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Perspective: Stochastic algorithms for chemical kinetics
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We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical
simulation algorithms. We first focus on dilute, well-mixed systems, whose description using or-
dinary differential equations has served as the basis for traditional chemical kinetics for the past
150 years. For such systems, we review the physical and mathematical rationale for a discrete-
stochastic approach, and for the approximations that need to be made in order to regain the traditional
continuous-deterministic description. We next take note of some of the more promising strategies for
dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review
some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-
mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system
into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between
adjacent subvolumes together with chemical reactions inside the subvolumes. © 2013 AIP Publishing
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. INTRODUCTION

When Ludwig Wilhelmy, in 1850, described the buffered
conversion of sucrose into glucose and fructose using a first-
order ordinary differential equation (ODE),! ODEs were in-
augurated as the standard tool for mathematically modeling
chemical kinetics. The suitability of ODEs for that task must
have seemed obvious to 19th century scientists: after all,
ODEs provided the mathematical basis for that most funda-
mental of all dynamical theories, Newton’s second law. But
ODEs in chemical kinetics imply a continuous-deterministic
time evolution for the species concentrations. That is at odds
with the view, which was not universally accepted until the
early 20th century, that matter consists of discrete molecules
which move and chemically react in a largely random manner.

For a long time, scientists showed little concern with
this mismatch. The first serious attempt to model the intrin-
sically discrete-stochastic behavior of a chemically reacting
system was made in 1940 by pioneering biophysicist Max
Delbriick;2 however, no further work in that vein was done
until the 1950s. An overview of work through the late 1960s
has been given by McQuarrie.? In the 1970s, procedures for
stochastically simulating chemically reacting systems using
large computers began to be devised. But controversies arose
over the correct physical basis and mathematical formalism
for stochastic chemical kinetics. By the end of the 1970s,
that confusion, along with the fact that molecular discreteness
and randomness posed no problems for ODEs in describing
typical test-tube-size systems, effectively relegated stochastic
chemical kinetics to a subject of only academic interest. That
changed nearly two decades later, when Arkin, McAdams,
and a growing number of other researchers*”’ showed that in
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living cells, where reactant species are often present in rela-
tively small molecular counts, discreteness and stochasticity
can be important. Since then a great many papers have been
published on the theory, computational methods, and appli-
cations of stochastic chemical kinetics, practically all aimed
toward cellular chemistry.

In Sec. II, we outline our perspective on the stochastic
chemical kinetics of systems in which the reactant molecules
are “dilute” and “well-mixed”—terms that will be defined
shortly. The theoretical and computational picture for that
relatively simple scenario has become greatly clarified over
just the last dozen years. For situations where the reactant
molecules crowd each other or are not well-mixed, situations
that are quite common in cellular systems, progress has been
made, but the going is slow. Many important questions have
not yet been fully answered, and undoubtedly some have yet
to be asked. In Sec. III, we discuss some of the issues sur-
rounding one major strategy for simulating systems that are
not well-mixed. In Sec. IV we briefly summarize recent ac-
complishments and current challenges.

Il. DILUTE WELL-MIXED CHEMICAL SYSTEMS

A. The chemical master equation
and the propensity function

It was primarily through the work of McQuarrie® that
what is now called the chemical master equation (CME) be-
came widely known. For N chemical species S, ..., Sy whose
molecules can undergo M chemical reactions Ry, ..., Ry, and
with X;(¢) denoting the (integer) number of S; molecules in
the system at time ¢, the CME is a time-evolution equation
for P(x, t|Xo, to), the probability that X(¢¥) = (X,(?), ..., Xn(®)
will be equal to x = (x,..., xy), given that X(¢y)) = x¢ for
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some fy < t:

M
aP(X’ tlx(Ja t()) _ Z

Py [a;(x—v;)P(x—v;, t]|Xg, o)
j=1

—a;j(x)P(x, 1]xo, fo)]. 1)

Here v; = (vyj,..., vy;), where vj;; is the (signed integer)
change in the S; molecular population caused by one R; event.
And a;, now called the propensity function for reaction R;, is
defined to be such that, for any infinitesimal time increment
dt,

aj(x)dt = the probability, given X(7) = x, that
an R; event will occur somewhere inside
Qinlt,t+dt)y (j=1,...,M). )

The CME (1) follows rigorously from this definition of a;
and the above definition of P via the laws of probability.

It is sometimes thought that the solution of the CME is a
pristine probability function P(x, ) that describes the system
independently of any observer-specified initial condition.
That this is not so becomes clear when one realizes that
if nothing is known about the state of the system at any
time before ¢, then it will not be possible to say anything
substantive about the state of the system at . The solution
P(x, t | xq, tp) of the CME (1) actually describes the gradually
eroding knowledge that an observer, who last observed the
system’s state at time #y, has of the state of the system as time
increases beyond 7.2

The key player in the CME (1) from the point of view
of physics is the propensity function a; defined in Eq. (2).
As its name suggests, a; quantifies how likely it is that re-
action R; will fire. Early work on the CME tended to view
a; as merely an ad hoc stochastic extension of the conven-
tional reaction rate in the ODE formalism, with the latter hav-
ing the more rigorous physical justification. But the situation
is actually the other way around. As will become clear later
in this section, the ODE formalism is an approximation of
the stochastic formalism which is generally accurate only if
the system is sufficiently large. Therefore, although there is a
very close connection between propensity functions and con-
ventional deterministic reaction rates, the latter, being an ap-
proximate special case of the former, cannot be used to de-
rive the former. Nor can propensity functions be justifiably
obtained by assuming hypothetical models or rules. An hon-
est derivation of the propensity function must look directly
to molecular physics to see how chemical reaction events ac-
tually occur, and then adopt a mathematical formalism that
accurately characterizes that physical behavior.

B. Physical justification for the propensity function

The implicit assumption in (2) that a chemical reaction is
a physical event that occurs practically instantaneously means
that, at least for the dilute solution systems that we will be
primarily concerned with here, every R; must be one of two
types: either unimolecular, in which a single molecule sud-
denly changes into something else; or bimolecular, in which
two molecules collide and immediately change into some-

J. Chem. Phys. 138, 170901 (2013)

thing else. Trimolecular and reversible reactions in cellular
chemistry nearly always occur as a series of two or more uni-
molecular or bimolecular reactions.

Unimolecular reactions of the form §; — --- are in-
herently stochastic, usually for quantum mechanical reasons;
there is no formula that tells us precisely when an S| molecule
will so react. But it has been found that such an R; is prac-
tically always well described by saying that the probability
that a randomly chosen S; molecule will react in the next dt
is equal to some constant ¢; times df. Summing c;dt over all
x1 S; molecules in €2, in accordance with the addition law of
probability, gives Eq. (2) with a;(x) = ¢;x;.

The bimolecular reaction §; + S, — --- is more chal-
lenging. In 1976, Gillespie®'* presented a simple kinetic the-
ory argument showing that, if the reactant molecules com-
prise a well-mixed dilute gas inside €2 at temperature 7, then
a propensity function for S§; + S, — - - - as defined in (2) ex-
ists and is given by

aj(x1,x2) = (To}012¢;27") - xix,  (dilute gas).  (3a)

Here, o, is the average distance between the centers of a
pair of reactant molecules at collision (the sum of their radii
for hard sphere molecules); o = +/(8kgT)/(wmyy) is their
average relative speed, with m, being their reduced mass;
and ¢; is the probability that an S;-S, collision will produce
an R; reaction.!!

