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Plant cell walls are mostly composed of polysaccharides (cel-
lulose, hemicelluloses and pectins) and, in secondary walls, 
the aromatic polymer lignin. Non-lignified primary walls have 
important roles during growth and cell expansion, providing 
structural support and flexibility, while lignified secondary cell 
walls, present in the vasculature and supporting tissues, are thick, 
strong, reinforcing structures typically associated with the ces-
sation of growth. Grasses have unique cell walls compared with 
other flowering plants. They contain high levels of feruloylated 
arabinoxylan and (1,3; 1,4)-β-

D
-glucan (also known as mixed 

linkage glucan or MLG), and low amounts of xyloglucan and 
pectins.1,2 Among these two unique polysaccharides, MLG has 
been studied in great detail due to its high abundance in the cell 
walls of barley, oat and Brachypodium distachyon endosperm,3-5 
where it has been speculated to serve as an energy storage poly-
saccharide. In vegetative organs, MLG has been studied exten-
sively in coleoptiles, where it accumulates to high levels during 
the elongation phase before being hydrolyzed upon cessation of 
growth.1,6-9 This transient accumulation in elongating primary 
cell walls of young organs has led to the widely held belief that 
MLG in vegetative tissues of grasses is a growth-related poly-
saccharide that is largely absent from mature, non-elongating 
tissues and/or secondary cell walls. Interestingly, while char-
acterizing an MLG-deficient rice mutant with loss of function 
in the CslF6 gene, we found that, although MLG accumulated 
preferentially in younger tissues, the highest content of MLG in 
rice occurred in senescing, mature stems.10 We propose here that 
the current view of grass MLG as either a seed storage or cell 
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expansion-specific polysaccharide needs revision, as its presence 
in secondary cell walls and mature tissues in rice and other spe-
cies suggest a broader role for this polymer in plants.

MLG Deposition in Secondary Cell Walls and Mature 
Tissues of Grasses

The appearance of MLG in plants is limited to a few evolu-
tionarily distantly related lineages, which suggests that plants 
acquired this trait independently rather than by common ances-
try.11 Among angiosperms, MLG presence is restricted to a few 
species of the order Poales, which includes the Poaceae (grasses) 
family.12,13 Recently, MLG has also been found in the cell walls 
of Equisetum species (horsetails) and the lycophyte Selaginella 
moellendorffii.14-16 Very few studies have analyzed the distri-
bution of MLG in vegetative tissues other than coleoptiles in 
grasses.7,17 As shown in Figure 1, MLG accumulates to high lev-
els in sclerenchyma fibers of developing leaf primordia in rice 
as detected by immunolabeling of tissue sections with a spe-
cific monoclonal antibody recognizing (1,3; 1,4)-β-

D
-glucan. 

Labeling of the thick secondary walls in the sclerenchyma is just 
as strong as the labeling in the surrounding primary cell walls of 
the parenchyma (Fig. 1). Similar observations have been made 
for mature rice leaves10 and young seedling leaves of barley.11 
In contrast, immunogold labeling studies have reported weak 
detection of MLG in the secondary cell walls of sclerenchyma 
fibers and xylem vessels in both leaves of the grass Lollium multi-
florum and coleoptiles and first leaves of barley.13,17 The apparent 
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growth-specific polysaccharide absent in mature tissues in the 
grasses. The evidence so far suggests that in certain organs, such 
as the coleoptile and young seedling, MLG turnover from pri-
mary cell walls is associated with cessation of growth. In other 
organs, such as stems and leaves, the presence of MLG at matu-
rity might indicate a role in cell wall strengthening or reinforce-
ment, as recently suggested in stems of rice and Equisetum.10,20 In 
grass endosperm cell walls, MLG is believed to act as a storage 
compound. Finally, it is clearly apparent that the heterogene-
ity in distribution and function of cell wall polysaccharides is 
not limited to MLG. For example, it is known that xyloglu-
can has diverse structures and occurrence, and likely different 
roles in the cell wall, depending on the species or plant tissues 
considered.21-24
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discrepancy in MLG detection likely results from differences 
between grass species (Lollium vs rice and barley) or organ types 
(coleoptiles vs. leaves). Interestingly, non-grass species in the 
Poales have been reported to accumulate MLG in mature, non-
elongating tissues. For example, in Leptocarpus similis and Restio 
tetraphyllus, heavy gold labeling was detected in secondary cell 
walls of immature stems.13 Similarly, in Equisetum plants, MLG 
accumulates in both young and old tissues, preferentially in 
aging tissues such as the base of stems,14,15 which is in agreement 
with our previously reported immunogold labeling results in 
mature stems of rice.10 In accordance with these studies, we also 
show here in Figure 2 that MLG occurs in mature, senscing tis-
sues of various grasses [rice, maize, B. distachyon and switchgrass 
(Panicum virgatum)]. In our previous study, we had suggested 
that high levels of MLG in mature rice tissues could be specific 
to rice and not other grasses.10 However, we had performed those 
preliminary studies using buffer extracted MLG and a less sensi-
tive detection method. The combination of 4M KOH extraction 
and ELISA shown here allowed us to detect significant amounts 
of MLG in senescing samples of all grasses tested (Fig. 2). High 
amounts of MLG in dry ground mature stems and leaves of rice, 
B. distachyon, switchgrass, Setaria italica (foxtail millet) and 
Miscanthus have also been detected in a recent glycome profil-
ing study.18 Finally, in barley MLG is present in both elongating 
and non-elongating root zones, with the highest accumulation 
in the zone where growth has ceased,19 which indicates that 
MLG turnover is not the same in non-elongating root tissues as 
in coleoptiles.

Concluding Remarks

Taken together, the recent scientific literature does not sup-
port the commonly held belief that MLG is solely a transient, 

Figure 1. Micrographs of vascular bundles from equivalent transverse sections of developing rice leaf. (A) Bright field micrograph shows the 
anatomy. The section was stained with Nitro Blue tetrazolium salt which here highlights the sclerenchyma (sc), a tissue type with secondary cell 
walls. (B) Representative section labeled with a monoclonal antibody25 raised to mixed linkage glucan (MLG). MLG was abundantly detected in 
the parenchyma (p) as well as in the sclerenchyma fibers. By contrast, the antibody bound only weakly to bundle sheath (bs). (C) After incubation 
with lichenase, an enzyme that degrades MLG, only the autofluorescence from the sclerenchyma fibers was visible in the sections labeled with the 
anti-MLG antibody. Together, both (B) and (C) confirm the presence of MLG in cell types with secondary cell walls. The arrows are used to locate the 
bundle sheath. Scale bar: 20 mm.
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