma cells developed tumors (figure 3A). In other words,

more than 60% of the animals from the DABK-treated group

remained tumor-free during this period. Indeed, we monitored

tumor size daily from non-stimulated and DABK-stimulated Tm5

melanoma cells engrafted in mice and as seen in figure 3B the

growth curves of the control and DABK-tumors are quite

different. Although tumors in both groups appear at a similar

time-point, DABK-tumors are markedly smaller than control

tumors. Likewise, at day 28 after cell implantation, the average

tumor mass in the control group was 1.2 g, while in DABK-

treated group, the average tumor mass was 0.2 g (figure 3C). The

histopathological analysis of the tumors from both groups revealed

significant changes in the stroma of the control group but minor

changes in the DABK-stimulated tumors (figure 3D, dashed line).

Because previous studies have shown that a high number of

infiltrated inflammatory cells correlates with a poor prognosis in

melanoma [41], we decided to assess whether tumors from

DABK-stimulated cells had a lower number of infiltrated immune

cells. As shown in figure 3E, there are significantly fewer

macrophages, neutrophils and lymphocytes in the area surround-

ing the tumor in the DABK-stimulated tumors. Nonetheless, even

with fewer immune cells, the tumor that originated from the

DABK-stimulated cells had higher levels of IL-6 and IFN-c
mRNA (figure 3F), which are pro-inflammatory cytokines known

to be important in the anti-tumor immune response [42].

Melanomas generated from DABK-treated cells show
decreased proliferation and vascularization in vivo
We next performed comparative histopathological analyses with

tumor samples from the two groups (control and DABK-treated

cells). Tumors generated from DABK-treated cells had signifi-

cantly less mitotic cells and a poorer vascular network compared to

tumors from the control group (figure 4A). Histological findings

were further confirmed by immunostaining for proliferation and

endothelial markers. In figure 4B, we show representative images

and quantification of Ki67 staining in control and tumors

generated from DABK-treated cells. The DABK-treated tumors

show significant lower levels of Ki67 positive cells as compared to

tumors from the control group. A similar scenario is seen in

figure 4C, where we show that CD31 staining is also decreased in

tumors originated from DABK-treated cells as compared to non-

stimulated cells. The ability of tumor cells to grow and metastasize

is related to their capacity to undergo morphological/functional

changes that will enable those cells to become more motile. In this

sense, we assessed expression levels of the adhesion molecule E-

cadherin within the tumor mass as well as of TGF-b, a cytokine

known for regulating key steps on motility of epithelial cells by

inducing EMT. As shown in figure 4D–E, tumors originated from

DABK-stimulated cells have higher E-cadherin mRNA levels and

lower TGF-b mRNA levels, which correlates with impaired

migration capability observed in vitro (see figure 2). These results

suggest that in addition to impairing primary tumor growth, B1

receptor activation could also play a role in inhibiting metastasis.

Activation of the B1 receptor in melanoma cells
decreases metastasis and increases animal survival
To address whether B1 receptor activation plays an inhibitory

role in tumor progression and metastasis, we performed

histopathological analyses that revealed extremely aggressive

features in tumors generated from Tm5 melanoma cells. These

cells do not show a well-established capsule and frequently invade

surrounding tissues, as shown in figure 5A. Moreover, we also

observed spontaneous lymph node metastases in 75% (9/12) of the

control mice (figure 5B, inner panel and 5A). Conversely, tumors

from DABK-treated cells presented a clear capsule delimitating

tumor borders, and we did not observe any invasion into the

surrounding tissues, as shown in figure 5A, or any lymph node

metastases (0/12) in animals implanted with DABK-treated tumor

cells (figure 5B).

To evaluate the possibility of late and recurrent onset of disease,

we monitored survival up to 150 days after control or DABK-

stimulated cell implantation. Strikingly, we observed that animals

that did not developed a tumor within the first 30 days after

implantation with DABK-stimulated cells were still alive and

tumor-free after 5 months, while 100% of animals that received

control cells had to be euthanized as late as the beginning of the

second month (figure 5C).

