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Abstract
Quantitative estimation of T1 is a challenging but important task inherent to many clinical
applications. The most commonly used paradigm for estimating T1 in vivo involves performing a
sequence of spoiled gradient-recalled echo acquisitions at different flip angles, followed by fitting
of an exponential model to the data. Although there has been substantial work comparing different
fitting methods, there has been little discussion on how these methods should be applied for data
acquired using multichannel receivers. In this note, we demonstrate that the manner in which
multichannel data is handled can have a substantial impact on T1 estimation performance and
should be considered equally as important as choice of flip angles or fitting strategy.
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INTRODUCTION
The relaxation time T1 defines the rate of recovery of longitudinal magnetization of spins in
a tissue toward equilibrium after radio frequency excitation. Quantitative knowledge of T1 is
useful for many clinical applications, including: (1) optimizing pulse sequences to generate
contrast between tissues of interest; (2) estimating perfusion rate constants like Ktrans in
dynamic contrast-enhanced MRI (1); (3) monitoring pathology and treatment efficacy (2,3);
and (4) guidance for automated image segmentation (4). Although T1-weighted images can
be readily acquired, generating accurate quantitative estimates of the T1 values of tissues is
not as straightforward. The “gold standard” for T1 mapping is two-dimensional spin echo
inversion recovery (5-7); however, this approach is too slow for in vivo clinical applications.
Look–Locker techniques (8,9) are faster than IR, but still time consuming and nontrivial to
implement. Variable flip angle (VFA) spoiled gradientrecalled echo (SPGR) sequences
(10-15) are commonly used for in vivo T1 mapping due to their time and signalto-noise ratio
(SNR) efficiency [even when accounting for B1 inhomogeneity (16)], and straightforward
implementation. Because of their ubiquity, we focus on the VFA–SPGR approach to T1
mapping in this work.

In the literature, there has been substantial discussion on what numerical fitting strategy to
use for estimating T1 from a VFA–SPGR sequence. However, there has been essentially no
discussion on how these methods should be applied for data acquired with multichannel
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receivers. In this work, we investigate several approaches for handling multichannel data
during T1 estimation and demonstrate that this seemingly innocuous processing step can
substantially impact T1 estimation performance.

THEORY
The VFA–SPGR Signal Model

Consider an MRI experiment where the object of interest is probed using a fully sampled,
fully spoiled, Cartesian SPGR sequence with nominal flip angle θ, repetition time TR, echo
time, and (relative) transmit radiofrequency field B1, and where the generated MR signal is
observed by a Nc-element phased array or multichannel receiver (17). Let Ω denote the
(discrete) set of pixels tiling the prescribed field-of-view. Assuming that B1 is
(approximately) known a priori, at pixel x ∈ Ω, flip angle index i = 1, …, Ni, and for receiver
channel c = 1, …, Nc, the reconstructed discrete image series can be modeled as:

[1]

where m0(x) is a complex variable that is proportional to tissue spin density, s(x, c) is the
sensitivity function for the cth receiver coil, θ̂(x, i) = θ(i)B1(x) is the effective flip angle and
z(x, c, i) is complex Gaussian noise. In this work, noise is assumed to be uncorrelated and

have variance .

By fixing TR and applying a different nominal flip angle for each i, T1 can be estimated
from the resulting sequence of Ni images. As m0(x) and s(x, c) are individually not of
interest here, their product (m(x, c) = m0(x)s(x, c)) can be treated as a single unknown such
that there are only Nc + 1 target quantities in Eq. [1] for each x. At least two unique flip
angles (preferably three or more) must be used for these quantities to be estimable. For
single-channel VFA–SGPR sequences (Nc = 1), one only has to choose which fitting method
to use. For multichannel VFA–SGPR sequences (Nc > 1), however, one has the added task
of determining how to apply the selected fitting method to the multichannel image sequence.
Standard fitting methods may be: (1) applied independently on each channel image
sequence, with a final T1 estimate being formed by averaging the set of results; (2) applied
on a composite image (e.g., root sum-of-squares) sequence; or (3) generalized such that a
single T1 map is jointly estimated using all coil data sets simultaneously.

