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Iron (Fe) is a key element for virtually every organism and func-
tions as an essential cofactor of a wide range of cellular processes. 
However, the excess of this metal can be highly toxic promot-
ing the production of reactive oxygen species.1 Because of this 
duality and the limited bioavailability of iron given its conversion 
into insoluble forms, organisms have developed tightly controlled 
mechanisms to maintain iron homeostasis, i.e., the balance 
between uptake, storage and utilization of this element.

Previous studies suggested that human pathogens must cope 
with the extreme iron-limiting conditions originated by the 
mammalian immune system to keep invading microorganisms 
at bay.2-5 Here we investigated the role of iron homeostasis in 
the soilborne fungal plant pathogen Fusarium oxysporum. Since 
soluble Fe3+ in natural soils represents only ~10-10 M at equilib-
rium with soil iron6 and plant roots have efficient iron-seques-
tering mechanisms,7 we hypothesized that iron homeostasis 
should play an important role during root infection. F. oxyspo-
rum infects and kills both tomato plants and immunodepressed 
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mice, and thus provides an excellent model to study the role of 
iron homeostasis during fungal infection of plant and mamma-
lian hosts.8

The bZIP transcription factor HapX, which was was originally 
identified in Schizosaccharomyces pombe9 and Apergillus nidulans,10 
has been reported to regulate iron-dependent pathways in sev-
eral fungal species. HapX transcript levels are upregulated under 
iron-depleted conditions.2,4,5,11 We found that deletion of hapX in 
F. oxysporum had no effect on mycelial growth on iron-sufficient 
media, but dramatically reduced growth under iron-depleted 
conditions.12 Interestingly, as reported in Candida albicans,4 the 
F. oxysporum ΔhapX mutant was fully competent in iron uptake. 
In agreement with this result, transcription of siderophore genes 
was strongly induced during iron-depleted conditions both in the 
wild type strain and the ΔhapX mutant.12 Moreover, significant 
levels of extracellular siderophores were detected in culture super-
natants of the fungal strains grown under iron-depleted condi-
tions, but not during iron sufficiency.12 Intracellular siderophore 
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Figure 1. For figure legend, see following page. 
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content in the ΔhapX mutant was even higher than that of wild 
type or the ΔhapX+hapX complemented strain. Collectively, 
these results suggest that impaired growth of the ΔhapX mutant 
under iron starvation is unlikely to be caused by a defect in iron 
acquisition.12

An alternative explanation would be that the ΔhapX mutant 
wastes iron because it is unable to reduce iron consumption 
under limiting conditions. We used microarrays to compare 
genome-wide transcription in the F. oxysporum wild type strain 
and ΔhapX mutant under steady-state iron starvation vs. iron suf-
ficiency (with or without 50 μM Fe

2
(SO

4
)

3
), with the aim to 

search for differentially expressed genes (DEGs) downregulated 
in the wild type but not in the ΔhapX mutant.12 Functional classi-
fication of DEGs repressed by HapX under steady-state iron star-
vation evidenced specific subcategories of molecular function and 
biological process (wild type ± Fe in Fig. 1), including hexosyl 
group transferase activity, acid-amino acid ligase activity, small 
GTPase regulator activity and cell cycle, cell division, cell wall 
organization and biogenesis, regulation of molecular function, 
reproductive processes, microtubule-based processes, pathogene-
sis, chromosome segregation, cellular component movement, cel-
lular developmental process, actin filament-based process, sexual 
reproduction, respectively.

Additional molecular function subcategories over-represented 
in the wild type ± Fe comparison include metal ion binding, 
purine nucleotide binding, ribonucleotide binding and hydro-
lase activity acting on acid anhydrides in phosphorus-containing 
anhydrides with 341, 318, 318 and 173 genes, respectively, more 
in wild type ± Fe than in the wild type/hapX-Fe comparison. 
Biological process subcategories such as primary metabolic pro-
cess, cellular metabolic process, macromolecule metabolic pro-
cess, nitrogen compound metabolic process and biosynthetic 
process had 1027, 950, 807, 546, 546 more genes, respectively, 
in the wild type ± Fe than in the wild type/hapX-Fe comparison 
(Fig. 1).

