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Abstract
The cancer drug discovery field has placed much emphasis on the identification of novel and
cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor
agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway
responsible for the vast majority of protein turnover within the cell. Because of its critical role in
almost all cell processes that ensure normal cellular function, its inhibition at one point in time
was deemed non-specific and therefore not worth further investigation as a molecular drug target.
However, today the proteasome is one of the most promising anti-cancer drug targets of the
century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than
normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to
bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for
newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma.
Though successful in improving clinical outcomes for patients with hematological malignancies,
relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of
bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have
been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These
observations have encouraged researchers to pursue the next generation of proteasome inhibitors,
which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range
of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and
describes recent advances in the field, including, and most notably, the most recent FDA approval
of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome
inhibitors currently in clinical trials and those that are currently experimental grade will also be
discussed.
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THE PROTEASOME
From Therapeutically Untouchable to Prime Molecular Drug Target

Today the proteasome is widely accepted as the primary means by which protein
homeostasis is maintained within the cell and that it is essential for the occurrence and
progression of almost all normal cell processes. However, this was not always so. With the
discovery of the lysosome as a proteolytic organelle, in the early 1950s, it became only
logical to suggest that all intracellular proteolysis occurs at the hands of the proteases within
this compartment. Fast forward 20–30 years and this simple concept is heavily complicated
by much accumulated evidence declaring the presence of an entirely new, very specific, and
non-lysosomal protein degradation system dependent on a novel post-translational
phenomena termed polyubiquitination. The discovery of the ubiquitin-proteasome system is
accredited to Aaron Ciechanover, Avram Hershko and Irwin Rose; their work was
acknowledged with the 2004 Nobel Prize in Chemistry. The 26S proteasome (Fig. 1) was
first described as a giant protease having multiple subunits, including ring-shaped 19S
regulatory and 20S catalytic core components, further composed of numerous polypeptide
subunits [1–3]. Seven α subunits make up each of the two identical outer rings of the 20S
catalytic core, while seven β subunits form each of the inner two identical rings, together
they are arranged in a stacked cylindrical structure with a narrow pore through which a
particular protein substrate could pass and reach their ultimate fate: degradation [1]. The
high level of specificity of this system is made possible by the series of events that occur
prior to the proteasome's activity, the process of polyubiquitination. The ubiquitin-activating
enzyme E1, ubiquitin-conjugating enzyme E2, and the ubiquitin E3 ligases are present in a
hierarchal nature and are responsible for the ATP-dependent activation of ubiquitin and
ultimate transfer of this moiety to particular protein substrates. The ubiquitin E3 ligases not
only dictate which proteins will fall victim to the proteasome by polyubiquitination at the
specific lysine 48 residue, but also regulate protein trafficking events through the
monoubiquitination of lysine 63 and other non-traditional lysine residues [3].

Because the proteasome is essential for many key cellular regulatory mechanisms, is
ubiquitously expressed, and in fact can constitute up to 1% of the cellular protein content in
eukaryotes [1, 4], it was a reasonable assumption that modulating its function was an
untouchable strategy in the design and development of novel agents for the treatment of
various diseases, particularly cancer. In other words, the ubiquitin-proteasome system is
absolutely vital for the identification and removal of misfolded, damaged, or toxic proteins;
it was therefore thought not to be logical to inhibit its function. However, this again was
found not to be so. Proteasome inhibitors have in fact been developed and in the last decade
have translated into the clinic, the most notable being bortezomib (Fig. 1 and 2), the first
FDA approved proteasome inhibitor as an anticancer agent for the treatment of relapsed
multiple myeloma and mantle cell lymphoma in 2003 and most recently carfilzomib (Table
I), a second generation product of this class of compounds FDA approved for patients with
multiple myeloma progression while on, or after treatment with, bortezomib and an
immunomodulatory agent. Contrary to what may have been thought, the use of proteasome
inhibitors for the treatment of cancer has proven to induce a pro-apoptotic response that is
relatively cancer cell-specific. Furthermore, proteasome inhibition has been shown to be a
valuable strategy in the sensitization of cancer cells to the effects of traditional
chemotherapies and radiation. Several mechanisms have been proposed to explain these
observed effects, such as: down regulation of NFκB and other anti-apoptotic proteins,
activation of the tumor suppressor protein p53, and modulation of cell cycle proteins and
other pro-apoptotic factors. Interestingly, the effects of proteasome inhibition appear to be
selective for tumor cells over normal cells and ongoing research will help to elucidate the
mechanism(s) responsible for why this is the case. Herein we take a look at the evolution
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and future outlook of proteasome inhibitors and the rationale behind their design and
development, focusing on a comparison to the field's prototype, bortezomib.

Proteasome Inhibitors Overview: Endogenous, Natural and Synthetic
Prior to the approval of bortezomib by the FDA, many other proteasome inhibitors were
developed and used experimentally. Based on earlier studies suggesting the use of small
peptide substrates as templates for the design of proteasome inhibitors, many peptide
aldehydes were synthesized toward the goal of developing potent and specific inhibitors [5–
8]. Among this class of inhibitors are calpain inhibitors I and II, leupeptin, and MG-132 [5,
9–11], all of which have been tested in vitro and in vivo. While these inhibitors are quite
potent, their structures also cause them to be multi-specific, with reactivity toward not only
the active proteasomal subunits (β1, β2, and β5), but also against serine and cysteine
proteases. In an effort to increase selectivity, peptide boron esters were synthesized and
demonstrated both greater specificity and higher potency [12–14]. Further derivations of this
class, including dipeptide boron esters such as bortezomib, have proven even more
successful than their parent structures. While these classes of inhibitors are reversible, some
irreversible inhibitors have also been investigated, including several serine protease
inhibitors, such as 3,4-dichloroisocoumarin [15–17] as well as chloromethyl and
diazomethyl ketones [18]. These classes are limited, however, in their broad reactivity and
low potency [18, 19]. Additionally, cysteine protease inhibitors such as peptide vinyl
sulfones have also been shown to be potent irreversible inhibitors of the proteasome [20–
23]. Presently, the design of new synthetic proteasome inhibitors is based not only on the
structure of previously investigated compounds, but also on the structure of the proteasome
itself. This rational drug design strategy should yield more potent and specific inhibitors.