Anti-Tumor Effect of the Kinin B1 Receptor
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Discussion

The kallikrein-kinin system has a pivotal role in inflammation

and vascular permeability systemically. However, many new

pathophysiological functions have been attributed to this system

since it has been discovered that most of the components of the

system can have a local role in different organs, including brain

[43–45]. The kallikrein-kinin system role in cancer is far from

being completely understood, even though the prostate-specific

antigen (PSA), which is currently a key marker for prostate cancer

diagnostics [46], is in fact a kallikrein. Indeed, several other

kallikreins have been described as potential biomarkers for tumor

progression [47–48]. While recent studies started to uncover the

underlying mechanisms by which the kallikrein-kinin system

modulates tumor progression, mainly concerning to the B2

receptor, many aspects remain to be elucidated. In this study,

we report that the kinin B1 receptor in the presence of its agonist

(DABK) and in the absence of the B2 receptor plays a host

protective role during murine tumor progression.

The presence of the kinin B2 and B1 receptors in neoplastic

tissues has been reported in various tumor cell lines and in patient

biopsies [21,23,49]. Indeed, it has been shown that blocking the

B2 receptor with specific antagonists decreases tumor size,

angiogenesis and metastasis [22,50–51] and that the B1 receptor

also seems to play a pro-tumor role in prostate cancer [23]. Most

of the studies relating the kallikrein-kinin system to cancer were

performed in models expressing both the B1 and B2 receptors

[23,25,29]. It is important to mention that a critical role for the

cross talk between the B1 and B2 receptors in kinin-mediated

proliferation in androgen-insensitive prostate tumor cells has been

reported [30]. Thus, we believe that the reported pro-tumor role

for the B1-receptor is most likely due to the cross talking effect with

the B2 receptor. Here, we demonstrate that the Tm5 murine

melanoma cell line constitutively and uniquely expresses a

functional B1 receptor, while the B2 receptor is not present. We

took advantage of this finding to address the particular contribu-

tion of the B1 receptor in tumor progression.

After Tm5 cells stimulation with the B1 receptor agonist DABK

we observed increased intracellular calcium concentration and

Figure 2. Activation of the kinin B1 receptor in the absence of kinin B2 receptor inhibits melanoma cell migration in vitro. Wound
healing assays were performed to evaluate the role of the B1 receptor in melanoma cell migration, (A) representative image and quantification of
healing (B) and single cell migration (C) of 4 independent experiments in triplicate. (D) Cell viability was accessed using the MTT assay 24 and 48 h
after DABK or DLBK stimulation; (E) E-cadherin mRNA expression levels were evaluated by RT-qPCR 24 h after B1 receptor agonist stimulation.
Introduction of kinin B2 receptor in B2 receptor-free cells abrogates DABK-mediated migration inhibition (F–H). (All results are from 2–3 independent
experiments performed in triplicate, unless otherwise stated). DABK: desArg9-bradykinin; DLBK: desArg9-[Leu8]-bradykinin. Data are expressed as the
mean 6 SEM; * p,0.05; ** p,0.01; *** p,0.001; **** p,0.0001. The scale bars represent 200 mm.
doi:10.1371/journal.pone.0064453.g002
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also increased levels of ERK phosphorylation, but no alteration in

cell proliferation. Previous reports using systems in which both

receptors are expressed, describe an induction of cell proliferation,

which suggests that the B2 receptor may be required for pro-

proliferative effects of DABK. Actually, we observed that in vivo

tumors exposed to DABK presented several elements of decreased

aggressiveness, including less proliferating Ki67 positive cells

within the tumor mass. While the mechanisms underlying such in

vivo inhibitory effects remains to be elucidated, the interface

tumor/host seems to play a major role. One possibility is the

Figure 3. Stimulation of melanoma cells with the B1 receptor agonist reduces tumor growth and peritumor inflammatory
infiltration after in vivo implantation. (A) Incidence of animals with palpable tumor 28 days after injection of DABK stimulated cells. (B) Tumor
growth curve from control and DABK-stimulated cells injected in C57/Bl6 mice. (C) Average tumor weight 28 days after tumor cell injection (D)
Representative images at low magnification showing the size of the peritumor inflammatory infiltrate (upper panel, dashed line and arrow) and at
high magnification showing the immune cells present in the tumor stroma (lower panel, * macrophage, arrow – neutrophil, dashed arrow –
lymphocyte). (E) Peritumor inflammatory infiltrate assessed by quantification of the number of macrophages, neutrophils and lymphocytes in ten
different high magnification fields (A = 400x; n = 6). (F) Detection of TNF-a, IL-6 and IFN-c cytokine expression in the tumor mass as assessed by RT-
qPCR (n = 6). In vivo studies of primary tumor growth n= 12; Data are expressed as the mean 6 SEM; * p,0.05; ** p,0.01; *** p,0.001; DABK:
desArg9-bradykinin; DLBK: desArg9-[Leu8]-bradykinin. Scale bars represent 200 mm and 50 mm in the upper and lower panels, respectively.
doi:10.1371/journal.pone.0064453.g003
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immune system act as a key player by decreasing in vivo tumor