Generalized T1 Fitting Strategies
Typically, T1 fitting of single-channel data is performed either by approximating and solving
Eq. [1] as a linear system or via nonlinear least squares (NLLS) regression. In this section,
we generalize these two common approaches for multichannel data. Mirroring the approach
of Gupta (10) and Fram et al. (11) for the single-channel problem, if noise is ignored, Eq. [1]
can be converted into the following pseudo-linear form:

[2]

Although the full complex g(·) could be used in Eq. [2], the magnitude signal is typically
used in practice out of convenience and to improve numerical stability. Letting Yx,c and Xx,c

be length-Ni vectors defined element-wise as  and ,
respectively, Eq. [2] can be expressed as Yx,c ≈ Xx,cax + 1bx,c, where the slope ax =
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exp(−TR/T1(x)) and intercepts bx,c = |m(x, c)|[1−ax], and 1 is a length-Ni vector of ones.
These variables can be independently estimated at each pixel location x ∈ Ω via ordinary
least squares regression, that is,

[3]

The (modulated) spin density and T1 parameter estimates are then distilled as m(x, c) = b̂x,c/
(1 − âx) and T1(x) = −TR/ln(âx), respectively. Because of its simplicity and fast execution,
the linearized approximation paradigm has been widely adopted for estimating T1 from
single-channel VFA SPGR sequences. However, in practice, it can exhibit suboptimal
performance because: (1) numerical stability is limited as noise is not accounted for
(13,18,19); and (2) the estimates of m0 and T1 are inherently biased as the target variables
are not wholly decoupled (20).

As noted by Wang et al. (13), a more flexible and robust approach to estimate T1 from
VFA–SPGR sequences is via NLLS regression. The NLLS approach treats m0 and T1 as
independent quantities and is noise aware, and thus tends to be more stable and exhibits less
bias than the pseudo-linear approximation approach discussed above. At each pixel x ∈ Ω,
the Nc+1 target variables are directly estimated by solving

[4]

where

[5]

Solutions to this problem are the maximum likelihood estimators for m0 and T1. Eq. [4] can
be solved using standard nonlinear optimization techniques, including: (1) Levenberg–
Marquardt iteration (13,21,22); (2) iteratively reweighted least squares regression (20); and
(3) variable projection (7,18,23,24).
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Variable projection is particularly appealing for problems in which the target cost functional
is quadratic with respect to one or more variables, as it reduces the dimensionality of the
optimization problem. This has both quantitative and computational advantages. For the
problem inherent to Eq. [4], closed-form expressions for the parameters satisfying the
optimality condition, ∇m̄(x,·) = 0, can be readily defined, that is:

[6]

Embedding these expressions into Eq. [4] yields, independently for each x ∈ Ω, the
following:

[7]

One-dimensional optimization problems like Eq. [7] can be simply and efficiently solved
using derivative-free methods. As a viable range ([α, β]) for the target variable is known a
priori, golden section search (GSS) (25) is particularly attractive as its runtime can be
predicted based on desired estimate resolution (tol):

. For example, T1 can often be assumed to lie
between α = 0 ms and β = 10000 ms. If a resolution of tol = 1 ms is deemed sufficient, only
maxIter = 20 iterations are required by GSS to perform the estimation. A pictorial example
of this fitting procedure is shown in Fig. 1.

Different Ways to Apply a Fitting Strategy to MultiChannel Data
In addition to selecting a fitting strategy (e.g., NLLS), one must also choose how to apply
that strategy to multichannel data when estimating T1 from VFA–SPGR sequences. When
directly applied to a multichannel data sequence, both fitting strategies described in the last
section correspond to so-called joint estimation, as a single T1 estimate is directly generated.
Joint estimation via NLLS is the most theoretically appealing approach considered in this
work, as it corresponds to the maximum likelihood estimator for T1 in Eq. [1]. It will herein
be considered the “gold standard” against which other strategies are compared.