The health benefits of several natural compounds have also long been recognized and many
investigators have looked to these natural compounds for their potential to specifically
inhibit the proteasome. In fact, many of these natural products are much more selective and
potent than the synthetically created compounds described previously. One such product is
lactacystin (Fig. 3), a Streptomyces metabolite, which was initially investigated for its
ability to inhibit cell cycle progression, but was later found to possess the ability to inhibit
all proteasomal catalytic activities [22, 24–26]. Another class of natural proteasome
inhibitors includes epoxomicin (Fig. 3) and eponemycin, which contain epoxyketone groups
at their C-termini. Investigation into the biological targets of these compounds began after
the observation that both are able to inhibit tumor growth [27, 28] and that eponemycin is a
potent inhibitor of angiogenesis [29]. This class is highly specific and extremely potent
towards the proteasome, due to its unusual mode of action [30]. Importantly, chemists have
taken advantage of nature's design of these potent inhibitors to synthesize derivatives, which
have aided in the identification of the modes of action of these compounds, as well as
produced even more potent and specific inhibitors [30–35]. Thus, basing drug design on the
structure of the proteasome as well as the structure of potent natural inhibitors may yield the
most promising compounds. Additionally, studies have also investigated the green tea
polyphenol, epigallocatechin gallate (EGCG) (Fig. 3), as well as its synthetic analogs, grape
polyphenols, soy isoflavones, and other microbial products for their proteasome inhibitory
abilities, which are described in further detail below.

With the success of synthetic and natural proteasome inhibitors, the existence of an
endogenous proteasome inhibitor would clearly validate proteasome inhibition as a viable
strategy. Many cellular proteins, such as p53 and NFκB have inhibitory counterparts
(MDM2 and IκB-α, respectively), thus it is no surprise that early reports suggested the
presence of a potential endogenous inhibitor of the proteasome [36, 37], which was later
identified as delta-aminolevulinic acid dehydratase (ALAD) [38], a critical component of
the heme biosynthetic pathway. ALAD functions as an octomer consisting of eight identical
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subunits, with two or three zinc molecules bound to each subunit. In the heme pathway,
ALAD catalyzes the condensation of two aminolevulinic acid (ALA) molecules into
porphoblinogen (PBG). Importantly, the binding of zinc (Zn) is crucial to the activity of the
enzyme, while lead (Pb) binding has been shown to be inhibitory [39–43].

In addition to its role in heme biosynthesis, ALAD has also been shown to be identical to the
inhibitory CF-2 (conjugate-degrading factor-2) component of the proteasome [38], as well
as an inhibitor of calpain [44]. ALAD and CF-2 have common N-terminal amino acid
sequences and isoelectric points, specific antibody cross-reactivity, similar proteasome
inhibitory and dehydratase activities, and migrate identically on native and SDS-PAGE gels
[38]. The CF-2 inhibitory subunits were shown to exist in an ubiquitinated form within the
proteasome complex [45], however, a recent report has shown that ALAD is a proteasome-
interacting protein (PIP) rather than a component of the proteasome [46]. Interestingly,
ubiquitination of the proteasome inhibitor/ALAD caused a 90% loss of ALAD and its
proteasome inhibitory activity [47]. The relationship between ALAD and the proteasome
must further be investigated. The activation of ALAD as an endogenous inhibitor of the
proteasome may be a promising target in the treatment of human cancers as well as other
diseases involving the proteasome.

A Look at the Proteasome Inhibitor Bortezomib: The Good, the Bad, and the Ugly
Bortezomib (Velcade®) (Figs. 1 and 2) is the first proteasome inhibitor approved by the
FDA. In 2003, bortezomib received fasttrack approval for the treatment of refractory
multiple myeloma (MM) based on the data presented from two independent phase II trials
(Table I): the CREST trial [48, 49] and the SUMMIT trial [50]. Bortezomib was first
synthesized in 1995 by Myogenics and passed along to several companies until finally
landing in the hands of Millennium Pharmaceuticals in 1999 with a low priority tag. That is,
until, one of its first patient volunteers in a MM trial achieved complete response (CR) and
was still alive four years later. The drug is a C-terminal boronic acid and it is the boron atom
that is in fact essential for inhibiting proteasome activity because of its ability to specifically
and tightly bind the β5 catalytic subunit. While multiple mechanisms are probably
responsible for its anti-tumor effect, it is likely that the inhibition of degradation of
proapoptotic proteins initiates the programmed cell death (apoptosis) response specifically
in tumor cells which are otherwise dependent on the suppression of such proteins for
survival.

Bortezomib was first approved for use in those patients who had received at least two prior
lines of therapy, then in 2005 for those who had at least one prior therapy (as a result of the
APEX trial) (Table I) [51, 52]) and in 2008, bortezomib successfully became the front-line
therapy for newly diagnosed MM patients based on the phase III VISTA trial (Table I) [53,
54]. Naturally, combinations of bortezomib with other commonly used chemotherapeutic
agents, such as dexamethasone, have been explored. The combination of bortezomib and
high-dose dexamethasone as a first-line option for MM patients was indeed studied in a
phase II trial and the results have revealed that bortezomib, with or without dexamethasone,
is an effective and well-tolerated first choice regimen for these patients [55, 56]. The
addition of a third drug to this mix, like the widely used doxorubicin, has also been
examined. This combination was given before stem cell transplantation and the results
reported show a 90% response rate in newly diagnosed MM patients with well-tolerated and
manageable toxicities [57, 58]. Likewise, the combination of bortezomib, thalidomide and
dexamethasone as front-line therapy in newly diagnosed MM patients has also shown a
favorable outcome [59]. Moreover, after the 2006 phase II PINNACLE trial (Table I) of 155
relapsed or refractory mantle cell lymphoma (MCL) patients treated with bortezomib
monotherapy showed an overall response rate (ORR) of 32% the FDA extended its approval
to cover MCL [60, 61]. In another phase II trial, the combination of bortezomib with
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gemcitabine was investigated and found to be effective in patients with relapsed or
refractory MCL with an ORR of 60% [62]. MCL accounts for just 5% of all B-cell
lymphomas with diffuse large B-cell lymphoma and follicular lymphoma being the two
major types, accounting for 30–40% and 20% respectively [63].