In line with the starting hypothesis, this group of DEGs 
includes a significant number of genes from iron-consuming 
pathways such as respiration, TCA cycle, Lys biosynthesis or 
heme biosynthesis.12 Real-time qRT-PCR of representative genes 
from these categories confirmed that they were strongly repressed 
during iron starvation in a HapX dependent manner.12 Taken 
together, these results suggest that growth deficiencies of the 
ΔhapX mutant under iron starvation are due to de-repression of 
iron-consuming pathways leading to iron misuse.12

Role of HapX-mediated iron homeostasis in fungal viru-
lence on plants and mammals. When roots of tomato seedlings 
were inoculated with the different fungal strains, mortality rates 
of plants infected with the ΔhapX mutant were significantly 

lower than those of plants infected with the wild type or with 
the ΔhapX+hapX complemented strain.12 Furthermore, fungal 
biomass inside the plant roots 7 d after fungal inoculation was 
decreased in plants inoculated with the ΔhapX mutant relative 
to those inoculated with the wild type strain. Moreover, mor-
tality rates, as well as the concentration of fungal propagules 
in kidneys and lungs of immunodepressed mice infected with 
the ΔhapX mutant were significantly reduced compared those of 
mice infected with the wild type or with the ΔhapX+hapX com-
plemented strain.12 This is in line with reports from other human 
pathogens such as A. fumigatus, C. albicans or Cryptococcus 
neoformans.2-5

Transcriptional upregulation of genes during iron starva-
tion, including hapX, sidA (siderophore biosynthesis precursor) 
or srbA (iron acquisition in response to hypoxia), was observed 
during early stages of plant infection and when F. oxysporum 
was shifted from minimal medium to human blood.12 Genome-
wide transcript profiling revealed a large number of genes whose 
expression is activated under iron starvation conditions in a 
HapX-dependent manner. Functional analysis of DEGs identified 
four molecular functions that were specifically upregulated in the 
wild type under steady-state iron starvation vs. iron sufficiency 
(wild type ± Fe): FMN binding, secondary active transmem-
brane transporter activity, carboxy-lyase activity and carbon-
nitrogen ligase activity with glutamine as amido-N-donor. We 
also detected one molecular function (small GTPase regulator 
activity) downregulated during steady-state iron-starved growth 
in the ΔhapX mutant compared with the wild type (wild type/
hapX-Fe) (Fig. 2). Among the 30 subcategories under biological 
processes, transcripts related to cell division, pathogenesis, and 
microtubule-based process were specifically downregulated genes 
in the hapX mutant compared with the wild type under iron-
limiting conditions (Fig. 2). Other subcategories overrepresented 
among the genes upregulated in the wild type ± Fe comparison 
include the molecular function subcategory metal ion binding 
and the biological process subcategories establishment of local-
ization and oxidation-reduction process. Interestingly, the func-
tion of some of these genes is linked to virulence (Fig. 2).

Collectively, these results establish a key role of HapX in 
reprogramming iron-regulated gene expression during infec-
tious growth of F. oxysporum on plant and mammalian hosts (see 
model in Fig. 3).

Iron homeostasis is required for rhizosphere competence 
of F. oxysporum. The rhizosphere is defined as the area influ-
enced by the root plant system where different types of micro-
organisms, pathogens or not, may coexist. F. oxysporum must 
compete for the limited iron with different rhizosphere-inhab-
iting microorganisms such as siderophore producing bacteria of 