Although attractive, joint estimation can be computationally intensive and so may be
impractical in certain clinical situations. Alternatively, multichannel data can be treated as a
set of Nc-independent sequences, with a separate fitting being performed on each channel
and the Nc results aggregated to yield the final T1 estimate. If the signal is assumed to be
“noise-free,” as in linearized approximation, then uniform averaging of the different channel
estimates is warranted. However, for noise-corrupted signals, a weighted average (e.g., by
the expected SNR of base signal) of the different channel estimation results may yield better
performance than simple uniform averaging. Channel-by-channel estimation may exhibit
some computational advantage over joint estimation as it eliminates cross-channel
computations; however, it is also (relatively) less statistically efficient than joint estimation
as the number of effective variables in the estimation problem is increased from Nc + 1 to
2Nc for each pixel, x. Thus, even an “optimally” weighted aggregate of channel-by-channel
will typically not outperform joint estimation.

A third strategy is to perform T1 estimation on a sequence of composite images, such as
those formed by computing the root-sum-of-squares (RSS) across the channel dimension.
This type of strategy is commonly applied in practice albeit often implicitly. As the
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composite image-based approach reduces the dimensionality of the estimation problem, it is
computationally very attractive — Nc times less work is needed than for the channel-by-
channel strategy. Noise amplification is also mitigated as estimation is ultimately performed
on a high SNR signal. However, as composite images typically contain nonadditive, nonzero
mean noise, care must be taken to avoid generating heavily biased estimates. From well-
known results on Rician statistics (26),

[8]

Eq. [8] suggests the use of the following “debiased” composition strategy in lieu of standard
RSS coil image composition:

[9]

(27). h can be treated as a single-channel sequence (Nc = 1) and subsequently processed
using the fitting strategies described in the last section. Although composite imagebased
strategies are not statistically optimal, they may offer practical advantage if their accuracy is
comparable to that of joint NLLS estimation.

METHODS
Data Acquisition

Two volunteers were imaged under an IRB-approved protocol on a 1.5-Tesla system (GE
Signa v.14.0, Waukesha, WI) using a standard three-dimensional SPGR sequence (TR/echo
time = 15/5 ms, field-of-view = 24 cm, 256×256 matrix, BW = ±31.25 kHz, NEX = 1, 28 1
mm axial slices) and an eight-channel receive-only head coil. Raw k-space data were
retained for both studies such that the complete (complex) multichannel image sequence was
available for processing. Three different flip angles were used during the first volunteer
study (2°, 10°, 25°), and six during the second (5°, 10°, 15°, 20°, 25°, 30°). In both cases,
prescan parameters determined for the 25° prescription were used for the acquisition
sequences for all other flip angles. B1 mapping was not performed, and so the nominal and
effective flip angles were assumed to be identical. Coil noise statistics were estimated from a
small background region of the images. The total imaging time for the volunteer studies
were 4.92 and 9.83 min, respectively. We acknowledge that these scan times are longer than
typically used in clinical practice; however, we note that use of acceleration strategies (e.g.,
partial Fourier, parallel imaging) would also require use of a generalized signal model in lieu
of the standard SPGR model in Eq. [1], which is beyond the scope of this study.

Data Processing
All T1 estimation experiments were executed in Matlab (Mathworks, Natick, MA) on a dual
six-core (Intel x5670, 2.93 GHz, 12MB cache) machine with 24-GB DDR3 1333 MHz
memory. Both the linearized approximation and variable projection-based NLLS fitting
strategies described in the Theory section were applied to the multichannel data sequences in
the following manner: (1) jointly; (2) channel-by-channel; (3) to an RSS composite image;
and (4) to a debiased composite image generated according to Eq. [9]. Correspondingly,
eight different T1 estimates were formed for each volunteer study. As discussed in the
Theory section, channel-by-channel and joint linearized approximation were performed on
magnitude image data, whereas channel-by-channel and joint NLLS fitting was performed
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directly on the complex image data. Channel-by-channel linearized approximation results
were uniformly averaged, corresponding to the “noise-free” signal assumption of the fitting
strategy. For consistency, channel-by-channel NLLS results were also aggregated via
uniform averaging. The GSS optimization routine used by NLLS was parameterized as α =
0 ms, β = 10000 ms, and tol = 1 ms for all executions.

RESULTS
Figure 2 shows representative T1 maps generated of the mid-level brain for each volunteer
by the different fitting strategies. Corroborating previous reports (20), linearized
approximation exhibits visible upward bias relative to NLLS in brain tissue (not including
cerebrospinal fluid, whose low SNR can actually lead to downward bias). The magnitude of
T1 bias also appears to amplify during joint regression, which is undesirable but not
unexpected. Noting that bias magnitude exhibits an inverse relationship with SNR (20), we
highlight that these trends are especially evident in the results for volunteer #1 (acquired
with only three flip angles).