There is great interest in expanding the use of bortezomib for the treatment of other
hematological malignancies, such as different types of B-cell lymphomas as well as some
advanced stage solid tumors. In the phase II VERTICAL trial, a combination of bortezomib,
bendamustine, and rituximab was evaluated and proved to be highly active (ORR of 88%
and complete response (CR) of 53%) in patients with relapsed or refractory follicular
lymphoma [64]. In a phase I/II B-cell lymphoma study, bortezomib was introduced to the
standard CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) plus
rituximab regimen (R-CHOP), which produced an evaluable ORR of 100% with 86% CR/
unconfirmed CR. The ORRs were 91% and 72% in MCL patients respectively. These results
strongly support the push for entry of bortezomib plus the R-CHOP regimen into phase III
trials [65].

In solid tumor cases however, the efficacy of bortezomib has been disappointing. Its use has
been extensively investigated in several solid tumor types, but its success has fallen short
when compared to hematological malignancies. For example, in a study including patients
with castration resistant metastatic prostate cancer neither bortezomib alone, nor combined
with prednisone, exhibited significant antitumor effects [66]. Similarly, the combination of
docetaxel and bortezomib as a potential first-line treatment showed no improved efficacy
versus docetaxel alone [67]. In heavily pre-treated metastatic breast cancer patients,
bortezomib plus pegylated liposomal doxorubicin was well tolerated but had minimal
activity [68]. A trial testing bortezomib monotherapy in chemotherapy-naïve patients with
advanced stage non-small cell lung cancer was terminated in the first stage due to lack of
response in all patients [69]. Bortezomib monotherapy was also inactive in patients with
unresectable or metastatic gastric and gastroesophageal junction adenocarcinoma [70].
Another disappointing example is the failure of a first-line regimen including bortezomib,
paclitaxel and carboplatin in the treatment of patients with metastatic esophageal, gastric and
gastroesophageal cancer [71]. Therefore it is obvious that more effort is required, both in the
lab and clinic, to best determine the place for bortezomib in the treatment of solid tumors.
The online United States National Cancer Institute (NCI) clinical trials database has just
under 200 currently active trials listed studying bortezomib's potential in the treatment of
these various cancer types, although delineating the mechanism by which bortezomib fails in
these cases may be the first critical step in improving its efficacy.

After weighing its clinical success and failure, it is important to sort through both
bortezomib's advantages and disadvantages in order to better understand what qualities to
avoid, which to keep, and which to improve on for the development of the next generation
of proteasome inhibitors.

First, as a proteasome inhibitor, bortezomib exhibits favorable selectivity towards tumor
cells over normal cells, which is an important criterion for being a good anti-cancer drug.
Numerous studies have proved the selectivity of bortezomib in tumor cells versus normal
cells. Multiple factors have been implicated in contributing to this tumor cell selectivity. (i)
Cancer cells are rapidly dividing cells compared to non-cancerous cells. Therefore, they
more heavily rely on proteasomal turnover of cell cycle regulatory proteins to promote cell
cycle progression than normal cells. (ii) Cancer cells appear to generate misfolded or
damaged proteins much faster than non-cancerous cells due to their uncontrolled cell
proliferation. (iii) The amount of proteasomes and/or the proteasomal activity has been
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shown to be up-regulated in many types of cancers and this up-regulation is important for
the maintenance of the malignant phenotype [72, 73].

Secondly, the outstanding efficacy of bortezomib in the treatment of MM and MCL has been
observed in clinical trials and more importantly, these clinical trials suggest that bortezomib
holds activity in about one third of patients who were heavily pre-treated. This could be
attributed to the fact that bortezomib is targeting a unique, previously unaffected target, the
proteasome, as the mechanism of action of bortezomib differs from any existing
chemotherapeutic agents [74, 75].

Thirdly, bortezomib is capable of enhancing the sensitivity of cancer cells to conventional
chemotherapeutic agents or radiation. In several previously discussed clinical trials,
bortezomib was introduced into standard therapy and largely improved the outcome in terms
of ORR, time to progression, etc. The chemo- and radio-sensitizing effect of bortezomib
could once again be attributed to its unique target and mechanism of action. It is conceivable
that two drugs with different targets or mechanisms of action may have better efficacy and
less toxicity than two drugs with the same target or similar mechanism of action [76, 77].

With the good comes the bad, and some disadvantages and/or limitations of bortezomib
have indeed been observed during its preclinical and clinical development.

First, although it is generally well-tolerated, bortezomib still generates some toxicity, and in
some cases the regimen must be discontinued. The most frequently occurring side effects are
nausea, diarrhea and fatigue. More serious adverse drug reactions include peripheral
neuropathy, thrombocytopenia, neutropenia and lymphopenia. It is estimated that more than
40% of patients will present with peripheral neuropathy [78]. Somewhat redeeming in this
regard is the newly approved subcutaneous administration of bortezomib, which has been
found to significantly alleviate peripheral neuropathy compared to the traditional
intravenous injection [79].

Another shortcoming of bortezomib is its narrow therapeutic window. According to a phase
I trial, the therapeutic dose of bortezomib is 1.3 mg/m2 and the dose-limiting toxic effects
are observed with only a slightly higher dose of 1.5 mg/m2. However, if bortezomib dose
reduction is required, the most recent phase II CREST trial, which compared two doses of
bortezomib (1.3 mg/m2 vs. 1.0 mg/m2), reports that the 1.0 mg/m2 dose still offers patients a
substantial survival benefit [49].

Furthermore, despite the appreciable therapeutic outcome of bortezomib, like almost all anti-
cancer drugs, drug resistance becomes a major problem after some time. Bortezomib
resistance has been observed in even those newly diagnosed patients who received
bortezomib monotherapy for the first time. These clinical observations indicate that
bortezomib resistance could be either acquired or inherent. The results from cell-based
studies suggest that bortezomib resistance could occur either at the level of the proteasome
itself or further downstream. For example, increased mRNA and protein expression of the
β5 subunit was observed in bortezomib-resistant leukemic cell lines as well as patient
samples [80–82]. Mutations in β5 which impair bortezomib binding have also been reported
[80, 83]. In addition, constitutively active NFκB pathway, downstream of the UP-S, was
found in some bortezomib-resistant cell lines [84]. Whether or not any of the above is
relevant to clinical bortezomib resistance in MM patients remains to be determined.

