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Summary
Background—Tissue factor pathway inhibitor (TFPI) is an alternatively spliced protein with
two isoforms, TFPIα and TFPIβ, which differ in their carboxy-terminal structure and cellular
localization. Detailed characterization of their inhibitory activity is needed to define potentially
unique inhibitory roles in tissue factor (TF) mediated thrombotic and inflammatory disease and to
understand how pharmaceuticals targeted to different structural regions of the TFPI isoforms alter
hemostasis in hemophilia patients.

Methods—The TF inhibitory activity of TFPIβ localized to the surface of CHO cells was
compared to soluble TFPIα using in vitro and in vivo assays.

Results—In TF-FVIIa-mediated FXa generation assays, TFPIβ was a slightly better inhibitor
than TFPIα, which was ~3-fold better than TFPI- 160, a soluble, altered form of TFPI similar to
TFPIβ. In direct FXa inhibitory assays, TFPIβ had an IC50 2.5-fold lower than TFPIα and 56-fold
lower than TFPI-160. TFPIβ inhibited TF-mediated CHO cell migration though Matrigel, while
TFPIα or TFPI-160 were poor inhibitors, demonstrating that TFPIβ effectively blocks TF-initiated
signaling events during cellular migration through matrices not permeable to soluble forms of
TFPI. Further, TFPIβ inhibited TF-dependent CHO cell infiltration into lung tissue following tail
vein injection into SCID mice and blocked development of consumptive coagulopathy.

Conclusions—When compared to TFPIα, TFPIβ is a slightly better inhibitor of TF
procoagulant activity. As a surface associated protein, TFPIβ is a much better inhibitor of TF-
mediated cellular migration than soluble TFPIα and may distinctly act in the inhibition of TF-
mediated signaling events on inflamed endothelium and/or monocytes.
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Introduction
Tissue factor (TF) is located within extravascular tissues and initiates blood coagulation
following vascular injury by binding to factor (F) VIIa present in the blood [1]. The TF-
FVIIa complex activates FIX and FX [2], which initiate hemostatic cascades that restore
vascular integrity through formation of a meshwork of fibrin and platelets. In addition to
preventing hemorrhage, TF-FVIIa can promote various cellular activities, including cellular
migration through the extracellular matrix [3,4].

The primary physiological inhibitor of TF-FVIIa is tissue factor pathway inhibitor (TFPI)
[5,6]. TFPI is a multivalent Kunitz-type serine protease inhibitor that simultaneously
inactivates FXa and FVIIa, immediately following activation of FX by TF-FVIIa [7].
Alternative splicing results in the production of two isoforms in humans, TFPIα and TFPIβ
[8]. Both isoforms have the same N-terminal sequence, containing two Kunitz-type inhibitor
domains that bind and inhibit FVIIa and FXa, but differ at their C-termini. The C-terminus
of TFPIα has a third Kunitz domain (K3) followed by a stretch of amino acids rich in
arginine and lysine residues, while the C-terminus of TFPIβ encodes a glycosylphosphatidyl
inositol (GPI)-anchor attachment site [9].

TFPIα protein has been identified in human plasma [10], placenta [11], and platelets [12]. In
human plasma TFPIα is 50–80% truncated at its carboxy-terminus [13], but increases 2- to
4-fold upon heparin infusion [10,14] suggesting the presence of an in vivo pool of full-
length TFPIα that is non-specifically bound to endothelial glycosaminoglycans. However,
heparin-releasable TFPIα is not present on the surface of cultured endothelial cells [15,16]
but is localized within an intracellular compartment and released following treatment with
heparin or thrombin [15–17]. TFPI present on the surface of cultured endothelial cells is
removed with phosphatidlyinositol phospholipase C (PIPLC), indicating that it has a GPI-
anchor [11,18]. Consistent with this finding, TFPIβ protein has been identified as the
isoform present in all major vascular beds of adult mice [19] and in cultured human
endothelial cells and human placental microsomes [20].