proliferation, as we have observed changes in the cytokine profile

within the tumor mass when comparing control and DABK-

treated tumors. Furthermore, a significant decrease in melanoma

cell migration was observed in vitro. The ability of the B1 receptor

to disrupt cell migration has been previously described in non-

neoplastic arterial smooth muscle cells [31], although this effect

has not previously been reported in tumor cells. The mechanisms

underlying the inhibition of cell migration are not yet clear.

However, as previously reported [40] an increase in the expression

of adhesion molecules, such as E-cadherin, can strongly decrease

cell migration. Moreover, corroborating with previous data

reporting a functional role for B1/B2 receptors cross talk [30],

we show that introduction of B2 receptor in Tm5 cells completely

abrogated the B1-mediated effect of decreasing cell migration,

reinforcing a pivotal role for the B1/B2 receptors cross talk in

cellular response and ultimately in tumor progression.

Our model also allowed us to specifically address whether the

B1 receptor could play a role in tumor progression in vivo. In this

sense, Tm5 cells were stimulated in vitro with DABK and 24 h later

implanted into mice. This approach allowed us to evaluate the

contribution of the B1 receptor without the interference of a cross

talk with the B2 receptor. This aspect is especially important

considering that the agonists of both receptors differ only by the

presence or absence of a C-terminal arginine residue [10].

Remarkably, our data show that implantation of B1 receptor-

stimulated cells resulted in a decreased the incidence of tumor

formation. Besides that, tumors generated from B1 receptor-

stimulated cells exhibited a significant decrease of inflammatory

cells infiltration. This result is particularly interesting because in

many solid tumors, the presence of a high number of inflammatory

cells within the tumor area correlates with a poor prognosis [52].

Moreover, corroborating with a decreased incidence of tumor

formation, we found that within the tumor mass, which includes

tumor and host cells, mRNA levels of two pro-inflammatory

cytokines, IL-6 and IFN-c, were up-regulated in tumors from B1

receptor-stimulated cells compared to controls. Although inflam-

mation has been shown to be a hallmark of cancer [53], and

several pro-inflammatory cytokines play a role in tumor progres-

sion [54], IFN-c and IL-6 have been described as key elements in

host anti-tumor immune response [42]. It may be possible that

activation of the B1 receptor, by inducing secretion of cytokines

and chemokines, could attract and activate immune cells within

the tumor area. In this sense, lymphocytes would be able to

Figure 4. Stimulation of melanoma cells with the B1 receptor agonist decreases tumor proliferation and vascularization after in vivo
implantation. (A) Histological analysis of tumors generated from non-stimulated or DABK-stimulated melanoma cells (Rmitotic cells, blood
vessels). Number of mitotic cells and blood vessels were evaluated from ten different high magnification fields (A = 10640, n = 6). Scale bars represent
50 mm. (B) Immunohistochemistry analysis of proliferation marker Ki-67. Scale bars represent 50 mm (C) Immunohistochemistry analysis of blood
vessel marker CD-31. Scale bars represent 200 mm. E-cadherin (D) and TGF-b (E) mRNA expression within the tumor mass was evaluated by RT-qPCR
(n = 6). Data are expressed as the mean 6 SEM; * p,0.05; ** p,0.01; *** p,0.001; **** p,0.0001; DABK: desArg9-bradykinin.
doi:10.1371/journal.pone.0064453.g004
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successfully elicit an anti-tumor immune response, which then

could explain the higher levels of IFN-c observed in the tumor

mass of tumors from DABK-treated cells [42]. On the other hand,

lymphocytes recruited to tumors from the control group showed to

be associated with lower levels of IFN-c. This allow us to speculate

that tumor cells possibly were able to evade immune response by

inducing anergy and/or senescence of T cells [55], or even

inducing differentiation of T cells into T regulatory cells, which

would then lead to a down regulation of immune response. In fact

this hypothesis seems fairly coherent with the increased levels of

TGF-b observed in control tumors when compared with tumors

originated from DABK-treated cells, as it is known that tumor cells

as well as regulatory T cells secrete TGF-b to inhibit immune

response [56].

