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Abstract
Computational tomography perfusion (CTP) is an important functional imaging modality in the
evaluation of cerebrovascular diseases, such as stroke and vasospasm. However, the post-
processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the
noisy contrast enhancement profile and the oscillatory nature of the results generated by the
current computational methods. In this paper, we propose a novel sparsity-base deconvolution
method to estimate cerebral blood flow in CTP performed at low-dose. We first built an
overcomplete dictionary from high-dose perfusion maps and then performed deconvolution-based
hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on a
clinical dataset of ischemic patients. The results show that we achieve superior performance than
existing methods, and potentially improve the differentiation between normal and ischemic tissue
in the brain.

1 Introduction
Stroke is the third-leading cause of death in the United States after heart disease and cancer.
Early and rapid diagnosis of stroke can save critical time for thrombolytic therapy. Cerebral
perfusion imaging via computed tomography perfusion (CTP) has become more commonly
used in clinical practice for the evaluation of patients with acute stroke and vasospasm.
Various mathematical models have been used to process the acquired temporal data to
ascertain quantitative information, such as cerebral blood flow (CBF), cerebral blood
volume (CBV) and mean transit time (MTT) [1–3]. However recent reports on over-
exposure of radiation in CTP have brought the dosage problem to the limelight because
many patients reported biologic effects from radiation exposure, including hair loss and skin
burns. A key challenge in CTP is to obtain a high-quality CBF image from a low-dose
perfusion scan.

The most commonly used deconvolution method to quantify the perfusion parameters in
CTP is truncated singular value decomposition (TSVD) and its variants, such as circular
TSVD (cTSVD) [2]. The oscillatory nature [4] of the TSVD-based method has initiated
research that incorporates different regularization methods to stabilize the deconvolution,
and have shown varying degrees of success in recovering the residue function or the
perfusion parameters [3][5–8]. However, prior studies have focused exclusively on imposing
regularizations on the noisy low-dose CTP, without considering the corpus of high-dose
CTP data.

In this paper, we propose a new sparsity-based deconvolution method to estimate cerebral
blood flow in CTP at low-dose. We first learned a dictionary of CBF maps from a corpus of
high-dose CTP data and then performed deconvolution-based hemo-dynamic parameter
estimation of the low-dose CTP. This method produces perfusion parameter maps with
better signal-to-noise characteristics.
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Our major contribution in this work is two-fold: First, we propose to train a dictionary of
perfusion parameter maps from the high-dose CT data to improve the quantification of low-
dose CT perfusion. Second, we use local sparsity and redundancy in a global spatial
Bayesian objective combined with the temporal convolution model. Then on the in vivo
brain ischemic stroke CTP data, we demonstrate that our estimated CBF values lead to better
separation between ischemic tissue—which by its angiogenic nature tends to have less blood
flow—and normal tissue.

2 A Dictionary Approach to Deconvolution
In this section, we present the new sparsity based deconvolution framework for CTP
quantification. The framework is comprised of two steps: dictionary learning and sparse
coding.

2.1 Perfusion Parameter Model
Based on the theoretical model provided in [1], in CTP, the amount of contrast in the region
is characterized by

(1)

where Cv(t) is the tissue enhancement curve (TEC) of tracer at the venous output in the
volume of interest (VOI), CBF is the cerebral blood flow, Ca(t) is an arterial input function
(AIF) and R(t)is the tissue impulse residue function (IRF), which measures the mass of
contrast media remaining in the given vascular network over time. To discretize the
computation, we assume that Ca(t) and C(t) are measured with N equally spaced time points
t1,t2,…,tN, with time increment Δt. The convolution is discretized

(2)

where

When R(t) is estimated from Equation (2), CBF can be computed from

(3)

since from the definition of the residue function R(t), R(t=0) =1.

2.2 Proposed Dictionary Learning Approach to Deconvolution
Sparse representations over trained dictionaries for perfusion parameter maps restoration
rest on the assumption that the image priors in the perfusion maps can be learned from
images, rather than choosing a prior based on some simplifying assumptions, such as spatial
smoothness, non-local similarity, or sparsity in the transformed domain. Since the low dose
CTP have high noise level in TEC, it is important to learn the dictionaries from the high-

Fang et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dose (thus low noise level) CTP. Therefore, we implement the sparse and redundant
representation in the spirit of Sparseland [9]. In our model, we estimate perfusion parameters
by considering both temporal correlations and example-based restoration based on
dictionaries learned from high-dose data.