Previous studies comparing the inhibitory activities of TFPIα and soluble forms of TFPI that
mimic TFPIβ, such as TFPI-160 (which contains the K1 and K2 domains), have
demonstrated that TFPIα is the more effective inhibitor of FXa in amidolytic assays [21–
23]. However, unlike TFPI-160, TFPIβ is linked to the cell surface through a GPI-anchor,
which may significantly alter its activity compared to soluble forms of TFPI [24]. Studies
examining the inhibitory activity of TFPIβ using small-interfering RNA (siRNA) techniques
to limit TFPIα expression have suggested that it effectively inhibits TF-FVIIa-mediated
generation of FXa on the surface of ECV304 cells [25], and the TF-mediated migration of
MDA-MB-231 cells [26]. However, these inhibitory studies are limited by residual TFPIα
produced by the cells and potential off-target effects of the siRNA, both of which complicate
the identification of specific TFPIβ inhibitory functions.

The inhibitory activity of cell-associated TFPIβ, and how it compares to soluble TFPIα, is
not well understood. A CHO cell model system in which human TF and human TFPIβ are
expressed on the cell surface was developed to further define the biological activities of cell-
associated TFPIβ and compare these activities to soluble TFPIα and TFPI-160 in a series of
in vitro and in vivo assays. This model system has a distinct advantage in that the cells do
not produce TFPIα, allowing for accurate determination of the amount of TFPIβ on the cell
surface and quantitative comparisons of TFPIα and TFPIβ inhibitory activities. TFPIβ is
shown to be the more potent inhibitor of several TF-mediated physiological processes,
particularly TF-mediated cellular migration.
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Materials and methods
Production and characterization of CHO cells expressing TF and TFPIβ

CHO (K1) cells were transfected with a hygromycin-resistant plasmid containing human
full-length TF (gift of Dr. Wolfram Ruf, Scripps Research Institute, La Jolla, CA) to
produce CHO-TF cells. CHO-TF cells were then transfected with a neomycin-resistant
plasmid containing human TFPIβ to produce CHO-TF/TFPIβ cells. Cells were prepared for
flow cytometry as previously described [27]. To verify the presence of a GPI-anchor,
transfected CHO-TF/TFPIβ cells were treated with 1 U/ml PIPLC for 1 hour at 37°C [27]
and analyzed by flow cytometry.

Standardization of cell preparations
Cells were washed, harvested, pelleted by centrifugation (180 x g, 15 minutes), and
resuspended in 1 mL of PBS. A 100 μl aliquot was pelleted and lysed in 100 μl CHAPS
buffer for protein determination of each individual sample. Measurement of total protein
was used to standardize cell concentration for all assays. This is a more reliable and
reproducible method than cell counts.

TF-initiated amidolytic assay
Initially, the CHO-TF and CHO-TF/TFPIβ cells were examined to confirm equal surface TF
activity. Intact cells (30 μg/well), untreated or treated with PIPLC or anti-TFPI polyclonal
antibody, were added to FVIIa (10 pM) and 0.5 mM factor Xa substrate (MeO-CO-D-CHD-
Cly-Arg-pNA.AcOH (American Diagnostica, Stamford, CT)). Reactions were initiated with
FX (20 nM). Maximum FXa generation was determined by comparison of the peak slope
obtained to a standard curve of FXa generation. In assays to determine IC50 values CHO-
TF/TFPIβ cells or CHO-TF cells, alone or with indicated concentrations TFPIα (either
glycosylated from HEK expression or non-glycoyslated from E.coli expression) or TFPI-160
[21], were incubated with FX (20nM) and reactions initiated with 10 pM FVIIa. The total
cellular protein concentration (CHO-TF and/or CHO-TF/TFPIβ) was 90 μg/ml in all
reactions to ensure equal amounts of TF. Aliquots were removed at timed intervals over 6
minutes and quenched in 33 mM EDTA. FXa present at time points was determined by
comparison to the standard curve. IC50 values were determined using a variable slope dose-
response curve (GraphPad Prism V5, La Jolla, CA).

Factor Xa Inhibition Assay
Reaction mixtures were prepared containing CHO-TF cells (90 μg/mL), varying
concentrations of glycosylated or non-glycosylated TFPIα, TFPI-160, or CHO-TF/TFPIβ
cells, and FXa chromogenic substrate (0.5 mM). The reaction was initiated by addition of
FXa (0.1 nM), and monitored for 45 min at 405 nm. The steady-state concentration of free
FXa was determined by comparison to a FXa standard curve. IC50 values were determined
as described for the TF-FVIIa inhibition assays.