The derivation of Eq. (3a)!! is valid only if the reactant
molecules are “well-mixed” and “dilute.” The well-mixed re-
quirement means that a randomly selected reactant molecule
should no more likely be found in any one subvolume of the
system than in any other subvolume of the same size. But
note this does not require that there be a perfectly regular
placement of the reactant molecules inside €2, nor that there
be a large number of those molecules. If this well-mixed re-
quirement cannot be sustained by the natural motion of the
molecules, then it must be secured by external stirring. The
dilute requirement means that the average separation between
two reactant molecules should be very large compared to their
diameters, or equivalently, that the total volume occluded by
all the reactant molecules should comprise only a very small
fraction of €.

Generalizing the dilute gas result (3a) to a solution is ob-
viously a necessary first step toward making the CME appli-
cable to cellular chemistry. But doing that has long seemed
problematic. According to the standard theory of diffusion,
the root-mean-square displacement of a molecule in time At
is proportional to «/Ar; this suggests, at least on the basis of
the way in which the dilute-gas result (3a) is derived,'' that
the probability for a pair of diffusing molecules to react in
the next dr might not have the linear dependence on dt de-
manded by (2). But in 2009, a detailed physics argument was
produced12 which shows that if the §; and S, molecules are
solute molecules, well-mixed and dilute (in the above sense)
in a bath of very many much smaller solvent molecules, then
a propensity function for §1 + S, — - - - as defined in (2) does
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exist, and is given explicitly by

47T0122D121712q]'§21> ix
— CALA2
4Dy + 0120124

aj(xy, x2) = (
(dilute solution). (3b)

Here, D, is the sum of the diffusion coefficients of the S,
and S, molecules, and the other quantities are as previously
defined. Note that the requirement for diluteness in this so-
lution context applies only to the reactant solute molecules,
and not to the solvent molecules. In the “fast-diffusion” limit
defined by 4Dy, > 0120129, Eq. (3b) reduces to the dilute
gas result (3a). At the opposite “diffusion limited” extreme
4Dy K o120124q;, the factor in parentheses in Eq. (3b) re-
duces to 470 12D 1,97, which corresponds to a well known
deterministic rate result that can be obtained by adapting
Smoluchowski’s famous analysis of colloidal coagulation.'?
The derivation of Eq. (3b) actually makes use of the Smolu-
chowski analysis, but does so in a way that takes account of
the fact that the standard diffusion equation, on which the
Smoluchowski analysis is based, is physically incorrect on
small length scales.'?

It remains to be seen how the propensity function hypoth-
esis (2) will fare if the reactant molecules crowd each other, or
if they move by active transport mechanisms along physically
confined pathways. Even greater challenges attend relaxing
the well-mixed assumption, because without it the “state” of
the system can no longer be defined by only the total molec-
ular populations of the reactant species. Those populations
must be supplemented with information on the positions of
the reactant molecules in order to advance the system in time.
That in turn will require tracking the movement of individual
molecules in a manner that is physically accurate yet compu-
tationally efficient—a very tall order! Some efforts in these
directions will be discussed in Sec. III. But here we will as-
sume that the propensity function as defined in Eq. (2) exists,
and further that it has the form c;x; for the unimolecular re-
action §; — - - -, the form c¢;x(x; for the bimolecular reaction
Si + 82 — -, and the form c; %xl(xl — 1) for the bimolecu-
lar reaction 25| — - - -. Also important for later development
of the theory is the fact that ¢; will be independent of the sys-
tem volume 2 for unimolecular reactions, and inversely pro-
portional to 2 for bimolecular reactions. The latter property,
which can be seen in both Egs. (3a) and (3b), reflects the ob-
vious fact that it will be harder for two reactant molecules to
find each other inside a larger volume.

C. The stochastic simulation algorithm

The difficulty of solving the CME for even very sim-
ple systems eventually prompted some investigators to con-
sider the complementary approach of constructing simulated
temporal trajectories or “realizations” of X(f). Averaging over
sufficiently many such realizations can yield estimates of any
average that is computable from the solution P(x, ¢ | X, #p) of
the CME, and examining only a few realizations often yields
insights that are not obvious from P(x, ¢ | Xo, f). The earliest
known constructions of simulated trajectories were made in
1972 by Nakanishi'* and Solc and Horsdk,' and in 1974 by
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Bunker et al.'® But all these simulation procedures either were
designed for specific simple systems, or else made heuristic
approximations.

In 1976 Gillespie” '° proposed an exact, general-purpose
procedure for simulating chemical reactions which is now
called the stochastic simulation algorithm (SSA). The deriva-
tion of the SSA starts by posing the following question: Given
the system’s state X(f) = x at time ¢, at what time ¢ + t will
the next reaction in the system occur, and which R; will that
next reaction be? Since, owing to the probabilistic nature of
Eq. (2), T and j must be random variables, the answer to this
question can be supplied only by their joint probability den-
sity function (PDF), p(z, j | X, ). That function is defined
so that p(t, j | x, t) - drt gives the probability, given X(¥)
= X, that the next reaction event in the system will occur
in the time interval [t + 7,¢ + T + d1) and will be an R;.
Gillespie® showed that Eq. (2) together with the laws of prob-
ability implies that this PDF is given by

p(T’ ] |X7 t) = e_aU(X)Taj(X)’ (4)

where ag(x) = Z,i"zl ay(x). The SSA is thus the following
computational procedure:

1. In state x at time ¢, evaluate (as necessary) a;(X),...,
ay(x), and their sum ap(X).
2. Generate two random numbers 7 and j according to the

PDF (4).

3. Actualize the next reaction by replacing ¢ <— ¢ + t and
X <X+ v,

4. Record (x, #). Return to Step 1, or else end the simula-
tion.

Step 2 of the SSA can be implemented using any of sev-
eral different exact methods, and Gillespie’s paper® presented
two: the direct method, which follows from a straightforward
application of the inversion Monte Carlo generating technique
to the PDF (4);!7 and the next reaction method, which despite
its indirectness is equally exact. Of those two methods, the di-
rect method is usually more efficient, and it goes as follows:
Draw two unit-interval uniform random numbers u; and u5,
and take'!’

1 1
T = In , (5a)
ap(x) I —u
Jj
J = the smallest integer satisfying Z ap(X) > uy ap(x).
k=1
(5b)

Other exact methods for implementing step 2 were subse-
quently developed by other workers, and they offer compu-
tational advantages in various specific situations. The most
useful of those appear to be: the next reaction method of
Gibson and Bruck,'® which is a major reformulation of the
first reaction method; the first family method of Lok (de-
scribed in Ref. 19); the optimized direct method of Cao
et al.;*° the sorting direct method of McCollum et al;?! the
modified next reaction method of Anderson,?? which in this
context is the same as the next reaction method'® but is more
flexibly couched in the “random time change representation”
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of Kurtz;>32* and the composition-rejection method of Slepoy
et al.>® An in-depth critique of the computational efficiencies
of these and a few other methods has been given by Mauch
and Stalzer.?®

Delayed events are difficult to incorporate analytically
into the CME, but they can be handled easily by the SSA.
Thus, suppose a reaction occurring at time #; signals that, in-
dependently of any subsequent reactions that might occur, an
event E4 will occur at time #; + t4; e.g., a DNA transcription
might start at time #; and produce an mRNA a time 74 later.
The event’s delay time 74 could either be a specified value, or
it could be a random value that has been sampled from some
known PDF. In either case, E4 and its time #; + T4 are logged
into a “delayed-event queue” which will temporarily halt the
simulation when a reaction is first called for at some time
¢ > t; + tq. Since such a call implies that nothing hap-
pens between the time of the last reaction event and #; + 74,
the SSA simply advances the system without change to time
1 + t4, discharges the event E4, and then resumes the simula-
tion from time #; 4+ t4 (ignoring the call for a reaction at time
¢'). Contingencies can also be easily accommodated; thus, if
the delayed event E4 will occur at time #; + T4 only if some
other event E. does not occur first, then if and when E.. occurs
in [#, #; + t4] the SSA simply removes E4 from the queue.