Moreover, during the clinical application of bortezomib, it was noticed that some natural
products, including green tea polyphenols, are able to reduce the efficacy of bortezomib.
This was due to the direct interaction between the boronic acid structure of bortezomib and
the catechol structure of green tea polyphenols, resulting in the formation of a borate ester
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and therefore inactivation of bortezomib [85]. Further clinical studies are needed for
evidence-based recommendations of green tea consumption in patients receiving bortezomib
treatment; fortunately though, this issue only affects boronic acid-based proteasome
inhibitors.

Finally, as discussed earlier, the efficacy of bortezomib, either alone or in a multi-drug
regimen, is unsatisfactory in the treatment of solid tumors. Addressing this issue will largely
extend the application of proteasome inhibitors in cancer treatment.

Bortezomib: A Forerunner, Yet Ancestor
At least five second generation proteasome inhibitors are currently under clinical
investigation (Table II). Carfilzomib is an irreversible proteasome inhibitor; since new
protein synthesis is required for recovery of proteasome activity, carfilzomib has a greater
potency than bortezomib. In addition to targeting the β5 subunit in the constitutive
proteasome, carfilmozib also targets the correlated β5i subunit of the immunoproteasome,
which appears to be preferentially expressed in MM. Moreover, carfilzomib is shown to be
more specific than borzetomib, with little or no off-target activity outside of the proteasome
[86]. However, like bortezomib, the administration of carfilzomib is intravenous twice
weekly, which may be inconvenient for patients. Carfilzomib has been evaluated in two
phase II trials, PX-171-003-A1 [87] and PX-171-004 [88, 89], as monotherapy for the
treatment of relapsed and refractory MM patients. Both trials observed durable response to
carfilzomib with well-tolerated and manageable side effects, regardless of prior exposure to
bortezomib. Analysis of 136 patients in the above two trials indicated that peripheral
neuropathy occurred in 15% of patients, among which 9% was attributed to carfilzomib.
None of the patients required discontinuation or dose adjustments due to neurotoxicity,
allowing long-term treatment and prolonged disease control by carfilzomib [90]. These data
also indicate that peripheral neuropathy is not a class effect of proteasome inhibitors [90]. A
recent study comparing bortezomib and carfilzomib further pointed out that the
neurotoxicity associated with bortezomib was related to its off-target inhibition of HtrA2/
Omi, a protease known to be involved in neuronal survival [91]. Carfilzomib has also been
evaluated in combination with lenalidomide, and low-dose dexamethasone (CRd) in
relapsed, refractory and newly diagnosed MM patients in two separate phase II trials, both
of which report that this regimen is highly active and well-tolerated [92, 93]. In newly
diagnosed patients, the responses are rapid and improve over time reaching 100%, which
compare favorably to the best frontline regimens in MM therapy [92]. In relapsed and/or
refractory patients, the ORR was 78% [93]. Based on these encour aging results, the phase
III ASPIRE trial of this regimen was approved and designed with the intention of full
support by the FDA for its approval for use against relapsed multiple myeloma. As of July
20 2012, it has been announced that carfilzomib has received FDA approval for treatment of
patients with multiple myeloma progression while on, or after treatment with, bortezomib
and an immunomodulatory agent. Its use in the U.S. was launched as of August 1 2012;
indeed, another milestone in the field.

Marizomib (NPI-0052) (Table II) is another irreversible proteasome inhibitor administrated
intravenously twice weekly. Compared to other proteasome inhibitors, marizomib produces
rapid, broad and prolonged inhibition of all three 20S proteasome catalytic activities. Data
from a phase I trial reports that responses to marizomib were found in patients with
bortezomib-refractory MM. The safety profile of marizomib clearly differs from
bortezomib, with no significant treatment-emergent peripheral neuropathy, myelo-
suppression or thrombocytopenia reported. The dose limiting toxicities are transient and
include: hallucinations, cognitive changes and loss of balance. In addition, marizomib
exhibits interesting pharmacokinetic and pharmacodynamic properties and tissue
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distribution, supporting a possible role for marizomib in patients with different disease
characteristics such as extramedullary spread [94].

Ixazomib (MLN-9708) (Table II), a boronate-based reversible proteasome inhibitor, has the
advantage of being the first oral proteasome inhibitor to enter clinical investigation in MM
patients. Oral administration is not only convenient for the patient, but also seems to
produce milder side effects. Data from a phase I trial suggest that single-agent ixazomib may
have clinical activity in heavily pretreated relapsed and/or refractory MM patients,
describing durable disease control and well tolerated results with infrequent peripheral
neuropathy [95].

Delanzomib (CEP-18770) (Table II) is another boronate-based reversible proteasome
inhibitor taken orally, although current phase I/II clinical investigations are still using
intravenous administration. Delanzomib has shown proteasome-inhibitory activity similar to
that of bortezomib in hematologic and solid tumor cell lines, as well as in primary cells from
MM patients [96]. Along these lines, Oprozomib (ONX-0912) (Table II) is another
borteozmib-like proteasome inhibitor proposed to be taken orally; it is epoxyketone-based
and irreversible in action. It exhibits similar potency to carfilzomib in cytotoxicity assays.
More excitingly, orally administered oprozomib has equivalent antitumor activity to
intravenously administered carfilzomib in human tumor xenograft and mouse syngeneic
models [97]. It is currently being investigated in early clinical trials via oral administration
twice daily.