TFPI ELISA
A total TFPI ELISA used a mouse monoclonal anti-K2 antibody [28] for capture and rabbit
polyclonal TFPI antibody [11] for detection. Secondary anti-rabbit HRP antibody was
detected using QuantaRed Enhanced Chemifluorescent HRP Substrate. TFPI released from
the cells was determined by comparison to a TFPIα standard curve.

TF-dependent Matrigel cellular migration assays
Transwell inserts (8.0 μm) were coated with Matrigel (1 mg/mL), a protein mixture from a
murine tumor containing over 1851 proteins including FII, FVII and FX [29]. After coating,
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inserts were incubated at 37°C, washed with warm serum-free media and seeded with CHO,
CHO-TF, or CHO-TF/TFPIβ cells (2.5 X 104/well). After 36 hours non-migrating cells were
removed, the insert membranes fixed with 1.5% formaldehyde and stained with crystal
violet. In some experiments, cells were incubated with 10 μM argatroban, SCH79797,
recombinant tick anticoagulant peptide (rTAP), or recombinant nematode anticoagulant
protein C2 (rNAPC2) (rTAP and rNAPC2 gifts from Dr. Sriram Krishnaswamy, University
of Pennsylvania), or 100 nM soluble TFPIα or TFPI-160, prior to seeding. Migrating cells
were counted using a Nikon Eclipse E600 light microscope at 20X field magnification.

In vivo TF-dependent cellular migration assays
All animal experiments were approved by the Medical College of Wisconsin Institutional
Animal Care and Use Committee. CHO-TF or CHO-TF/TFPIβ cells were harvested and re-
suspended in sterile PBS (35 μg/100 μL) and injected into the tail vein of 6–12 week old
CB.17 SCID mice (C.B-Igh-1b/IhcrTac-Prkdcscid). On day 10, mice were anesthetized,
whole blood was collected for complete blood count as described [30], and lungs were
harvested for Trichrome staining and examination of cellular burden in a blinded fashion
using the Nikon light microscope.

Statistical Analyses
To test for statistical significance, the students’ t-test or one-way ANOVA were performed
using GraphPad Prism. Bonferroni’s Multiple Comparison test was performed to test for
differences between groups when the one-way ANOVA was significant. A p-value less than
0.05 was considered statistically significant.

Results
Production and characterization of CHO-TF and CHO-TF/TFPIβ cells

Human TFPIβ was co-expressed with human TF in CHO cells, providing a model system
that allowed testing and quantitative comparisons of TFPIα and TFPIβ inhibitory activities.
Flow cytometry experiments demonstrated presence of similar TF expression on CHO-TF
and CHO-TF/TFPIβ cell lines (Fig. 1A). TF-FVIIa-mediated FXa generation experiments
demonstrate equal TF activity on the cell lines following neutralization of TFPIβ activity
with an anti-TFPI antibody TFPIβ or its removal with PIPLC (Fig. 1B). TFPI ELISA assay
of PIPLC treated cellular supernatant quantified 92.8 pg TFPIβ/μg total cellular protein on
the CHO-TF/TFPIβ cell surface.

TFPIβ is a more potent inhibitor of TF-FVIIa and FXa than either TFPIα or TFPI-160
TFPIβ activity was quantified and compared to that of soluble glycosylated and non-
glycosylated TFPIα and TFPI-160 in TF-FVIIa and FXa-initiated assays (Fig. 2). Activity
of soluble forms of TFPI toward TF-FVIIa was determined using CHO-TF cells as the
source of TF (Fig. 2A). Experiments with TFPIβ contained mixtures of CHO-TF/TFPIβ and
CHO-TF cells to yield the indicated TFPIβ concentrations while maintaining a constant total
amount of TF. TFPIβ inhibited TF-FVIIa to a greater extent than glycosylated or non-
glycosylated TFPIα or TFPI-160 at all concentrations. Extrapolation of data points for
TFPIβ yielded an estimated IC50 of 0.11 nM, slightly lower than IC50 values for
glycosylated TFPIα (IC50=0.74 nM), non-glycosylated TFPIα (IC50=0.53 nM), or
TFPI-160 (IC50=2.18 nM). This IC50 value assumes that TFPIβ equivalently inhibits co-
expressed TF and TF expressed on a different cell, a scenario which may not be true. Rather,
it is probable that TFPIβ is a potent inhibitor of co-expressed TF and a relatively poorer
inhibitor of TF expressed on an adjacent cell. Thus, the IC50 of TFPIβ towards co-expressed
TF may be significantly lower than 0.11 nM.
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Reactions examining direct FXa inhibition by TFPIα or TFPI-160 contained 90 μg/ml
CHO-TF cells, mimicking the cellular concentration in reactions with CHO-TF/TFPIβ (Fig.
2B). Glycosylated (IC50= 0.66 nM) and non-glycosylated (IC50=0.59 nM) TFPIα were
better inhibitors of FXa than TFPI- 160 (IC50=12.90 nM). TFPIβ (extrapolated IC50=0.23
nM) was a slightly better inhibitor of FXa than TFPIα (2- to 3-fold) and substantially better
(56-fold) than TFPI-160.