D. Tau-leaping

It often happens that the average time between reactions,
which can be shown from Eq. (4) to be a;, 1(X), is so small that
simulating every reaction event one at a time is not computa-
tionally feasible, no matter what method is chosen to imple-
ment step 2 of the SSA. Tau-leaping, introduced in 2001 by
Gillespie,?’ aims to give up some of the exactness of the SSA
in return for a gain in computational efficiency. It “leaps” the
system ahead by a pre-selected time T which may encompass
more than one reaction event (this 7 is not the same as the
time t to the next reaction in the SSA). The procedure for do-
ing that is a straightforward consequence of the fact that the
Poisson random variable with mean at, which we denote by
P(at), gives the (integer) number of events that will occur
in the next time 7, provided that the probability of a single
event occurring in any infinitesimal time dt is adt where a is
any positive constant. Therefore, given X(¢) = x, if T chosen
small enough that

aj(x) ~ constantin [¢,¢ 4+ ), Vj (Istleap condition),

(6)

then during the interval [¢, t 4+ 1) there will be ~ P (a J (x)t)
firings of reaction channel R;. Since each of those firings aug-
ments the state by v;, the state at time 7 + 7 will be?’

M
X(t+r)ix+z73j (a;(x)7) v;, (7

j=1

where the P; are M independent Poisson random variables.
Equation (7) is called the fau-leaping formula. Its accuracy
depends solely on how well condition (6) is satisfied.

J. Chem. Phys. 138, 170901 (2013)

Implementing tau-leaping at first seems straightforward:
choose a value for t, generate M Poisson random numbers
with respective means a;(X)7, ..., ay(x)t, and then evaluate
Eq. (7). But in practice, there are problems. One is to deter-
mine in advance the largest value of t that satisfies the leap
condition (6). The strategy for doing that in Gillespie’s orig-
inal paper?’ was flawed, and allowed leaps to be taken that
could produce substantial changes in propensity functions that
have relatively small values. This not only produced inaccu-
rate results, it also occasionally caused the population of some
reactant species to go negative.”® Another problem in imple-
menting tau-leaping is that, while tau-leaping does become
exact in the limit T — 0, it also becomes infinitely inefficient
in that limit: when 7 is near zero, the M generated Poisson
random numbers in Eq. (7) will usually all be zero, and that
results in a computationally expensive leap with no change of
state. A way is therefore needed to make tau-leaping segue
to the SSA automatically and efficiently as T becomes com-
parable to the average time a; !(x) to the next reaction. A se-
ries of improvements in tau-leaping culminating in the 2006
paper of Cao et al.*® solves these two problems for most prac-
tical applications. A tutorial presentation of that improved
tau-leaping procedure is given in Ref. 30.

Among several variations that have been made on tau-
leaping, three are especially noteworthy: the implicit tau-
leaping method of Rathinam er al.,’' which adapts implicit
Euler techniques developed for stiff ODEs to a stochastic set-
ting; the R-leaping method of Auger et al.,> which leaps by
a pre-selected total number of reaction firings instead of by a
pre-selected time; and the unbiased post-leap rejection proce-
dure of Anderson.*

E. Connection to the traditional ODE approach

Tau-leaping is also important because it is the first step
in connecting the discrete-stochastic CME/SSA formalism
with the continuous-deterministic ODE formalism. The sec-
ond step along that path focuses on situations in which it is
possible to choose a leap time t that is not only small enough
to satisfy the first leap condition (6), but also large enough to
satisfy

aj(x)T > 1, Vj (2nd leap condition) . (8)

In that circumstance, we can exploit two well known results
concerning N (i, o), the normal random variable with mean
p and variance o2 First, when m > 1, the Poisson ran-
dom variable P(m) can be well approximated by N (m, m), at
least for reasonably likely sample values of those two random
variables. And second, N (i, 02) = u + o N(0, 1). Applying
those two results to the tau-leaping formula (7), again assum-
ing that both leap conditions (6) and (8) are satisfied, yields

M M
X(t + 1) ix+2vjaj (x)r+zvj,/aj x) N;(0, 1) /7.

j=1 j=1
(9a)
From one point of view, Eq. (9a) is simply an approxima-

tion of the tau-leaping formula (7) that has replaced Poisson
random numbers with normal random numbers. But recalling



170901-5 Gillespie, Hellander, and Petzold

that x = X(¥), and noting that because of condition (6) we can
regard T as an infinitesimal df on macroscopic time scales, we
can also write Eq. (9a) as

M
X(t +dt) = X(0) = Y vja; (X(1)dt
j:

Ja; X)) N0, 1) Vdt.

||M§ -

(9b)

This equation has the canonical form of a “stochastic differen-
tial equation” or “Langevin equation.”* It is called the chem-
ical Langevin equation (CLE).

This derivation of the CLE is due to Gillespie.*> For rea-
sons that can be understood from this derivation, the CLE will
not accurately describe “rare events.”® But if the system ad-
mits a dt = t that is small enough to satisfy the first leap
condition (6) yet also large enough to satisfy the second leap
condition (8), then the CLE should give a fair account of the
typical (as opposed to the atypical) behavior of the system.
As a set of N coupled equations, the CLE (9b) is much less
formidable than the CME (1), since the latter is a set of cou-
pled equations indexed by x. Furthermore, since a numerical
simulation using Eq. (9a) will, as a consequence of condi-
tion (8), step over very many reaction events for each reaction
channel, the CLE will be much faster than the SSA.

But the CLE requires both leap conditions to be satisfied,
and that is not a trivial requirement since it is easy to find sys-
tems for which that cannot be done. But in 2009, Gillespie37
proved that both leap conditions can always be satisfied, and
hence the CLE will always be valid, if the system is made
sufficiently “large” in the sense of the thermodynamic limit—
where the molecular populations are imagined to go to infinity
along with the system volume €2 while the concentrations re-
main constant. The proof of that result uses the earlier noted
fact that real-world elemental reactions R; have propensity
functions that are either of the form c;x; with ¢; independent
of @, or ¢jx;x; with ¢; proportional to Q1 that implies that, in
the thermodynamic limit, all real-world propensity functions
aj(x) grow linearly with the system size. Therefore, roughly
speaking, after satisfying the first leap condition (6) by fixing
T sufficiently small, we can satisfy the second leap condition
(8) simply by taking the system sufficiently close to the ther-
modynamic limit.