To quantitatively characterize the observed trends, eight neuroanatomical regions-of-interest
(ROIs) were manually identified for each volunteer study for comparative evaluation. The
approximate locations of these ROIs are shown in Fig. 3b. For each T1 estimation result for
a study, and for every ROI, the median was computed as a robust measure of the central
tendency (Table 1). These values are largely consistent with the literature (e.g., (28)). Paired
comparisons of brain tissue intra-ROI T1 values were performed between corresponding
linearized approximation and NLLS results via the one-sided Wilcoxon sign-rank test (29)
(Table 2), under the null hypothesis that, for a particular multichannel handling strategy,
linearized approximation estimates smaller T1 values than NLLS. Evidence in Table 2
suggests that this null hypothesis can be rejected (P < 0.05) in the strong majority of cases
(22/24 cases for volunteer #1 and 24/24 cases for volunteer #2). Thus, the relative upward
bias of linearized approximation for brain tissues (again, not including cerebrospinal fluid)
appears to manifest under any multichannel handling strategy albeit with varying degree.

DISCUSSION
In addition to the choice of flip angles and T1 fitting strategy, how multichannel data is
handled also appears to have a substantial impact on estimation performance (refer Table 1).
For both linearized approximation and NLLS, joint estimation admits markedly better
regional homogeneity than its channel-by-channel analog for both volunteers. This trend is
not surprising as the former paradigm contains fewer unknown quantities and is thus
(relatively) more statistically efficient. As discussed in the Theory section, channel-by-
channel performance could potentially be improved using an SNR-weighted rather than
uniform averaging to aggregate the results. For linearized approximation, however, using
such a strategy would be inconsistent with the assumption that the base signal is inherently
“noise-free,” and so was not considered. A preliminary investigation into the use of
(expected) SNR-weighted averaging was performed for the channel-by-channel NLLS
results; however, the results (not included here) suggested that such a migration, while
improving the results somewhat, would not affect the relative rankings of the tested
strategies.

Composite image-based methods also outperform their channel-by-channel analog in terms
of signal quality, due to their use of higher SNR base signals. There are, however, noticeable
differences between the T1 maps generated using standard and debiased RSS composite
images, which can be attributed to the methods’ use of base signals with differing noise
properties. Low SNR regions of single-channel magnitude MR images are well-known to
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exhibit positive bias (refer Eq. [8]) due to the asymmetry of the corrupting Rician noise
distribution. Standard RSS composite images, which are formed by aggregating a set of
magnitude images, inherit this bias. As the presumed MR signal model, Eq. [1], is inversely
related to T1, fitting a positively biased signal yields an underestimated T1 value. However,
as demonstrated, the degree of this underestimation can be mitigated by instead using a
composition procedure that prospectively accounts for this bias. In low-SNR signal regions,
the difference in T1 values estimated from a standard and debased RSS composite image can
be substantial. For example, for volunteer #1, there was ~16% difference in median T1 value
of the anterior corpus callosum (genu) between the standard and debiased RSS linearized
approximation results. Similarly, for volunteer #2, there was ~35% difference in median T1
value of the lateral ventricle between the standard and debiased RSS NLLS results. Despite
these improvements, we highlight that some discrepancies still exist between the debiased
composite image-based estimates and the joint NLLS results, simply because the latter
leverages a more comprehensive signal model.

Theoretically, linearized approximation is invariant to the choice of magnitude or complex
data as it assumes that the base signal is “noise-free.” Practically, this choice will cause
noise to affect fitting performance differently. Although using linearized approximation on
complex data may seem benign, this can lead to numerical instabilities when dividing by the
logarithm of the slope regression parameter to determine T1. Moreover, during joint
linearized approximation, the compounding of phase errors in this processing step can yield
substantial bias in the final T1 estimate. Performing linearized approximation on magnitude
data mitigates some of these numerical issues, but instead faces the Rician-type bias issues
discussed earlier. Nonetheless, preliminary testing suggested that fitting the magnitude
signal was more favorable in terms of both numerical stability and performance and, given
its general prevalence, was adopted in this work.