Natural Compounds with Proteasome-Inhibitory Activity
Natural products have been used as therapeutic agents worldwide for ages. Even today,
bioactive compounds from natural sources continue to play an extremely important role in
the process of drug design and discovery due to their enormous structural diversity. In fact,
almost half of all drugs discovered between 1940 and 2006 were of natural origin or
derivatives of other natural bioactive compounds [98, 99]. They not only act as therapeutic
agents directly, but also serve as templates which can be structurally modified in order to
produce improved, more specific, safe and potent drugs. Various microbial metabolites and
phytochemicals with a polyphenol structure are also thought to inhibit the proteasome based
on cell culture and animal studies [100]. This section reviews some of these natural
compounds and their proteasome inhibitory potential.

Green Tea Polyphenols
Tea, one of the most popular beverages in the world, is said to have cancer preventive and
antioxidant effects due to its polyphenol-containing nature, including (−)-epicatechin (EC),
(−)-epigallocatechin (EGC), (−)-epicatechin-3-gallate (ECG), and (−)-epigallocatechin-3-
gallate (EGCG). EGCG (Fig. 3) has been shown to inhibit the β5 subunit, chymotrypsin-like
(CT-like) activity, of the proteasome in vitro and in vivo with an IC50 value of 86 to 194 nM
and 1 to 10 μM respectively where the in vivo concentrations are in accordance with the
concentrations found in the serum of green tea drinkers [101]. Protein levels of transcription
factor HIF-1α, which controls expression of oxygen regulated genes involved in cell
proliferation, cell survival and angiogenesis, were decreased by EGCG in HeLa and HepG2
cells. EGCG inhibited the translational machinery of HIF-1α suggesting that its down
regulation started even before its own protein synthesis. EGCG also significantly inhibited
VEGF expression at the mRNA and protein levels in HeLa cells [102]. However, EGCG, the
most abundant and potent constituent of green tea is unstable under neutral and alkaline
conditions. Hence, novel EGCG analogs were synthesized with either elimination of the –
OH groups from the B- and/or D-rings of its parent compound or its protection by the
acetate group [103, 104]. These novel EGCG analogs inhibited cell proliferation and

Buac et al. Page 8

Curr Pharm Des. Author manuscript; available in PMC 2013 May 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



induced apoptosis in leukemic, prostate and breast cancer cells at greater potency when
compared to their parent EGCG compound [104]. Furthermore, a pro-drug of EGCG
showed more tumor inhibition as compared to EGCG in nude mice injected with breast
cancer MDA-MB-231 cells. However, synthetic methylated tea polyphenols do not have
strong proteasome inhibitory activities and therefore are less chemopreventative. Hence, in
patients with high catechol-O-methyltransferase (COMT) activity, EGCG is methylated,
inactivated and therefore not beneficial [105, 106].

Grape Polyphenols
Grapes are a rich source of flavonoids like resveratrol, apigenin and quercetin (Fig. 3) which
have shown antiproliferative activities in vitro in different tumor cell lines from melanoma,
prostate and pancreatic cancer [107–109]. Currently, no direct evidence of resveratrol's
proteasome inhibitory activity exists; however inhibition of NFκB suggests that it may
indeed have proteasome inhibitory properties [110]. Apigenin has been shown to strongly
inhibit CT-like activity of the proteasome. In silico docking approaches have shown that the
carbonyl carbon of apigenin binds to the β5 subunit CT site in an orientation and
conformation that makes it susceptible to nucleophilic attack by threonine 1. Use of apigenin
in an assay using purified 20S and 26S proteasome showed inhibition of proteasome activity
in intact leukemia Jurkat cells at an IC50 of 1.8 to 2.3 μM and 1 to 10 μM respectively.
When leukemia Jurkat cells were treated with apigenin, accumulation of proteasome
substrates like Bax and IκB-α as well as caspase 3 activation and apoptotic PARP cleavage
was observed. Apigenin was not toxic to normal, non-transformed cells, which further
validates its potential as a therapeutic proteasome inhibitor. Quercetin inhibits the purified
proteasome at an IC50 of 3.5 μM and the 26S proteasome in intact tumor cells at an IC50 of
2 μM. Like apigenin, in silico analysis also suggests that the carbonyl carbon of quercetin
binds to the CT site of the proteasome in a similar fashion making it suitable for a
nucleophilic attack by threonine 1. When leukemia Jurkat cells were treated with quercetin,
accumulation of proteasome substrates like Bax and IκB-α was observed, while caspase 3
activation and apoptotic PARP cleavage also occured in a dose and time dependent manner
[111].

Soybean Isoflavones
Epidemiological studies have indicated that a soy bean-rich diet decreases one's likelihood
of developing cancer in their lifetime. Genistein (Fig. 3), a major isoflavone found in
soybeans has cancer cell growth inhibitory ability in various cancer cell lines [112–114]. In
silico computational docking studies suggest that genistein can interact with the β5 subunit
of the proteasome in such a manner that the CT-like activity is shut down. Genistein at the
dose of 1 μM, which falls within plasma level range of 0.5 to 2.5 μM, can inhibit
approximately 30% of 20S proteasome CT-like activity in a purified system with higher
concentrations (50 μM) required to completely abolish it in breast and prostate cancer cells
[115–117]. Genistein inhibits NFκB activity, suggesting proteasome inhibition and may
have multiple cellular targets of which simultaneous inhibition could be responsible for its
cancer fighting mechanism [118, 119].

Natural Compounds of Microbial Origin
Some of the natural compounds tested for anti-cancer activity were identified from
microorganisms (Fig. 3). For example, lactacystin, isolated from streptomyces, forms a
covalent bond with the N-terminal threonine residue of the proteasome thereby inhibiting its
activity [31]. Omuralide (Fig. 3), a derivative of lactacystin, is prepared by eliminating the
n-acetyl cysteine moiety from the lactone ring and behaves in a similar fashion [120, 121].
Furthermore, PS-519 is prepared based on the structure of omuralide where an n-propyl
group is substituted for a methyl group; it has proteasome-inhibitory potential but has
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recently entered clinical trials for the treatment of acute stroke [122]. Marizomib
(Salinosporamide A, Table II), found in marine bacteria, is structurally similar to omularide,
but is almost four times more potent than omuralide in inhibiting proteasomal CT-like
activity [123, 124]. Marizomib also inhibits the trypsin-like activity of the proteasome and
exhibits strong cytotoxic activity against the HCT116 human colon carcinoma cell line
[125]. Interestingly, marizomib can overcome bortezomib resistance in relapsed or
refractory MM and shows improved proapoptotic activity over bortezomib in an in vitro
chronic lymphocytic leukemia cell line system. In addition, its oral administration is
clinically favorable [126]. Combinations of marizomib and histone deacetylase inhibitors,
MS-275 or valproic acid, have been studied and the observed results report these
combinations to have even better apoptotic inducing activity than the bortezomib and
MS-275 or valproic acid combinations [127]. Furthermore, in vitro studies using MM cell
lines testing marizomib combined with lenalidomide have resulted in a favorable synergistic
cytotoxic response [128]. Belactosins A and C (Fig. 3) isolated from the streptomyces
species have identical β-lactone rings and so are similar to omuralide in their ability to
inhibit proteasomal CT-like activity [129, 130].