As the thermodynamic limit is approached, the left side
of the CLE (9b) grows linearly with the system size; the
first term on the right, being proportional to the propensity
functions, also grows linearly with the system size; and the
second term on the right, being proportional to the square
roots of the propensity functions, grows like the square root
of the system size. So in the full thermodynamic limit, the
second term on the right of the CLE (9b) becomes negligibly
small in comparison with the other terms, and that equation
reduces to the ODE3®

M

Z ja; (X(0)).

dX(t)

(10a)

J. Chem. Phys. 138, 170901 (2013)

This is the reaction rate equation (RRE), the ODE of tradi-
tional chemical kinetics. Since as we have just seen, the RRE
is generally valid only in the thermodynamic limit, it is more
commonly written in terms of the concentration variable®’
Z(t) = X(1)/2 and the functions d;(z), the latter being defined

as the thermodynamic limit of Q' a;(x):
M
dZ(t) . .
= v;a; (Z©)). (10b)
j=1

The convergence of the jump Markov process described by
the CME (1) first to the continuous Markov process described
by the CLE (9b) and then in the thermodynamic limit to
the ODE (10b), also follows from results of Kurtz*® on the
approximation of density-dependent Markov chains.

The theoretical structure presented above is summarized
in Fig. 1. As we proceed from the top of that figure to
the bottom, we move toward approximations that require in-
creasingly larger molecular populations, but are computation-
ally more efficient. The question naturally arises: how many
molecules must a system have in order to be reliably described
at a particular level in Fig. 1?7 No general answer to that ques-
tion can be given, since any answer will depend on the struc-
ture and the parameter values of the reaction network.

a; (x)dt Prob that R; will fire in next dt
I .
|—{a/(x) ~ const over 7, Vj}15‘ L.C.
I
—— ¥
‘ CME ‘ ‘ SsA ‘ | Tau-Leaping |

I____.I____J
'—{aj(x)r>> 1, ‘v_’/'} 20 .C.

FIG. 1. Stochastic chemical kinetics is premised on the definition (2) of the
propensity function in the top box, a definition which must look to molec-
ular physics for its justification. The two solid-outlined boxes in yellow
denote mathematically exact consequences of that definition: the chemical
master equation (1) and the stochastic simulation algorithm (4). Dashed-
outlined boxes denote approximate consequences: tau-leaping (7), the chem-
ical Langevin equation (9), the chemical Fokker-Planck equation (not dis-
cussed here but see Ref. 35), and the reaction rate equation (10). The brack-
eted condition by each dashed inference arrow is the condition enabling that
approximation: reading from top to bottom, those conditions are the first leap
condition, the second leap condition, and the thermodynamic limit. The ra-
tionale for viewing the linear noise approximation (LNA)*! as an intermedi-
ate result between the CLE and the RRE is detailed in Ref. 42. It has been
shown3”-#? that for realistic propensity functions, getting “close enough” to
the thermodynamic limit will ensure simultaneous satisfaction of the first and
second leap conditions, at least for finite spans of time; therefore, the top-to-
bottom progression indicated in the figure will inevitably occur as the molec-
ular populations and the system volume become larger. But a given chemical
system might be such that the largest value of t that satisfies the first leap con-
dition will not be large enough to satisfy the second leap condition; in that
case, there will be no accurate description of the system below the discrete-
stochastic level in the figure.
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But it turns out that this question can be rendered prac-
tically irrelevant when doing simulations. To see why, sup-
pose we have a tau-leaping implementation that efficiently
segues to the SSA, such as the one described in Ref. 29, and
using it we have found a t that satisfies the first leap con-
dition (6). Then the number of firings in the next t of each
reaction channel R; will be well approximated by a Poisson
random variable with mean a;(x)z, as in the tau-leaping for-
mula (7). However, the call to the Poisson random number
generator for a sample value of each P; (a j (X)‘L’) can be han-
dled on a reaction-by-reaction basis: If ¢;(x)7 is “large” com-
pared to 1 then the Poisson random number generator can re-
turn instead a normal random number with mean and variance
aj(x)t, as would happen for all R; if we were using the
Langevin leaping formula (9a). Or, if a;(x)T is “very large”
compared to 1, so that the standard deviation ,/a;(x) T is neg-
ligibly small compared to the mean a;(x)7, then the Poisson
random number generator can return the non-random number
aj(x)t, as would happen for all R; if we were using the RRE
(10a). In this way, each reaction channel R; gets assigned to its
computationally most efficient level in Fig. 1. It is not neces-
sary for all the reactions channels to be assigned to the same
level, nor even for the simulator to be aware of the level to
which each reaction has been assigned.

The relationships outlined in Fig. 1 do not assume the
applicability of the system-size expansion of van Kampen.*!
But Wallace et al.**> have shown that the most commonly used
result of the system-size expansion, namely, van Kampen’s
linear noise approximation (LNA),*' does have a place in
Fig. 1: A surprisingly easy derivation*? of the LNA as a lin-
earized approximation of the CLE (9b) positions the LNA
midway between the CLE and the RRE. That positioning is
consistent with findings of Grima et al.** which indicate that
the CLE is indeed more accurate than the LNA. The LNA
describes the “initial departure” of the CLE from the de-
terministic RRE as we back away from the thermodynamic
limit to a large but finite system. That initial departure is
the appearance of normal fluctuations about the deterministic
RRE solution, the variances of which are given explicitly by
the LNA.

Concern about the accuracy of the CLE (9b) prompts the
question: Is there a formula for X(¢ + dr) — X(¢) that is ex-
actly equivalent to the CME/SSA? The answer is yes. It is the
T = dt version of the tau-leaping formula (7), which with
x = X(7) reads

M
X(t +dt) = X(t) = Y Pjla;(X(6))dt)v;.

j=1

This is so because the only constraint on the accuracy of
Eq. (7) is that T be “small enough,” and that constraint is al-
ways satisfied by a true infinitesimal dr (the df in the CLE
is a “macroscopic” infinitesimal). However, this equation is
practically useless for computation: since the Poisson random
variable P(m) takes only integer values, then P(a dt) for any
finite a will almost always take the value 0, so the right side
of the above equation will almost always be exactly 0. In con-
trast, the right side of the CLE (9b) will almost always give
some small but non-zero value for X(¢t + df) — X(¥). How-
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ever, integrating the above equation from ¢, to ¢ yields a more
useful result:

Mo
X~ X) = Y- [ Pytas X'y,
j=170

M t
:ZYJ‘ (/ a;(X(t/))dt/> v, (11)

j=1

where the Y; are “scaled, independent, unit-rate Poisson
processes.”** Equation (11) is the random time change repre-
sentation of Kurtz;?>?* it is fully equivalent to the CME, in es-
sentially the same way that a Langevin equation is fully equiv-
alent to a Fokker-Planck equation. As shown by Anderson,??
Eq. (11) provides an alternate way of viewing the next reac-
tion method of Gibson and Bruck;!® furthermore, it is the ba-
sis for Anderson’s modified next reaction method?? and post-

leap rejection tau-leaping procedure.

F. Stiff systems and the slow-scale SSA

Many real-world chemical systems include a mixture of
fast and slow reaction channels which share one or more
species. Perhaps the simplest example is

S 2853 S5 with ¢ > cs. (12)
[&]

Here, successive R3 firings will be separated by very many
relatively uninteresting R; and R firings; yet the latter will
consume most of the time in a regular SSA run. This ineffi-
ciency cannot be overcome by ordinary tau-leaping, because
leap times that satisfy the first leap condition will typically be
on the order of the average time between the fastest reactions.
An analogous computational inefficiency plagues determinis-
tic chemical kinetics, where it is known as “stiffness.”