Figure 1. (Previous page.) Functional categories of differentially expressed genes (DEGs) repressed by HapX under steady-state iron starvation. GO 
functional enrichment analysis of F. oxysporum DEGs that fulfill the following criteria in microarray-based transcriptional profiling: (1) Downregulation 
in the wild type under steady-state iron starvation vs. iron sufficiency (with or without 50 μM Fe2(SO4)3; wild type ± Fe); (2) Upregulation during steady-
state iron-starved growth in ΔhapX compared with the wild type (wild type/hapX - Fe). DEGs were assigned to different functional categories using 
Blast2GO (version 2.3.5; www.blast2go.org) with the default parameters. The Blast2GO program extracts the GO terms associated with homologies 
identified with NCBI’s QBLAST and returns a list of GO annotations represented as hierarchical categories of increasing specificity. The level presented 
in each principal GO category corresponds to 5 and 3 for the molecular function and biological process categories, respectively, with 40 and 38 cat-
egories shown, respectively.
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bacterial wild type strain and the pvd- mutant. However, plants 
inoculated with the F. oxysporum ΔhapX mutant displayed an 
additional decrease in vascular wilt symptoms and fungal bio-
mass, which was specifically observed in combination with the 
P. putida wild type strain.12 While confirming the presence 
of additional biocontrol mechanisms other than siderophore-
mediated iron competition, these results establish a key role of 
HapX during iron competition of F. oxysporum with fluorescent 
pseudomonads and highlight its importance for iron compe-
tence in the rhizosphere (Fig. 3).

Clearly, more research is required to improve biocontrol appli-
cability and success rate. The availability of complete genomes 
from both pathogens and biocontrol organisms should advance 
our understanding of the different modes of action, leading to an 
improved production, formulation and application of biocontrol 
agents.
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the genus Pseudomonas.13,14 Two different Pseudomonas strains 
exhibited an in vitro antagonistic effect against F. oxysporum, 
which was exacerbated in the ΔhapX mutant, specifically under 
iron-limiting conditions and dependent on siderophore pro-
duction.12 Even more striking, coinoculation of tomato roots 
with F. oxysporum and the pyoverdine (pvd) producing bacte-
rium P. putida KT2440 resulted in a significant delay in plant 
mortality, confirming the previously reported biocontrol activ-
ity of this bacterial isolate. Virulence attenuation by P. putida 
KT2440 was much more pronounced in plants infected with 
the ΔhapX mutant than in those infected with the wild type 
strain. Importantly, the decrease in biomass of the ΔhapX 
mutant was 2.5× stronger in plants coinoculated with the P. 
putida wild type strain in comparison with the pvd- mutant.12 
Taken together, these results demonstrate that HapX plays a 
key role during iron competition of F. oxysporum against sidero-
phore producing pseudomonads, and directly affects the ability 
of the fungus to proliferate in the rhizosphere and cause disease 
on tomato plants (Fig. 3).

Biological control of plant disease implies any means of con-
trolling disease or reducing the amount or effect of pathogens 
that relies on biological mechanisms or organisms other than 
man. Among different reported mechanisms of biocontrol, iron 
competition mediated by siderophores ranks among the most 
important ones.15 Our results show that bacterial siderophore 
production is required for efficient in vitro antagonism of pseu-
domonads against F. oxysporum under iron-depleted condi-
tions, and that co-inoculation with a siderophore producing P. 
putida strain causes a clear attenuation of vascular wilt disease 
caused by F. oxysporum on tomato plants. Interestingly, part of 
the protecting effect of P. putida was independent of sidero-
phore-mediated iron uptake, since it was detectable both in the 
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Figure 2. Functional categories of DEGs induced by iron starvation in a HapX-dependent manner. GO functional enrichment analysis of F. oxysporum 
DEGs that fulfill the following criteria in microarray-based transcriptional profiling: (1) Upregulation in the wild type under steady-state iron starvation 
vs. iron sufficiency (wild type ± Fe); (2) Downregulation during steady-state iron-starved growth in ΔhapX compared with the wild type (wild type/
hapX - Fe). DEGs were assigned to different functional categories using Blast2GO (see Fig. 1) according to molecular function or biological process, 
with 33 and 30 categories, respectively.
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Figure 3. HapX-mediated iron homeostasis is crucial for fungal rhizosphere competence and for 
virulence on plant and mammalian hosts. During plant infection, F. oxysporum must compete for 
limited iron resources with rhizosphere colonizing bacteria and with plant roots. During infection 
of mammalian hosts, free iron levels are very low in serum and tissues due to iron sequestration 
by iron-sequestering host proteins. Under conditions of iron starvation, HapX mediates upregula-
tion of iron-acquisition genes (e.g., biosynthesis of siderophores) and downregulation of genes 
functioning in iron-consuming processes (e.g. respiration, TCA cycle, heme biosynthesis).