Epoxomicin, isolated from actinomycetes, can inhibit the proteasome due to the presence of
α-β-epoxyketone moiety, which forms a morpholine adduct with the N-terminal threonine
residue of the proteasome core [131]. Carfilzomib (Table II), an irreversible proteasome
inhibitor was developed based on the structure of epoxomicin, and is even more selective for
the proteasome's CT-like activity than bortezomib [132]. It is active against bortezomib
resistant MM cell lines and when combined with dexamethasone, has synergistic and
cytotoxic effects. Carfilzomib is clinically well tolerated and as previously mentioned, does
not have the undesirable neuropathic side effects commonly seen with bortezomib in MM
patients [133]. With its recent FDA approval, more positive clinical data is anticipated in the
coming years.

Syringolin A (Fig. 3), isolated from the plant pathogen pseudomonas syringae, irreversibly
inhibits all types of proteasomal activity. It also inhibits cell proliferation and induces
apoptosis in malignant cells. The x-ray crystallography structure of syringolin A binding to
the yeast proteasome shows Michael type 1, 4-addition to the vinyl ketone moiety of the 14
member ring to the hydroxyl group of the threonine residue [134, 135].

TMC-95A (Fig. 3), isolated from apiospora montagnei inhibits all proteasome activities in
the nanomolar range [136, 137]. X-ray crystallography studies show that TMC-95A and the
core particle of the yeast proteasome bind to each other via hydrogen bonding [138, 139].
Thus, proteasome inhibitors of natural origin by themselves or in combination could be used
as cancer therapies. In depth knowledge of the chemical structures of these bioactive
molecules and the proteasome, including the study of their interaction, may lead to better
proteasome inhibitors with less off target effects and desirable pharmacokinetic properties
[140].

OTHER MECHANISMS OF UP-S INHIBITION
Inhibitors of Ubiquitin E3 Ligases as Anti-Cancer Drugs

Ubiquitin E3 ligases (Table III) are a group of enzymes a part of the UP-S, which bind
specific protein substrates and promote their degradation by the transfer of ubiquitin from a
thioester intermediate to form an amide linkage [141, 142]. E3 ubiquitin ligases can be
classified into three major groups: N-end rule ubiquitin li-gases [143], HECT (Homologous
to E6AP C-Terminus) type E3 ligases [144] and the RING (Really Interesting New Gene)
family of E3 ligases [145, 146]. N-end rule E3 ligases consist of two types: Type I, which
target protein substrates specific to the N-terminal destabilizing residues like Arg, Lys and
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His and type II, which target substrates with Phe, Leu, Trp, Ile and Tyr residues [143, 147].
Proteolytic cleavage exposes the internal destabilizing residues at the N-terminus of the
substrate and subsequent E3 ligase binding leads to polyubiquitination and proteasomal
degradation.

The HECT type E3 ligases contain a C-terminal region (approx. 350 amino acids)
homologues to E6-AP with a conserved active site cysteine near the C-terminus which forms
the thioester linkage with ubiquitin.

The third and largest type of E3 ligases are the RING finger domain containing type. RING
finger E3 ligases possess autoubiquitination activity in addition to their ability to
ubiquitinate other protein substrates. The RING finger is a specialized zinc finger with the
consensus sequence: C-X2-C-X [9–39]-C-X[1–3]-H-X[2–3]-CX2-C-X[4–48]-C-X2-, about
40–60 amino acids in linear sequence; binding two Zn atoms per molecule and forming a
cross-brace structure.

E3 ubiquitin ligases regulate almost all cellular processes including the cell cycle,
transcription, DNA repair, signal transduction, endocytosis, cellular transport and
development. Recent discoveries in cancer research have made it very clear that E3 ligases
play a vital role in cancer development and progression and that their inhibition results in
growth suppression and apoptosis of neoplastic cells. Thus, E3 ligases represent a group of
potentially `drugable' target enzymes for mechanism-based drug discovery in the ubiquitin
proteasome system (Table III).

An example of a protein that plays a pivotal role in many cancers and is regulated by E3
ligases is the tumor suppressor protein p53, which is primarily regulated by the RING-type
E3 ligase Mdm2 and HECT- type E3 ligase E6-AP, both of which influence its degradation
by the proteasome [148–151] (Table III). As in the vast majority of cancers, Mdm2 regulates
p53 by either inhibiting its transcriptional activity or by targeting it for proteosomal
degradation. Since Mdm2 promotes p53 degradation, it has gained much attention as a
targeted cancer therapy. The first Mdm2 inhibitors involved antisense oligonucleotide and
gene therapy methods, which were unsuccessful due to the lack of effective delivery
methods. As a result, three distinct compounds representing a benzsulfonamide, a urea
analogue and an imidazole derivative were identified by Lai et al [152] as inhibitors of
human Mdm2 (HDM2). Of these, Nutlin-3 has desirable pharmacological properties and has
proven to be effective in the inhibition of tumor growth in preclinical studies. Although it is
currently in phase I clinical trials for the treatment of retinoblastoma, its effect on normal
tissue and cell types needs to be further investigated [153].

C-cbl is another RING finger E3 ligase that contains a SH2 domain which recognizes
phosphorylated tyrosine kinase receptors and is in fact involved in EGFR endocytosis [154]
(Table III). Overexpression of EGFR, HER2/Neu, and EGF heterodimer signaling is a major
contributor to uncontrolled growth in many cancer types. HER2 antibody trastuzumab
(Herceptin) has been shown to direct HER2 to the C-cbl regulated pathway leading to its
subsequent degradation [155, 156].