The slow-scale stochastic — simulation algorithm
(ssSSA)® is a way of handling this problem that com-
bines efficacy with a clear theoretical justification. It begins
by defining as “fast reactions” those which occur much more
frequently than all the other reactions, which are designated
“slow.” In reactions (12), that criterion designates R; and
R, as fast reactions, and R3 as a slow reaction.*® Next the
ssSSA identifies as “fast species” all those whose populations
get changed by a fast reaction, and all the other species as
“slow.” In reactions (12), S; and S, are fast species, and S3
is a slow species. The ssSSA then defines the “virtual fast
process” (VFP) to be the fast species populations evolving
under only the fast reactions; in reactions (12), the VFP is
X1 and X, evolving under R; and R,. Unlike the real fast
process, where fast species populations can also get changed
by slow reactions (in this case R3), the VFP will always have
a Markovian master equation. For the ssSSA to be applicable,
the solution of the VFP master equation must have an
asymptotic (¢t — 00) steady-state which is effectively reached
in a time that is small compared to the average time between
slow reactions. In contrast to several other approaches to
the stochastic stiffness problem (implicit tau-leaping, hybrid
methods, etc.), the ssSSSA does not require the fast species to
have large molecular populations.
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The goal of the ssSSA is to skip over uninteresting fast
reactions and simulate only the slow ones, using modified ver-
sions of their propensity functions. What allows that to be
done in a provably accurate manner is a result called the slow-
scale approximation lemma.*> It says that, under the condi-
tions described above, replacing the slow reaction propensity
functions with their averages over the fast species, as com-
puted from the asymptotic VFP, will yield a set of modi-
fied propensity functions for the slow reactions that can be
used in the SSA to simulate the evolution of the slow-species
populations.

If the separation between the fast and slow timescales is
sufficiently large, a substantial increase in simulation speed
can usually be achieved with the ssSSA. The main challenge
in implementing it is computing the required averages with re-
spect to the asymptotic VFP. That can be done exactly for re-
actions (12), but approximations are usually required for more
complicated reaction sets.* Often solutions of the equilib-
rium RRE corresponding to the asymptotic VFP will suffice,*’
although more sophisticated moment closure approximations
for the asymptotic VFP will usually be more accurate.*®4° In
some circumstances it may be easier to estimate the required
averages by making brief SSA runs of the VFP.>? A software
implementation of the ssSSSA which automatically and adap-
tively partitions the system and efficiently computes the modi-
fied slow propensity functions for general mass action models
is available.”!

G. Rare events

In biochemical systems, rare events are important be-
cause their occurrence can have major consequences. But the
standard SSA is ill-suited to quantifying rare events, since
witnessing just one will, by definition, require an impracti-
cally long simulation run. A promising way around this dif-
ficulty called the weighted SSA (WSSA) was introduced in
2008 by Kuwahara and Mura.>? Instead of pursuing a tradi-
tional mean first passage time, they innovatively focused on
the probability p(Xo, &; f) that the system, starting at time O
in a specified state x¢, will first reach any state in a specified
set £ before a specified time ¢ > 0. In other words, instead of
trying to estimate the very long time it would take for the rare
event to happen, the wSSA tries to estimate the very small
probability that the rare event will happen in a time ¢ of prac-
tical interest.

To compute p(xy, &; 1), the wSSA employs a Monte Carlo
procedure called importance sampling. More specifically, it
uses the SSA to advance the system to the target time ¢ with
the direct method (5), except that in the j-selection procedure
(5b) the propensity functions a;(x) are replaced with a mod-
ified set of propensity functions b;(x) which are biased to-
ward the target states £. Correction for that bias is achieved by
weighting the resulting realization by a product of the weights
(ajlag)/(b;/by) for each reaction in the realization. Realiza-
tions that fail to reach £ by time ¢ are assigned a weight of
0. The average of these weighted realizations then estimates
the probability p(xo, &; 1). Kuwahara and Mura®” showed that,
with appropriate weighting, their wSSA can achieve substan-
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tial improvements over runs made using the unweighted SSA.
Gillespie et al.? later introduced some refinements and clari-
fications, notably computing also the variance of the weighted
trajectories, which quantifies the uncertainty in the estimate of
p(Xo, &; 1) and helps in finding optimally biased propensities.
Choosing the biased propensity functions is the major
challenge of the wSSA, because it is often not clear which
reactions should be biased nor how strongly, and making sub-
optimal choices can result in being even less efficient than
the SSA. The original biasing scheme proposed by Kuwa-
hara and Mura™ took b;(x) = y;a;(x), with the constants
v being chosen by intuition and trial-and-error. Subsequent
innovations by Roh and Daigle and their collaborators>*-°
have yielded a greatly improved version of the wSSA called
the state-dependent doubly weighted SSA (sdwSSA). The
sdwSSA: (i) allows the proportionality constants y; to be
state dependent; (ii) biases not only the j-selection procedure
but also the t-selection procedure, replacing ao(x) in (5a)
with by(x); and (iii) uses the multi-level cross-entropy method
of Rubinstein’’ to develop a robust variance-estimation pro-
cedure that automatically determines the optimal biasing
propensities b;(x) with minimal input from the user.’

H. Sensitivity analysis

A commonly used measure of the sensitivity of the aver-
age of some function f of state x (e.g., the molecular popula-
tion of a particular species) to a parameter ¢ (e.g., the rate con-
stant of a particular reaction) at a specified time 7 > 0 given
X(0) = xg is the change in that average when c is changed by
some small amount ¢, divided by &:

(f(t;x0, c+8)) — (f(t; X0, ©))

&

sens { f(t;Xq, ¢), €} =

The most obvious way to estimate this quantity would be to
use a finite difference approximation, i.e., make two indepen-
dent sets of SSA runs to time 7, one set using the parameter
value ¢ and the other using the parameter value ¢ + &, and
compute the two averages (f(¢; Xo, ¢)) and (f(#; Xg, ¢ + ¢€)).
But since € needs to be small to localize the sensitivity at ¢, the
difference between those two averages will usually be much
smaller than the statistical uncertainties in their estimates for
runs of reasonable length. As a consequence, the relative un-
certainty in the estimate of the numerator on the right will
usually be too large to be informative.

One way of dealing with this problem, the origin of which
dates from the early days of Monte Carlo work, is called the
common random numbers (CRN) procedure. It generates the
SSA trajectories for ¢ and ¢ + ¢ in pairs, using the same
uniform random number string {u;} for each pair member,
and then computes the average of the difference [f(z, ¢ + ¢)
— f(t, ¢)] over the paired trajectories. The positive correla-
tion between the paired trajectories caused by using the same
string of random numbers to generate them gives [f(¢, ¢ + ¢€)
— f(¢, ¢)] a smaller variance about its average (f(t, ¢ + ¢)
— f(t, o)) = (f(t, c + €)) — ({f(¢, ¢)) than in the independent
run case. That in turn yields a more accurate estimate of the
sensitivity for a given number of runs. But unless 7 is very
small, the paired trajectories eventually get out of sync with
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each other. When that happens the correlation gradually dies
off, and the CRN estimate of sens{(f(#; Xo, ¢), €)} eventually
becomes no more accurate than what would be obtained with
the independent trajectories approach.

