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Root system architecture is important 
for plants to adapt to a changing 

environment. The major determinant of 
the root system is lateral roots originat-
ing from the primary root. The develop-
mental process of lateral root formation 
can be divided into priming, initiation, 
primordium development and the emer-
gence of lateral roots, and is well char-
acterized in Arabidopsis. The hormone 
auxin plays a critical role in lateral root 
development, and several auxin response 
modules involving AUXIN RESPONSE 
FACTORS (ARFs), transcriptional 
regulators of auxin-regulated genes and 
Aux/IAA, negative regulators of ARFs, 
regulate lateral root formation. The 
LATERAL ORGAN BOUNDARIES 
DOMAIN/ASYMMETRIC LEAVES2-
LIKE (LBD/ASL) gene family encodes a 
unique class of transcription factors har-
bouring a conserved plant-specific lat-
eral organ boundary domain and plays 
a role in lateral organ development of 
plants including lateral root formation. 
In our previous study, we showed that 
LBD18 stimulates lateral root forma-
tion in combination with LBD16 down-
stream of ARF7 and ARF19 during the 
auxin response. We have recently demon-
strated that LBD18 activates expression 
of EXP14, a gene encoding the cell-wall 
loosening factor, by directly binding to 
the EXP14 promoter to promote lateral 
root emergence. Here we present the 
molecular function of LBD18 and its 
gene regulatory network during lateral 
root formation.

Arabidopsis lateral roots initiate from 
pericyle founder cells after the priming of 
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the xylem pole pericycle cells to divide by 
auxin signaling in the basal meristem and 
undergo a series of anticlinal divisions, 
producing a few initial cells.1 Inner and 
outer cell layer are then formed by peri-
clinal cell divisions. Further anticlinal and 
periclinal divisions create a lateral root 
promordia (LRP) that continue to grow 
and emerge through the cortex and epi-
dermal layers of the parental primary root. 
The hormone auxin plays a major role 
in lateral root development. The auxin 
transporter AUX1 regulates the initiation 
of lateral roots by basipetal auxin trans-
port,2-4 whereas LAX3, the AUX1-like 
auxin influx carrier, promotes lateral root 
emergence by affecting auxin influx in the 
outer endodermis and cortex cells.5 LAX3 
promotes lateral root emergence by auxin-
dependent induction of a selection of 
cell-wall-remodeling enzymes that likely 
promote cell separation in advance of the 
developing LRP.5 Two auxin response 
modules, IAA14-ARF7-ARF19 and 
IAA12-ARF5, control lateral root initia-
tion and the patterning process.6-8 ARF7 
and ARF19 regulate lateral root forma-
tion by activating LBD16 and LBD29.9 
LBD18 regulates lateral root formation 
in conjunction with LBD16 downstream 
of ARF7 and ARF19.10,11 LBD18 was 
shown to regulate lateral root initiation 
by transcriptionally activating the E2Fa 
transcription factor that activates the cell 
cycle.12

We have previously shown that the 
number of emerged lateral roots of lbd16 
or lbd18 single mutants decreased sig-
nificantly, and that lbd16 lbd18 double 
mutants exhibited an additively reduced 
number of emerged lateral roots,11 
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that LBD18 plays a role in lateral root 
initiation, as it activates E2Fa expression 
promoting lateral root initiation.12 ARF19 
belongs to the initiation group, indicat-
ing that LBD18 might upregulate ARF19 
through a positive feedback loop. LAX3 
was shown previously to be involved in 
regulating the expression of a selection of 
cell-wall-remodeling enzymes including 
EXP17 in promoting lateral root emer-
gence.5 Our microarray data showed that 
LBD18 upregulated EXP17 and LAX3. 
LBD18 is positively regulated downstream 
of ARF7 and ARF19.10,11 ARF19 overex-
pression in Arabidopsis results in stimu-
lation of lateral root formation.19 LAX3 
is auxin-inducible.5 Taken together, these 
data led us to hypothesize that once this 
pathway is activated by auxin, lateral root 
formation might be reinforced in part by 
a LAX3-ARF7/ARF19-LBD18 positive 
feedback regulatory network to ensure 
continued lateral root growth. Such a 
positive feedback regulatory loop might 
override the negative feedback regula-
tory loop by Aux/IAA-ARF system dur-
ing the auxin response for developmental 
determination of lateral root formation. 
Genetic, biochemical and developmental 
approaches are underway to confirm this 
hypothesis.
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