TFPIβ inhibits TF-dependent cellular migration through Matrigel
A transwell assay system utilizing Matrigel, a protein mixture derived from a murine tumor
that contains FII, FVII and FX [29], was utilized to compare the abilities of TFPIβ,
glycosylated and non-glycosylated TFPIα, and TFPI-160 to inhibit TF-mediated cellular
migration. CHO cells migrated poorly, while CHO-TF cells had a 15-fold increase in
cellular migration, demonstrating TF-dependent migration in this assay. When compared to
CHO-TF cells, glycosylated TFPIα, non-glycosylated TFPIα, and TFPI-160 (100 nM)
inhibited migration by approximately 30% (p<0.01), while CHO-TF/TFPIβ cells
(expressing only approximately 21 pM TFPIβ per well) inhibited migration by 83% (p<
0.001) (Fig. 3A).

The PAR-1 antagonist SCH79797 greatly reduced cellular migration demonstrating that it is
dependent on PAR-1 activation (p<0.001) (Fig. 3B). Next, specific inhibitors were used to
determine the protease responsible for PAR-1 cleavage. Inhibitors of TF-FVIIa (rNAP-C2),
FXa (rTAP), and thrombin (argatroban) all greatly reduced cellular migration,
demonstrating that thrombin, generated via TF-mediated activation of coagulation, is the
PAR-1 cleaving protease (p<0.001) (Fig. 3B).

TFPIβ inhibits TF-dependent cellular infiltration and consumptive coagulopathy
As TFPIβ markedly inhibited the TF-mediated migration of cells in vitro, we directly tested
its ability to inhibit tissue infiltration in a well-characterized murine model system [3]. In
this assay CHO, CHO-TF, or CHO-TF/TFPIβ cells were injected into the tail vein of SCID
mice and cellular infiltration into lung tissue was assessed ten days later. Histological
analyses demonstrated normal lung parenchyma with only rare cellular infiltrate detected in
mice injected with CHO cells (Fig. 4A, arrowhead). In contrast, mice injected with CHO-TF
cells often had large sheets of cells with very little remaining normal lung parenchyma (Fig.
4B). The lung parenchyma had alveoli with thickened walls and fibrin clots within the
vasculature (Fig. 4B, arrow). Mice injected with CHO-TF cells had greatly decreased
platelet counts compared to those injected with CHO cells (400 × 103/mm3 vs. 700 × 103/
mm3, p<0.0001), suggesting the presence of a consumptive coagulopathy (Fig. 4E). Mice
injected with CHO-TF/TFPIβ cells had reduced cellular infiltrate with a moderate amount of
normal lung tissue present (Fig. 4C and 4D) and, importantly, had platelet counts similar to
mice injected with CHO cells, suggesting that TFPIβ completely prevented development of
a consumptive coagulopathy.

Discussion
The expression of TFPIα in platelets and TFPIβ on the surface of vascular endothelium
suggests they may have distinct biological activities. As a first step to define these, our
laboratory developed a CHO-cell model system to compare the inhibitory activities of
different TFPI isoforms. This model system, in which CHO cells co-express human TF and
human TFPIβ, simulates disease states, such as infection or cancer, where TF and TFPI may
be present on endothelium, monocytes or tumor cells [31–33]. The results demonstrate that
while cell-surface associated TFPIβ is only a slightly more effective inhibitor of TF-FVIIa
and FXa than TFPIα in assays using purified proteins, it is a much more effective inhibitor
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in cellular migration assays. Further, using a SCID mouse model it was demonstrated that
TFPIβ is a highly effective inhibitor of TF-mediated cellular migration and induction of
disseminated coagulopathy. Thus, TFPIβ may distinctly inhibit intravascular TF-mediated
cell signaling events on inflamed endothelium or monocytes.