Rathinam et al.’® have developed a significant improve-
ment in this procedure called the common reaction path
(CRP) method. In generating the paired ¢ and ¢ + ¢ trajec-
tories, they use a variation of Anderson’s modified next reac-
tion method, in which paired trajectories use the same streams
of unit exponential random number for each of the unit-rate
Poisson processes Y; (j=1, ..., M) in the random time change
representation (11). That results in a significantly tighter cor-
relation between paired trajectories than in the CRN pro-
cedure, and hence a significantly more accurate estimation
of sens{(f(t; Xo, ¢), €)} for the same computational effort.
Anderson® has introduced a different variation of the mod-
ified next reaction method, called the coupled finite differ-
ence (CFD) procedure. It exploits the additivity of the ¥;s in
Eq. (11) to split them into sub-processes that are shared by
paired trajectories in a way that usually gives even tighter and
longer lasting correlations, and thus an even more accurate
estimate of the sensitivity. References 58 and 59 give detailed
descriptions of the CRP and CFD sensitivity estimation pro-
cedures.

lll. BEYOND WELL-MIXED SYSTEMS

Many situations require relaxing the assumption of a
well-mixed reaction volume. Compartmentalization and lo-
calization of reactions to cellular membranes are ubiquitous
mechanisms for cellular regulation and control. Even in cases
where the geometry does not call for spatial resolution, short-
range correlations can give rise to effects that can only be
captured in simulations with spatial resolution.®® And mod-
els increasingly call not only for spatial resolution, but also
stochasticity.%'%* A striking example of that is the oscillation
of Min proteins in the bacterium E. coli, where a determin-
istic partial differential equation model could replicate wild
type behavior but not the behavior of known mutants.®

A. The reaction-diffusion master equation
and simulation algorithm

A popular extension of the CME (1) to the spatially inho-
mogeneous case, which dates back at least to the 1970s,% is
the reaction-diffusion master equation (RDME). The original
idea of the RDME was to subdivide the system volume €2 into
K uniform cubic subvolumes or “voxels” ; (k = 1,..., K),
each of edge length £, in such a way that within each voxel
the reactant molecules can be considered to be well-mixed.
Chemical reactions are then regarded as occurring completely
inside individual voxels. The M nominal reactions {R;} thus
get replaced by KM reactions {Rj}, where R is reaction R;
inside voxel €2;. The propensity function aj for Ry is the
propensity function a; for R;, but now referred to the voxel
volume |2;| = K3, and regarded as a function of x; = (xi, .. .,
xni) Where x;; is the current number of S; molecules in ©2;. The
state-change vector vy for Ry is the v; for R;, but confined to
the space of x;.
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The diffusion of an §; solute molecule in a sea of many
smaller solvent molecules is generally assumed to be gov-
erned by the Einstein diffusion equation,

ap(r, 1)
ot

where p is the position PDF of the S; molecule and D; is its
diffusion coefficient. But the RDME actually models the dif-
fusion of an S; molecule from voxel €2 to adjacent voxel €2; as
a “diffusive transfer reaction” RY,,, whose propensity function
afk, is djuxjr where d;i; is a constant, and whose state-change
vector vl‘.’kl decreases xj; by 1 and increases x;; by 1. A vari-
ety of arguments show’”-% that this modeling of the diffusive
transfer of an S; molecule to an adjacent voxel will, for suffi-
ciently small &, approximate the behavior dictated by Eq. (13)
provided the constant dj; is taken to be

D;
ﬁ .
If B is the total number of planar surface boundary elements
shared by two adjacent voxels, then there will be a total of
2NB diffusive transfer reactions.

Since diffusion is here being modeled as sudden jumps
in the system’s state of the same mathematical type as the dy-
namics of the state jumps induced by chemical reactions, the
RDME is just the well-mixed CME (1) with the following
reinterpretation of its symbols: the N-dimensional state vec-
tor x = {x;} in Eq. (1) is now regarded as the KN-dimensional
state vector {x;}; and the M propensity functions {g;} and
their associated state-change vectors {v;} in Eq. (1) are now
regarded as those for the KM chemical reactions {Rj} and
the 2NB diffusive transfer reactions { RS, }, with all of those
reactions being treated on an equal footing. The algorithm
for exactly simulating the system described by the RDME is
therefore the SSA described in Sec. II C, but with these same
reinterpretations of x, a;, and v;.

Uniform Cartesian meshes are attractive and efficient to
use for relatively simple geometries, such as those that can be
logically mapped to rectangles. For cellular geometries with
curved inner and outer boundaries or subcellular structures,
however, it is challenging to impose a Cartesian grid that re-
spects the boundaries without a very fine mesh resolution. Us-
ing other types of meshes and discretizations, complex ge-
ometries can be accommodated in RDME simulations. By
defining the jump probability rate constants on a general mesh
based on a numerical discretization of Eq. (13), the probabil-
ity to find a (mesoscopic) molecule inside a certain voxel at a
given time will approximate that of a Brownian particle. Also,
in the thermodynamic limit, the mean value of the concentra-
tion of the molecules in a voxel will converge to the solution
of the classical (macroscopic) diffusion equation. The latter
follows from classical results of Kurtz.%

Isaacson and Peskin proposed to discretize the domain
with a uniform Cartesian mesh but allowed for a general,
curved boundary by using an embedded, or cut-cell, bound-
ary method.”®”! Engblom et al.”” took another approach, and
used an unstructured triangular or tetrahedral mesh and a fi-
nite element method to discretize the domain and to compute
the rate constants. The use of unstructured meshes greatly

= DV} p(r, 1), (13)

dip = (14)



170901-9 Gillespie, Hellander, and Petzold

simplifies resolution of curved boundaries, but also introduces
additional numerical considerations. Mesh quality becomes
an important factor for how accurately the jump constants d;y,
can be computed. An in-depth discussion of the criteria im-
posed on the unstructured mesh and the discretization scheme
can be found in Engblom et al.”?> In Drawert et al.”? the bene-
fits and drawbacks of structured Cartesian versus unstructured
triangular and tetrahedral meshes are further illustrated from
a software and simulation perspective. Figure 2 shows parts
of a Cartesian mesh (a) and a triangular mesh (b) in 2D. For
the unstructured triangular mesh, molecules are assumed to be
well-mixed in the “dual” elements, which are shown in pink.
The same interpretation holds for a Cartesian mesh, where the
dual is the staggered grid with respect to the primal mesh.

Perhaps the most challenging aspect of a RDME simu-
lation today is to choose the mesh resolution. Common prac-
tice to decide whether a given mesh is appropriate is to re-
peat simulations with both coarser and finer meshes to de-
termine whether the solution seems to change significantly
with respect to some output of interest. Such a trial and error
approach is not a satisfactory solution, since it is both time
consuming and difficult to determine to what extent the accu-
racy of realizations of the stochastic process changes. Devel-
opment of both a priori and a posteriori error estimates for the
effects of discretization errors in a general reaction-diffusion
simulation would help make RDME simulations more robust
from the perspective of non-expert users, and make possible,
e.g., adaptive mesh refinement. One step in this direction has
been taken by Kang et al.’* The situation is complicated by
the fact that the standard formulation of the RDME breaks
down for very small voxel sizes. This issue will be discussed
in more detail in Sec. III C.

B. Algorithms for spatial stochastic simulation

Variations on the several methods for implementing step
2 of the SSA in Sec. II C have been developed for reaction-
diffusion systems that exploit the relatively sparse dependen-
cies among the reactions and/or the simple linear form of the
diffusive transfer propensity functions. Since the total num-
ber of reactions (chemical plus diffusive transfer) will be very
large if there are many voxels, the direct method® will usually
be very inefficient, because of the linear computational com-
plexity of its j-selection step (5b) in the number of voxels.
EIf and Ehrenberg®” proposed the next subvolume method,
which combines ideas of Lok’s first family method (described
in Ref. 19) and Gibson and Bruck’s next reaction method,'®
in an algorithm specifically tailored for reaction-diffusion sys-
tems. Reactions are grouped into families according to their
voxels, and one samples first the firing time of the next voxel
family, then whether it was a chemical reaction or a diffusive
transfer reaction, and finally which particular reaction. The
methodology of the next reaction method is used to select the
next firing voxel, so the complexity in selecting the next event
increases only logarithmically with the number of voxels.