The BRCA1 RING E3 ligase plays a critical role in DNA repair and transcriptional control
processes. A mutation in its RING domain is associated with familial breast and ovarian
carcinomas [157] (Table III). BRCA1 in complex with BARD1 ubiquitinates p53 and
therapeutic approaches to express wt-BRCA1 have been evaluated in ovarian cancer. Gene
therapy using viral vectors was indeed a promising idea based on data generated from
xenograft models and phase I trials. However, phase II trials have failed to produce positive
numbers in those patients evaluated with metastatic cancer [158, 159].
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Efp is an estrogen-inducible RING E3 ligase that ubiquitinates tumor suppressor 14-3-3σ
proteins (Table III). Efp is one of several known estrogen receptor (ER) target genes and
plays a critical role in mammary tumors, use of antisense oligonucleotides in MCF7
xenografts has shown a marked reduction in tumor growths [160, 161].

Breast Cancer Associated gene 2 (BCA2) is a zinc-binding E3 ligase found to be
overexpressed in breast cancer and involved in the EGFR trafficking pathway [162] (Table
III). We have tested disulfiram (DSF, Antabuse) and its analogues as zinc chelating
substances for the inhibition of BCA2 by targeting its RING domain [162, 163]. DSF is a
FDA approved drug for chronic alcoholism and has been found to be a potent inhibitor of
the proteasome when complexed to copper or zinc [164]. DSF is a readily available,
inexpensive drug with very few adverse side effects whose anticancer activity has been
attributed to its ability to inhibit E3 ligases and the proteasome.

There are at least 38 F-box proteins in the human genome believed to target many
functionally and structurally diverse substrates. For example, the SCF (Skp-1-Cullin-F-box
protein) contains a variable F-box protein unit that binds to target proteins for ubiquitination
(Table III). Sakamato et al designed the Protein Targeting Chimeric Molecule1 (Protac1) to
recruit MetAP-2 to SCF. One domain of Protac-1 contains the IκB-α phosphopeptide that is
recognized by F-box beta-TRCP, whereas the other domain is composed of the angiogenesis
inhibitor ovalicin [165]. Thus, this bispecific compound leads to increased degradation of
pro-angiogenic peptide MetAP-2 and also inhibits angiogenesis after ovalicin activation
[166]. U-box E3 ligase CHIP together with Hsp90 mediates the ubiquitination of
glucocorticoid receptor [167] and the CHIP/Hsp90 complex acts as a quality control ligase
that selectively degrades abnormally folded proteins [168] [169]. Thus, modulating the
HER2/Neu interaction with CHIP by geldanamycin (GA) and 17-AAG enhances its
destabilization and affects HER2 signaling [170]. These compounds are under Phase I/II
clinical trials. HECT-type E3 ligase E6-AP was the first one to be described in targeting p53
for rapid degradation and this process is initiated by the E6 gene product of HPV-16 [171].
Therapies targeting E6-AP are therefore limited to cancers caused by HPV infections, such
as cervical cancers. As zinc binding is a requirement for E6 interaction with E6-AP, the zinc
ejector 4,4'-dithiodimorpholine (C16) was discovered as an agent for selectively inhibiting
E6-AP activity in HPV-positive tumors. Thalidomide, which has been in clinical practice for
many years, has also been recently identified as an E3 ligase inhibitor.

Deubiquitinating Enzyme (DUB) Inhibitors as Anti-Cancer Agents
Recently, DUBs have been studied as potential molecular targets for UP-S inhibitor
development. USP7 (Herpes virus associated USP, HAUSP) is critical in cancer progression
as it deubiquitinates HDM2 and HDMX resulting in destabilization of p53 and repression of
its transactivation activity [172]. High throughput screens have identified HBX 41,108 as an
inhibitor of USP7 that stabilizes p53 and induces apoptosis. Another screen has recently
identified USP8 [173], which has demonstrated stabilization of p53 and induction of p21
[173]. USP8 plays a key role in receptor endocytosis and its knockdown results in
ubiquitinated EGFR present in the endosome. HBX 90, 397 is also an identified inhibitor of
USP8 [174]. WP1130 (degrasyn) is a small molecule compound that inhibits Janus activated
kinase 2 (Jak2) activity. WP1130 is found to inhibit several DUBs like USP9x, USP5, and
USP14 and can be of therapeutic value because of its pro-apoptotic properties [175].
Another DUB inhibitor with broad specificity is PR-619, having a reversible mechanism of
inhibition and was discovered using ubiquitin CHOP reporter technology [176, 177].

The E3 ubiquitin ligases and their corresponding DUBs regulate many biological processes
due to their timely and ultra-specific ubiquitination and subsequent degradation of many key
cellular proteins. Although a better understanding of E3 ligase mechanisms of action is still
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required, it is now clear that because of their subsrate specificity, E3 ligase inhibitors can be
used as promising anti-cancer drugs with high levels of specificity and lower toxicity. Many
E3 ligase inhibitors have been successful in a preclinical setting and are being evaluated for
cancer treatment. Also, recent research in DUB mechanisms of action has become a
promising avenue for the development of new drug targets.

THE FUTURE OF PROTEASOME INHIBITION AS AN ANTI-CANCER
STRATEGY
Importance and Perspective

Since its discovery, the proteasome has gained considerable currency and has indeed most
recently been validated as a novel, valuable molecular target in the treatment of various
cancers. A large amount of data exists which supports the idea that suppression of
proteasome activity, by synthetic or natural compounds, is effective in inducing cancer cell
death in vitro and suppressing tumor growth in vivo, with minimally toxic effects to nearby
healthy cells. Bortezomib, the first FDA-approved proteasome inhibitor, has become a staple
in the field and deservingly so; it has achieved great success in the treatment of MM and
MCL. However, resistance, dose limiting toxicities, and interaction with some natural
compounds limit its use and therefore compromise its clinical benefits. Furthermore,
bortezomib's potency against solid tumors has been rather disappointing. The involved
molecular mechanisms are currently unclear. However, one contributing factor may be
induction of stress granule formation by bortezomib in solid tumors, involving
phosphorylation of translation initiation factor eIF2α by heme-regulated inhibitor kinase
(HRI) [178]. Other possibilities may include mutations or over-expression of the proteasome
β5 subunit, increased levels of proteasome activity, overexpression of a proteasome
downstream effector (e.g., Bcl-2 or NF-κB), or altered regulation of some chaperone
proteins, when compared to hematologic malignancies. While, bortezomib's shortcomings in
this regard have herein been outlined, the mechanism responsible for the little effect
observed in solid tumors remains to be determined. There is therefore more work to be done;
the development of a new generation of proteasome inhibitors is absolutely necessary.