Problem Formulation—Suppose C(x,y,z,t) ∈ ℝN×T is TEC in VOI [x,y,z]T from a spatial-

temporal patch of size  pixels and T time points. R(x,y,z,t) ∈ ℝN×T represent
the remaining tracer concentration (RIF) of the voxel [x,y,z] at a given time point t, where x,
y and z are the respective row, column and slice coordinates of the spatial-temporal data.
The least-square form of (2) is

(4)

Due to the noise in the low-dose CTP data, the solution of (4) may be severely distorted. In
the spirit of Sparseland model, we incorporate a prior of not only temporal correlation but
also sparse representation from the learned dictionaries of the parameter map patches
through the inclusion of two constraints to the original least-square cost function. This
results in the new cost function

(5)

where x ∈ ℝN is the CBF perfusion map we want to estimate for the VOI at [x,y,z], D ∈
ℝN×K is the learned dictionary of CBF perfusion map patches that consists of K key patches
from the training data. α ∈ ℝK represents a sparse vector so that Dα can approximate x with
certain error tolerance. From the definition of the residue function, we can get x =R(t = 0).
The choice of two parameters μ1 and μ2 dictate how important the temporal correlation term
(the first term) and the sparsity term (the third term) should be weighted.

Dictionary Learning—To solve D, we use the recently developed K-SVD algorithm [10]
which solves (5) by iterating exact K times of Singular Value Decomposition (SVD). We
first learn a dictionary by using randomly sampled patches from the CBF perfusion maps

estimated from the high-dose CTP data. Given a set of image patches , each of
. We seek the dictionary D that minimizes

(6)

where ε>0 is the prescribed error tolerance of representation error.

To solve (6), we start from an initial dictionary (i.e. the overcomplete DCT dictionary), and
an initial estimation of the CBF parameter map (i.e. CBF map from cTSVD algorithm).
Then K-SVD algorithm approaches the solution of (6) by alternating the following two
steps: the minimization with respect to α with D fixed using orthogonal matching pursuit
(OMP), and the update of atoms in D using the current A. The update stage modifies the
atoms in D one by one to better represent the data Z. For each column k = 1,2,…,K, we find
the index set Ik = {i: αki ≠ 0}, which is the set of indices of (zj’s who used dk in
representation in the sparse coding step. Then we set error matrix Ek = Zk − DkAk, where Dk
is D with dk replaced by 0. Zk and Ak collect the columns with indices in Ik from Z and A.
Finally, we apply SVD decomposition Ek = UΛVT. Update dk in D with the first column of
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U, and the coefficients in αi. with the entries in V multiplied by Λ(1,1). Theoretically K-
SVD solver may not produce stable results, while in this specific application and in all
experimental the solver works very well and yields stable reconstructed images.

Sparse Perfusion Deconvolution (SPD)—When the dictionary D is known, the CBF
perfusion parametric map from the low-dose CTP data can be estimated using our sparse
perfusion deconvolution method by minimizing (5) in an iterative fashion. Our SPD method
also consists of iterating the following two steps: minimization with respect to α with x
fixed, and update of x with α fixed.

The first step is sparse coding, which is formulated a

(7)

where the value of ε implies specific value for μ2. Equation (7) can be solved by any
matching pursuit algorithm. Here we use orthogonal matching pursuit (OMP).

The second step is to minimize

(8)

Because x = R(t = 0), (8) can be rewritten as

(9)

where R ̂ is the residue functions normalized by x so that R ̂(t = 0) = 1. (9) is a quadratic term
that has a closed-form solution.

If vec(B) denotes the vector formed by the entries of a matrix B in column major order, and
define P = CaR̂, then

(10)

where M is a TN × N matrix in form of

where P.,i. dictates the ith column of matrix P in its column vector form. Equation (9) can be
transformed into the conventional least square problem

(11)
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Let A= (In;M). and B = (Dα;vec(C)), we get

(12)

where A+. is the pseudo-inverse of matrix A, (.;,) denotes a vector or matrix by stacking the
arguments vertically.

To address the global CBF deconvolution problem, we use a sliding window of size
 on the specific slice and overlaps the windows by step size of 1. The final global

CBF parametric map is generated by averaging the areas that the windows overlap.

3 Experiments
In this section, we describe the results from comparing our approach with cTSVD on four
clinical subjects with ischemia related to vasospasm. The presence and location of the
perfusion deficits were identified by board-certified radiologists with subspecialty training
in neuroradiology.

3.1 Data Acquisition
CTP was performed during the typical time-period for vasospasm in aneurysmal sub-
arachnoid hemorrhage, between days 6–8 in asymptomatic patients and on the same day
clinical deterioration occurred in symptomatic patients. There is a standard scanning
protocol for CTP at our institution using GE Lightspeed or Pro-16 scanners (General
Electric Medical Systems, Milwaukee, WI) with cine 4i scanning mode and 45 second
acquisition at 1 rotation per second using 80 kVp and 190 mA.