Tumors originated from DABK-stimulated cells also displayed

patterns of decreased aggressiveness, such as fewer proliferating

cells and a poorer vascular network. Another feature of

aggressiveness is the ability of tumor cells to detach from the

primary tumor and reach the circulation to colonize secondary

organs and metastasize [2]. One of the required steps for a tumor

cell to metastasize is to acquire a more motile and less adhesive

phenotype. Therefore, we hypothesized that tumors originated

from DABK-stimulated cells would also display reduced metastasis

ability. In this sense, we observed that DABK-stimulated tumors

had significantly higher levels of the adhesion molecule E-

cadherin. Placing these findings in context, they suggest that

activation of the B1 receptor by its agonist reprogrammed

melanoma cells, which then generated less aggressive primary

tumors, less prone to metastasize, and that ultimately improved

animal survival.

Several studies have shown that ACE (as also known as kininase

II) inhibition resulted in anti-tumor effects. [12–13]. Indeed, ACE

is a key functional point connecting the renin-angiotensin system

and the kallikrein-kinin system, being responsible for AngII

formation as well as for kinin degradation [19–20]. Therefore,

any inhibition/impairment in ACE functionality ultimately leads

to a decrease in AngII levels and to an increase in kinin

availability. In this context, it seems discordant that ACE blockade

could play its anti-tumor role by increasing the activity of a pro-

tumor system, i.e., the kallikrein-kinin system. Hence, it is

tempting to speculate that the anti-tumor properties of ACE

inhibitors might not be exclusively mediated by impairment of the

renin-angiotensin system axis, but in fact may also involve the

kallikrein-kinin system axis.

Taken together, our results show that activation of the GPCR

kinin B1 receptor plays a host protective role during Tm5

melanoma progression in mice. The B1 receptor stimulation

decreases melanoma cell migration and decreases tumor growth,

proliferation, vascularization and immune cell infiltration, while

increasing the expression of the pro-inflammatory and anti-tumor

cytokines IFN-c and IL-6. All these factors contributed to the

complete absence of lymph node metastases and improved animal

survival. The identification of a new GPCR with anti-tumor

properties opens new avenues for the development and discovery

of new potential pharmacological targets to treat tumor growth

and dissemination, such the use of selective non-peptide B1

receptor agonists. These findings also have major implications for

Figure 5. Activation of the B1 receptor in melanoma cells decreases metastasis and increases animal survival. (A) Representative
images of the tumor borders showing the invasive behavior of tumors derived from non-stimulated cells and the well-delimited borders of tumors
derived from DABK-stimulated cells. The inner panel in the control picture shows a representative image of a metastatic lymph node (* tumor cells
invading muscle tissue; R well delimited and encapsulated tumor border). (B) Number of animals with lymph node metastases (C) Survival curve of
C57/Bl6 mice that received control or DABK-stimulated tumor cells. n = 12 for lymph nodes metastasis analysis and n= 5 for survival study; Data are
expressed as the mean 6 SEM; * p,0.05; DABK: desArg9-bradykinin.
doi:10.1371/journal.pone.0064453.g005
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ACE inhibitors, which are widely used to treat hypertension, and

their effects on a concomitant tumor disease, which require further

investigation.

Supporting Information

Figure S1 Activation of the kinin B1 receptor inhibits
cell migration of B16F10 melanoma cells in vitro. (A)

B16F10 melanoma cells express B1 receptor, but do not express

kinin B2 receptor. B1 receptor activation decreases collective (B–

C) and single cell migration (B and D) in B16F10 melanoma cell

line. DABK: desArg9-bradykinin; n = 3 independent experiments

performed in triplicate; Data are expressed as the mean 6 SEM;

**** p,0.0001. The scale bars represent 200 mm.

(TIF)

Table S1 Primers sequences, temperature of melting
and fragment size obtained in semi-quantitative PCR
(sqPCR) and/or quantitative PCR (qPCR). Bp: base pairs;

Tm: temperature of melting; CPM: carboxypeptidase M; TGF-b:
transforming growth factor beta; INF-c: interferon-gamma.
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