Consistent with the findings of Riewald and co-workers [34], the CHO cell system
demonstrated that TFPIβ is a potent inhibitor of TF-FVIIa-mediated FXa generation. TFPIβ
could inhibit either TF co- expressed on the same cell, which seems most likely, or on an
adjacent cell. As these two scenarios cannot be differentiated, an accurate IC50 value for
inhibition of TF-FVIIa by TFPIβ could not be calculated. However, at every concentration
tested, TFPIβ was a more potent inhibitor of TF-FVIIa- mediated FXa generation than
TFPIα or TFPI-160. TFPIβ also was a potent direct inhibitor of FXa. Based on IC50
concentrations, it inhibits FXa two-fold better than TFPIα and 56-fold better than TFPI-160.
The rapid FXa inhibition by TFPIβ is somewhat unexpected. Since the third Kunitz domain
and the C- terminal region are necessary for rapid FXa inhibition in solution phase assays
[21–23], one may predict that TFPIβ is a poor FXa inhibitor. However, the GPI-anchoring
of TFPIβ to the membrane compensates for the lack of these domains allowing rapid FXa
inhibition. Finally, the inhibitory activity of the different forms of TFPI used in these
experiments does not appear to depend on their glycosylation, since glycosylated and non-
glycosylated TFPIα had similar inhibitory activity.

CHO-TF cells readily migrated through Matrigel, which contains FVII and FX [29]. This
migration was mitigated by 83% with CHO-TF/TFPIβ cells. Although the CHO-TF/TFPIβ
cells expressed more TF than TFPIβ, it appears that in these assays the amount of FVIIa in
Matrigel is limiting and that TFPIβ is a very effective inhibitor of TF-mediated cell
signaling required for migration. In contrast, high concentrations (100 nM) of soluble TFPIα
(either glycosylated or non-glycosylated) or TFPI-160 inhibited CHO-TF cell migration
only 30%. These results were somewhat surprising, since all forms of TFPI at 100 nM
totally inhibit TF-FVIIa mediated FXa generation in amidolytic assays (Fig. 2A). Thus, TF-
FVIIa may be inhibited by membrane associated forms of TFPI but protected from
inhibition by soluble forms of TFPI during Matrigel migration. Alternatively, soluble forms
of TFPI may be poorer inhibitors of TF-mediated cell signaling events than would be
predicted from the TF-FVIIa inhibition assays. Consistent with this notion, Ahamed and
colleagues have reported that 50- to 100-fold more TFPIα is required to inhibit TF-FVIIa
mediated cellular signaling than is needed to inhibit TF-FVIIa mediated generation of FXa
[35]. Thus, it appears that TFPIβ, when localized to the same cellular surface as TF, as may
occur on the surface of inflamed endothelium, monocytes or tumor cells [31–33], is a highly
effective inhibitor of TF-mediated cellular migration, while circulating plasma TFPIα would
be a relatively poor inhibitor. These findings have important implications for the use of
TFPIα as a therapeutic agent, as is being considered for severe sepsis associated with
community acquired pneumonia [36,37], and are consistent with the high concentration of
human TFPIα (3049 ng mL-1 or 9 μM) necessary to observe therapeutic attenuation of
coagulation, inflammation and bacterial growth in a murine model of pneumococcal
pneumonia [38].

The presence of TF on the CHO cell surface greatly enhanced their infiltration into SCID
mouse lung tissue following tail vein injection [3] even though there is ample (44 nM)
soluble TFPI in mouse plasma [30]. TF has been reported to support cell adhesion,
migration, homing and extravasation [39,40], any or all of which may produce the cellular
infiltration observed in this model. In various model systems TF has been shown to induce
cellular infiltration through PAR-1 [41] or PAR-2 [4]. The Matrigel migration assay data
suggests the underlying mechanism for CHO-TF cells is thrombin generation with activation
of PAR-1. Importantly, the expression of relatively small amounts of TFPIβ on the CHO-TF
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cell surface dampened infiltration of CHO-TF cells into lung tissue and totally protected the
mice from the decreased platelet count associated with a TF-induced consumptive
coagulopathy, demonstrating that TFPIβ effectively down-regulates TF-mediated
procoagulant and cellular signaling events in vivo.