3.2 Experimental Results
For cTSVD, a threshold of 6% of the maximum singular value is used, in accordance with
parameter tuning in our experiments. For all experiments, the dictionary used are of size
64×256, designed to handle perfusion image patches of 8×8 pixels. In all experiments, the
denoising process uses a sparse coding of each patch of size 8×8 pixels from noisy image.
The parameters are chosen empirically and the experimental results are not sensitive to the
parameters. Repetitive scanning of the same patient at different radiation doses is unethical
and a physiological phantom which can uptake contrast agent is currently not available.
Thereby, low-dose CTP data is simulated following the practice in [11], where Gaussian
noise ε~N(0,σ2) is added to the high-dose CTP data. In the following, peak signal-to-noise
ratio (PSNR) is calculated by dividing the peak value of the tissue time-enhancement curve
by the noise standard deviation σ.

1) Learned Dictionaries—Figure 1 shows the redundant DCT dictionary on the left, with
each atom of an 8×8 pixel image. This dictionary was used as the initialization for the
training. The globally trained dictionary is shown on the right side of Fig. 1. This dictionary
was trained on a data-set of 10,000 8×8 patches of high-dose CBF perfusion maps.

2) LACA Estimation—Figure 2 shows CBF maps and the zoomed-in regions of a normal
clinical subject. The zoomed-in region of the left anterior cerebral artery (LACA) territory
(in X-ray image left and right are opposite) of the CBF map using TSVD in high-dose
(190mA), low-dose (PSNR=20) and using SPD in low-dose (PSNR=20) are shown on the
right. The vascular region supplied by the LACA has increased noise in the CBF map using
TSVD.

Fang et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In comparison, significantly improved spatial smoothness in the vascular region and higher
color contrast between the artery region and the vascular region can be observed from the
CBF map computed using our proposed method. The standard deviation the LACA region
computed using TSVD and SPD under different PSNR are shown in Table 1.

3) Ischemic Comparison—We also show the CBF maps processed for patients with
ischemic deficits (Figure 3) using TSVD and our proposed SPD on high-dose and low-dose
CTP data. On the left, the low value of CBF in the ischemic patient becomes more evident
while the vascular regions become smoother and variations in the estimated blood flow
maps are reduced greatly by our method. The difference of the blood flows between the
vascular and the artery regions were significantly enlarged.

4) Ischemic Voxels Clustering—By aggregating all voxels (within the VOI) from the
normal patient data sets into a single “normal” group with n1 samples, and the ischemia
patient data sets into an “abnormal” group with n2 samples. In our case, n1=1000 and
n2=1000. To quantify the separability between normal and ischemic CBF values, we define
the distance between these two clusters as:

(13)

where μ1, μ2 are the means, and σ1, σ2 are the standard deviations of CBF in the normal and
ischemic clusters respectively. We expect our SPD algorithm to produce larger distance d as
defined in Eq. (13), that is, to more definitely differentiate between normal and ischemic
regions in the brain. Fig. 4 show scatter plots of normal vs. ischemic clusters. It is apparent
that the two clusters are more separable in data processed via SPD than TSVD.

4 Conclusion
In this paper, we introduced a novel sparsity-based deconvolution algorithm to estimate
cerebral blood flow in low-dose CTP. We trained a dictionary using CBF maps computed
from high-dose CTP and then performed deconvolution-based hemodynamic parameter
estimation of the low-dose CTP data. The experimental results indicated that our algorithm
not only outperforms TSVD algorithm but also may significantly improve the diagnostic
performance of ischemia related to vasospasm in aneurysmal subarachnoid hemorrhage
patients.
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Fig. 1.
Left: DCT dictionary. Right: Globally trained dictionary using high-dose CBF maps.
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Fig. 2.
(a) An acquired CT image from a CTP exam in a normal subject. (b) Left anterior cerebral
artery (LACA) territory using cTSVD in high-dose (190mA) (c) cTSVD in low-dose
(PSNR=20) (d) our proposed SPD in low-dose (PSNR=20) data.
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Fig. 3.
CBF maps and zoomed-in regions in an ischemic patient with a RMCA deficit estimated by
(a) TSVD in high-dose (b) TSVD in low-dose (c) SPD in low-dose. Low blood flow is
delineated in blue. Red color indicates high blood flow value, while blue color indicates low
blood flow value.
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Fig. 4.
(a) Two clusters of normal vs. ischemic regions in the brain generated by TSVD method.
The distance d between two clusters is 22.67. (b) Two clusters of normal vs. ischemic
regions by our sparse perfusion deconvolution method. The distance d between two clusters
is 63.79.
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Table 1

Standard deviation of the LACA region on a patient with normal blood flow under different PSNR using
TSVD and our SPD method.

PSNR 20 40 60 80

TSVD 56.09 47.11 23.14 22.98

SPD 41.94 42.12 16.44 16.47

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 May 18.