As the voxel size h is made smaller, the growing num-
ber of voxel boundaries together with the increasing val-
ues of dy; in Eq. (14) conspire to increase the number of
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FIG. 2. Parts of a Cartesian mesh (a) and an unstructured triangular mesh
(b). Molecules are assumed to be well-mixed in the local volumes that make
up the dual elements of the mesh (depicted in pink color). For the Cartesian
grid (a), the dual is simply the staggered grid. The dual of the triangular mesh
in (b) is obtained by connecting the midpoints of the edges and the centroids
of the triangles. (c) shows how a model of a eukaryotic cell with a nucleus
(green) can be discretized with a mesh made up of triangles and tetrahedra.
The figure is adapted from Ref. 70, where a model of nuclear import was
simulated on this domain using the URDME software.
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TABLE 1. Simulation times for a spatial stochastic system simulated to
a final time of 200 s with the next-subvolume method, as implemented in
URDME.

Nmax® No. of voxels t(s)° No. of events/s (s™!)  No. of events
2x1077 1555 56 3.0x10° 1.7x108
1x1077 10 759 333 1.8x10° 6.0x108
5x1078 80 231 2602 0.8x10° 22.8x108

Yhmax is the maximum local mesh size allowed in the unstructured mesh; it corresponds
to hin Eq. (14).
b is the execution time; it grows rapidly with increasing mesh resolution.

diffusive transfer events that occur over a fixed interval of
system time. This is illustrated in Table I, where we show the
execution time for next subvolume method as implemented
using the URDME software package,’”> when applied to a 3D
simulation of Min oscillations in the rod-shaped bacterium E.
coli.% Although the time to generate each individual event
(fourth column) scales well with the number of voxels (sec-
ond column), the total time to simulate the system (third col-
umn) grows rapidly. For the finest mesh resolution, 99.98%
of all events are diffusive transfers. Thus, the stochastic sim-
ulation of reaction-diffusion systems with ever finer spatial
resolution eventually becomes dominated by transfers of in-
dividual molecules between adjacent voxels. This will be so
whether or not the reactions are diffusion-limited. Algorithm
development to increase the speed of simulations of reaction-
diffusion systems has therefore focused on ways to reduce the
cost of diffusive transfers through approximations that aggre-
gate the diffusion events in order to update the system’s state.

To that end, Rossinelli ez al.”> have proposed a combina-
tion of tau-leaping, hybrid tau-leaping and deterministic dif-
fusion. Iyengar et al.”® and Marquez-Lago and Burrage’” have
introduced and compared additional implementations of spa-
tial tau-leaping. But the efficiency of explicit tau-leaping in a
spatial context is severely limited by the fact that it is neces-
sary to generate one Poisson random number in every outgo-
ing direction (edge) of each vertex in the mesh in order for the
method to conserve total copy number. This tends to negate
the performance benefit from aggregating diffusion events in
the voxels. Lampoudi et al.”® proposed to deal with this is-
sue by using a multinomial simulation algorithm that aggre-
gates molecular transfers into and out of voxels between each
chemical reaction event, simulating only the net diffusional
transfers. Koh and Blackwell”® likewise simulate only net dif-
fusional transfers between voxels, but then use tau leaping,
instead of the SSA, with a leap time that is sensitive to both
chemical reactions and the diffusive transfers. Another inno-
vative approach is the diffusive finite state projection (DFSP)
algorithm of Drawert et al.®° The DFSP is conceptually re-
lated to the multinomial method, but it achieves better effi-
ciency and flexibility through numerical solution of local (in
space) approximations to the diffusion equation (13). For sys-
tems that exhibit scale separation, hybrid methods can achieve
good speedups over pure stochastic simulations. Ferm e al.®!
propose a space-time adaptive hybrid algorithm where deter-
ministic diffusion, explicit tau-leaping, and the next subvol-
ume method are combined in such a way that the appropriate
method is dynamically chosen in each voxel based on the ex-

J. Chem. Phys. 138, 170901 (2013)

pected errors in the different methods. In both of these last
strategies, operator splitting is used to decouple diffusion and
reactions and to propagate the hybrid system in time.

While approximate and hybrid methods hold promise for
making spatial stochastic simulation feasible for large sys-
tems, many challenges remain to be met before such methods
are robust enough to be an alternative to exact algorithms for
most users. In particular, goal-oriented error estimation strate-
gies and (spatial and temporal) adaptivity have yet to be devel-
oped. Another challenging aspect is parallel implementations
of the simulation algorithms; frequent diffusive transfers be-
tween neighboring voxels severely limit the performance ad-
vantage of parallel implementations, because they introduce
extensive communication.

C. The RDME on small length scales

The popularity of the well-mixed, dilute SSA stems in
large part from the ease with which it can be implemented
and from its robustness; there are no parameters that need to
be tuned, and it is exact. The error in a simulation hence stems
from modeling error only, which makes the method easy to
use and to interpret. Spatial simulations based on the RDME
inherit the ease of implementation of the well-mixed, dilute
SSA but unfortunately not its robustness. As the voxel size
is decreased, the accuracy first improves, thanks to smaller
discretization error in the diffusion. But as the voxel size ap-
proaches the diameter of a reactant molecule, the RDME will
give unphysical results for systems with bimolecular reac-
tions, since in that case the RDME’s requirement that the two
reactant molecules must be in the same voxel in order to react
leads to too slow association kinetics.

It can be seen from the discussion in Sec. III A that a
major assumption of the RDME is that the standard CME
and SSA must apply inside each voxel. That means, in par-
ticular, that propensity functions must exist for bimolecular
reactions inside each voxel. That requirement will be prob-
lematic if the voxel size is comparable to the sizes of the re-
actant molecules. The physics derivation of the bimolecular
propensity function (3b) for any system volume €2 assumes
that the reactant molecules are “dilute,” in the sense that the
total volume occluded by all the reactant molecules is neg-
ligibly small compared to 2. Therefore, the straightforward
strategy of taking the bimolecular propensity function inside
voxel k to be Eq. (3b) with the replacements 2 — €2; and
x; — x; will be physically justified only if the total volume
occluded by all reactant molecules inside €2; is a negligibly
small fraction of the voxel volume /?. If that is not true, the
form of the bimolecular propensity function (3b), and in par-
ticular its dependence on the variables €2; and x;, will change
in some unclear but potentially dramatic way. Accounting for
excluded volume effects has been shown to be straightfor-
ward for a one-dimensional system of hard-rod molecules:
the total volume of the system simply needs to be decreased
by the volume actually occupied by the molecules.®” But the
correction to the bimolecular propensity function for two-
dimensional hard-disk molecules is not that simple,83 and
presumably that is also true for three-dimensional molecules.
Grima®* has studied the effects of crowded cellular conditions
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in two dimensions for the reversible dimerization reaction by
constructing a master equation in which the propensity func-
tions have been renormalized using concepts from the statis-
tical mechanics of hard sphere molecules.