TFPIα, a soluble protein released from endothelial cells and platelets, is an effective
anticoagulant that limits thrombus growth in murine vascular injury models [30] and is a
physiological regulator of bleeding in murine hemophilia [42]. Further, TFPIα may have
unique functions, not performed by TFPIβ, that are mediated by its third Kunitz domain,
which binds to protein S and enhances inhibition of FXa [43], and its basic C-terminal
region. The data presented here suggest that expression of TFPIβ on endothelial cells is
optimized to dampen intravascular TF activity, where it is available at a high localized
concentration to inhibit potentially detrimental TF-mediated coagulation and/or cell
signaling events that occur during inflammation. The localization of TFPIβ within lipid
rafts/caveolae in endothelial cells has been shown to further enhance its TF inhibitory
activity [27,44].

Continued characterization of the distinct inhibitory activities of TFPIα and TFPIβ is
needed to define their mechanism of action in TF mediated thrombotic and inflammatory
disease and has increasing importance with the development of pharmaceutical agents for
treatment of hemophilia that block TFPI anticoagulant activity[28,45,46]. These agents act
by targeting different structural domains of TFPI; and the target selected may have
important therapeutic implication. For example, depletion of hematopoietic cell TFPI, which
is predominantly TFPIα within platelets, is sufficient for restoring hemostasis in FVIII
deficient mice suggesting that compounds specifically targeting TFPIα may be effective
hemostatic agents with decreased risk for inducing a generalized procoagulant state, since
they would not alter the anticoagulant activity of TFPIβ expressed on endothelium [42]. The
data presented here suggest that TFPIα and TFPIβ distinctly inhibit different TF functions
and provide clues for targeting different regions of the protein that could limit off-target
effects that may occur for TFPI blocking agents designed to treat hemophilia.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
CHO-TF and CHO-TF/TFPIβ cells have similar TF expression and activity. (A) Flow
cytometry for TF on CHO-TF (filled dark grey) and CHO-TF/TFPIβ cells (solid line) and
for TFPI on CHO-TF/TFPIβ cells (dotted line). The isotype control is shaded light grey. The
data are representative of 3 experiments. (B) TF-FVIIa-mediated FXa generation on CHO-
TF cells and CHO-TF/TFPIβ cells. TFPIβ decreases the amount of FXa generated (p<0.001)
and can be totally reversed by anti-TFPI polyclonal antibody or by treatment of the cells
with PIPLC (mean ± SEM, n=3).
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Fig. 2.
TFPIβ is an effective inhibitor TF-FVIIa and FXa. (A) TF-FVIIa-mediated FXa generation
(mean ± SEM, n=3) and (B) FXa activity (mean ± SEM, n=3) were measured in the
presence of glycosylated TFPIα (□), non-glycosylated TFPIα (■), TFPI-160 (▲) or CHO-
TF/TFPIβ cells (●). Cellular TF was constant in all experiments. Data are shown as percent
activity compared to the “no TFPI” control in (A) or as uninhibited FXa activity in (B).

Maroney et al. Page 12

J Thromb Haemost. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
TFPIβ blocks CHO-TF cell migration through Matrigel by preventing thrombin generation
and activation of PAR-1. Cellular migration was standardized to that of CHO-TF cells. (A)
Migration of CHO-TF/TFPIβ cells compared to CHO cells, CHO-TF cells and CHO-TF
cells in the presence of 100nM/well recombinant TFPI-160, glycosylated TFPIα or non-
glycosylated TFPIα (mean ± SEM, n=3). (B) Migration of CHO-TF cells in the presence of
SCH79797 (PAR-1 antagonist), rNAP-C2 (TF-FVIIa inhibitor), rTAP (FXa inhibitor), or
argatroban (thrombin inhibitor), all at 10 μM (*p<0.001, †p<0.01) (mean ± SEM, n=3).
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Fig. 4.
TFPIβ reduces TF-mediated tissue infiltration and consumptive coagulopathy. Histology of
the lungs from SCID mice ten days following injection with (A) CHO; (B) CHO-TF; or (C)
CHO-TF/TFPIβ cells. (A) Arrowhead indicates a small cluster of CHO cells within the lung.
(B) Arrow indicates a large intravascular thrombus. (D) Histopathological grading (1+–4+)
of lungs ten days following injection cells. (E) Platelet counts ten days following injection of
cells (*p<0.001, † p<0.05).
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