The successes and limitations of bortezomib as the first proteasome inhibitor anticancer drug
have taught us useful lessons and encouraged researchers to search for the next generation
proteasome inhibitors that could have improved properties, reduced toxicities and broader
anticancer activities. The structure-activity relationships need to be established for newly
developed proteasome inhibitors in various types of cancers in hopes of uncovering what is
responsible for the differential response seen in blood and solid tumors to proteasome
inhibitor therapy. Also, continuous exploration of effective combinations including
proteasome inhibitors and current chemotherapeutic agents is essential to optimize clinical
outcome. The underlying culprit for success in all of these areas is a better understanding of
the proteasome itself and the ubiquitination system, fundamental to its operation. Only when
we have achieved full understanding of the UP-S can we propose mechanism(s) accountable
for proteasome inhibition-induced cell death, or resistance, observed in vitro and in vivo.
Until then, much work remains to be done.
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Fig. (1).
The 26S Proteasome and cross-sectional view of the bortezomib (BTZ) binding site. The
26S proteasome contains ring-shaped 19S regulatory and 20S catalytic core components,
which are further composed of 7 α subunits (making up each of the two identical outer rings
of the 20S catalytic core) and 7 β subunits (forming each of the inner two identical rings).
Together they are arranged in a stacked cylindrical structure with a narrow pore through
which a particular protein substrate can pass and reach their ultimate fate: degradation. Also
depicted is a magnified cross-sectional view of the β subunits and the particular β1 and β5
bortezomib binding sites.
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Fig. (2).
Chemical structure of bortezomib.
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Fig. (3).
Chemical structures of natural compounds with proteasome-inhibitory activity.
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Table I

Bortezomib Clinical Trials

Trial Summary Result Reference

Phase II CREST - Clinical response and efficacy study of
bortezomib in the treatment of refractory
myeloma in MM patients

- 54 patients with relapsed myeloma
following 1 line of therapy at 1.0mg/m2 or
1.3mg/m2

- 33% ORR in patients treated
with 1.0mg/m2 of bortezomib

- 50% ORR in patients treated
with 1.3mg/m of bortezomib

[48,49]

Phase II SUMMIT - Study of uncontrolled myeloma
management with proteasome inhibition
therapy

- 202 patients with relapsed refractory
myeloma

- 35% ORR with single agent
bortezomib

- 50% ORR with addition of
dexamethasone

[50]

Phase III APEX - The assessment of proteasome inhibition
for EXtending remissions

- compared bortezomib with high dose
dexamethasone

- 669 patients with MM relapsed after one
or more prior therapies

- 38% ORR of bortezomib alone

- 18% dexamethasone alone

- Trial was terminated early and
dexamethasone arm joined the
bortezomib arm

[51,52]

Phase III VISTA - Velcade as initial standard therapy in
multiple myeloma

- melphalan and prednisone (MP) with or
without bortezomib were compared in 682
newly diagnosed MM patients not
candidates for autologous stem cell
transplantation

- 30% ORR with combination
of bortezomib and MP

- 4% ORR without bortezomib
addition to MP

[53,54]

Phase III PINNACLE - Study of 155 relapsed mantle cell
lymphoma patients who had at least one
prior therapy for use of bortezomib as
front line therapy

- 32% ORR with single agent
bortezomib

[60,61]

Phase III VERTICAL - Velcade in combination with
bendamustine and rituximab

- 73 subjects with relapsed or refractory
follicular lymphoma

- 88% ORR with combination
of bortezomib

[64]
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Table II

Second Generation Proteasome Inhibitors

Inhibitor Structure Mechanism Clinical Status Reference

Carfilzomib (CFZ) Irreversibly binds and inhibits
the β5 subunit

FDA approved for patients with
relapsed and/or refractory MM

[86]

NPI-0052, Marizomib,
Salino-sporide A

Irreversible, inhibits the catalytic
activity of all three 20S
proteasomal subunits

Phase I for treatment of MM [94]

MLN9708, Ixazomib Reversibly inhibits proteolytic
activity of the β5 subunit

First oral proteasome inhibitor
Phase III for relapsed and/or
refractory MM

[95]

CEP18770, Delanzomib Boronic acid, reversibly targets
the β5 subunit

Phase I/II [96]

ONX-0912, Oprozomib Irreversible inhibitor of the β5
subunit

Phase IB/II [86]
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Table III

Investigational Ubiquitin E3 Ligases as Specific Targets for Inhibition

Target E3 Ligase Inhibitory Agents Mechanism of Inhibition Reference

Mdm2/Hdm2
Nutlins (Nutlin-3) 1–3 compounds

Mdm2 antisense oligonucleotides for gene
silencing

Stabilization of p53 [148]

SCF
Protac-1

Methionine
Aminopeptidase-2 chimera with ovalicin

Inhibition of angiogenesis [165]

CHIP Geldanamycins Induction of chaperon complex that down-regulates
Her2/Neu [169]

E6-AP/E6 Zinc Ejectors (C16) Stabilization of p53 [171]

c-Cbl Trastuzumab (Herceptin) Degradation of RTKs and termination of signaling [154]

BRCA1/BARD1 wt-BRCA1 expression using viral vectors Sensitization of tumor suppressor function and DNA
repair. [157]

Efp Antisense oligonucleotide Stabilization of 14-3-3 [160]

BCA2 Disulfiram (Antabuse) and analogues Affects EGFR receptor mediated endocytosis [162]
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