One way to view the RDME is as a coarse-grained
approximation to the continuous Smoluchowski diffusion-
limited reaction (SDLR) model'? which underlies particle
tracking simulation methods such as Green’s function reac-
tion dynamics.85 There, two molecules are assumed to move
according to Eq. (13) and to react with a certain probability at
the contact point between the two hard spheres. The distance
at which they react is determined by the sum of the molecules’
reaction radii p. The probability of a bimolecular reaction is
governed by the diffusion equation supplemented with a par-
tially absorbing boundary condition: given an initial relative
position 7y at time fy, the PDF p of the new relative position
(in a spherical coordinate system r = (r, 0, ¢)) is taken to be
the solution of Eq. (13) subject to the initial condition p(r, #;)
= 6(r — rp) and the boundary conditions:

op(r, 1)
r

lim p(r.1)=0, 4mp*D =k p(p. 1).

r=p

Here, D is the sum of the diffusion coefficients of the react-
ing molecules. And k, is an assumed microscopic “association
rate,” which the physics-based derivation of Eq. (3b) shows is
given by k, = mo},012q;, where o2 = p.

Motivated by the observation that for highly diffusion
limited reactions, the error in RDME simulations incurred by
too small voxels can be substantial,’®®7 recent work on the
RDME has tried to understand to what extent and in what
sense the RDME approximates the SDLR model on short
length scales, where the assumption 4 >> p does not hold.
Isaacson®® considered a bimolecular reaction and expanded
the RDME to second order in the molecules’ reaction radius
to show that, for a given value of p, the second order term
in the expansion diverges as A~ compared to the correspond-
ing term in an expansion of the solution of the Smoluchowski
equation. He suggested that in order for the RDME to better
approximate the microscopic model, it is necessary to “appro-
priately renormalize the bimolecular reaction rate and/or ex-
tend the reaction operator to couple in neighboring voxels.”
Isaacson and Isaacson® demonstrated that for a given value
of h, the RDME can be viewed as an asymptotic approxima-
tion to the SDLR model in p.

Hellander et al.*® gave an alternative explanation of the
RDME breakdown based on the mean binding times of two
particles performing a random walk on the lattice in 2 and 3
dimensions. Figure 3 is adapted from Ref. 90, and shows a

Conventional RDME gives useful results
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schematic representation of the RDME’s behavior as a func-
tion of the mesh size. For 4 < p, i.e., voxels smaller than
the molecular reaction radius, the RDME makes little sense
physically. In the other extreme, above /iy, discretization er-
rors due to large voxels will be unacceptably high. For /iy,
< h < hpax (green region) the RDME will work well, but
for h < hpy;y, it can yield increasingly unphysical results. For
h < h* the conventional RDME and the SDLR model cannot
be made consistent in the sense that the mean binding time be-
tween two particles in the RDME converges to that of the mi-
croscopic model.”’ The values of /iy, Amax, and i2* are model
and geometry dependent, but in the limit of perfect diffu-
sion control, a box-geometry, and a uniform Cartesian mesh,
the critical voxel sizes take the values &* = mp (3D) and
h* ~5.2p (2D).

Two main approaches have been proposed to improve
on the robustness of simulation with the RDME when small
length scales need to be considered. The first relies on modifi-
cation of the bimolecular association reaction rate k,, as sug-
gested by Isaacson and Isaacson.®” For a given k, and a Carte-
sian discretization, Erban and Chapman®® derived a new rate
expression by requiring that the spatially independent steady-
state distribution for a model problem solved with the RDME
be invariant under changes to the voxel size. Fange et al.®’ de-
rived mesh dependent propensities in both 2D and 3D based
on the ansatz that the equilibration time for a reversible bi-
molecular reaction should be the same in the SDLR model
and the RDME. Furthermore, they allow for reactions be-
tween molecules in neighboring voxels. In this way, they ob-
tain good agreement in numerical experiments between the
two models, for mesh resolutions close to the reaction ra-
dius p. A third set of corrected rate functions was obtained by
Hellander et al.°® in both 2D and 3D. A problematic aspect of
relying on mesh-dependent rate functions is that different ap-
proaches lead to different expressions, and they are dependent
on the nature of the voxels, the geometry, and the test prob-
lem. Another approach to the problem was recently taken by
Isaacson,”! where he constructs a new and convergent form
of the RDME based on a discretization of a particle tracking
model.”?> Here, the mesoscopic model is formulated in such
a way as to converge to a specific microscopic, continuum
model per construction.

The other main approach that has been proposed to make
simulations more robust is the use of mesoscopic-microscopic
hybrid methods, that switch to the microscopic model when-
ever microscale resolution is required. Hellander et al.”?
use an RDME (mesoscopic) model in combination with a
Smoluchowski GFRD (microscopic) model. The microscopic

No local correction
possible

hma:v

hmin h* P

Local correction possible, but model

and geometry dependent

FIG. 3. Schematic representation of the RDME’s behavior as a function of the voxel size 4. For i < h*, no local correction to the conventional mesoscopic
reaction rates exists that will make the RDME consistent with the Smoluchowski model for the simple problem of diffusion to a target. Figure adapted from

Ref. 90.
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model is used only in the regions of the domain that require a
high spatial resolution, where the RDME is not well-defined
(such as for binding to a curved membrane), or for those re-
actions that are strongly diffusion limited. With only a small
fraction of the molecules treated microscopically, the hybrid
method is capable of accurately resolving the features of the
model in Ref. 60. Flegg et al.** studied pure diffusion of par-
ticles and focused on the accurate treatment of the transition
between the mesoscopic and microscopic methods at an inter-
face in 1D.

In contrast to the approach where the RDME is modified
in different ways to support microscopically small voxels, hy-
brid methods have the potential to greatly speed up simulation
of models with scale separation in species molecular popula-
tions if microscopic resolution is needed only for parts of the
model, or in parts of the computational domain. For the ma-
jority of the model, relatively large voxels can be used. How-
ever, several issues must be resolved before a mesoscopic-
microscopic hybrid method can become a general purpose
tool. For example, in Ref. 93 a static partitioning is chosen
a priori, which requires information on the degree of diffu-
sion control for a reaction. Criteria to partition a system auto-
matically and adaptively are needed.

IV. ACCOMPLISHMENTS AND CHALLENGES

The area of discrete stochastic simulation of chemically
reacting systems has seen many advances in algorithms and
theory. During the past decade, fast exact and approximate al-
gorithms have been developed for well-mixed systems, multi-
scale issues have been addressed, and efficient and robust al-
gorithms have been developed for characterizing rare events
and estimating parameters. Spatial stochastic simulation is
rapidly becoming better understood, and algorithms and soft-
ware for spatial stochastic simulation on unstructured meshes
have begun to appear. There is a great deal left to be done to
accommodate models of all of the mechanisms that occur, for
example, in cell biology. At the same time, we have come a
long way and have developed an extensive collection of algo-
rithms and theory.

One of the major challenges we see at this point is
to make these advances available to practitioners in a form
that will allow both flexibility and ease of use. We envi-
sion an integrated software environment that makes it easy
to build a model, scale it up to increasing complexity in-
cluding spatial simulation, explore the parameter space, and
seamlessly deploy the appropriate computing resources as
needed. To this end, we have recently begun to develop a new
software platform, StochSS (Stochastic Simulation Service,
www.stochss.org). It will incorporate, in addition to ODE and
PDE solvers, well mixed stochastic simulations via the algo-
rithms of StochKit2,* and spatial stochastic simulations via
the algorithms of URDME.”? StochSS will also enable the use
of a wide range of distributed cloud and cluster computing
resources to make the generation of large ensembles of real-
izations and large parameter sweeps possible, greatly facilitat-
ing a careful statistical analysis for even the most expensive
simulations.
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