Joint NLLS estimation is not only the most statistically attractive approach considered in
this work but also the most computationally expensive. Thus, a less expensive paradigm
which reasonably mimics joint NLLS performance may be practically advantageous in
certain situations. To characterize differences between joint NLLS and the other estimation
strategies, absolute relative (i.e., percentage) differences of intra-ROI median values were
performed. The results are shown in Figure 3a. Mirroring the visual difference in Figure 2,
the strong noise amplification present in the channel-by-channel results makes them not
competitive with other strategies. Similarly, joint linearized approximation yields results that
are too strongly biased, despite reduced noise compared to the channel-by-channel results.
Of the composite image based approaches, NLLS not surprisingly outperforms linearized
approximation, and debiased RSS outperforms standard RSS.

Like estimation quality, computational expense also depends on the what T1 estimation
paradigm is used. The eight considered estimation approaches were executed 10 times each
for both volunteers. The overall average time for each method is shown in Figure 3c. On
inspection, two trends immediately emerge. First, linearized approximation is always faster
than NLLS. Joint NLLS estimation is clearly the most intensive approach, requiring ~ 35×
more effort than its linearized approximation counterpart. At best, composite image-based
NLLS estimation is only ~ 6× slower. Second, composite image-based methods are less
computationally expensive than methods that directly fit multichannel data. For NLLS, this
difference in computational expense is upward of ~ 14×. Thus, if computational expense
precludes use of joint NLLS, using NLLS with the debiased composite image as the base
signal may be a practical and effective alternative.
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CONCLUSIONS
In this note, we have demonstrated that the performance of VFA–SPGR-based T1 estimation
strongly depends on how multichannel data is handled during processing, and that this
aspect should be considered equally important to the selection of a fitting strategy and the
number of used flip angles. Our results corroborate previous observations for single channel
acquisition (20) that linearized approximation is biased relative to NLLS for brain tissues
and suggest that this trend occurs regardless of which multichannel handling strategy is
used. We have also shown that linearized approximation (10,11) can be generalized for joint
regression, although improved SNR comes at the expense of amplified bias.

Focusing on NLLS-based strategies, joint regression remains the method of choice for
estimating T1 from multi-channel VFA–SPGR data if computational expense is not of
concern. Conversely, channel-by-channel strategies are computationally inefficient and
poorly performing, and so should not be considered. Composite image-based strategies are
computationally attractive; however, care must be taken to mitigate bias that manifests from
noise during channel combination. As demonstrated, a strategy which uses NLLS regression
and the debiased channel composition strategy proposed in Eq. [9] yields strong categorical
emulation of joint NLLS regression albeit in over an order of magnitude less computation
time.

The relative performance trends of the methods considered in this work should directly
translate for advanced hardware implementations [e.g., GPUs (19)], as well as to variable
TR paradigms (18,24) and potentially other quantitative MRI applications where
multichannel data handling has historically been a secondary consideration.
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FIG. 1.
a: The white matter voxel of interest is shown in green on each of the six flip angle images.
b: Using the signal from the voxel of interest, the cost functional in Eq. [7] is computed for
integer T1 values between 0 and 10000. GSS easily finds the minimum of this unimodal
functional. c: Using the T1 value estimated by via GSS, the spin density parameter, m0, is
determined and the SPGR signal model in Eq. [1] is (implicitly) fit to the raw data.
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FIG. 2.
T1 maps generated for Volunteers #1 and #2 using linearized approximation (top rows) and
NLLS regression (bottom rows). Each of the four columns represents a different
multichannel handling strategy, specifically joint (1st column), channel-by-channel (2nd
column), RSS composite based (3rd column), and debiased RSS composite based (4th
column) estimation. Joint NLLS estimation is considered the “gold standard.” All maps
were windowed and leveled identically.
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FIG. 3.
a: Percentage error (relative to joint NLLS) of the various estimation results. For all
subfigures, fitting procedures are indexed as linearized approximation [a–d] and NLLS
regression [e–h]. Multichannel handling strategies are indexed as joint [a,e], channel-by-
channel [b,f], RSS composite based [c,g], and debiased RSS composite based [d,h]
estimation. b: Locations of neuroanatomical ROI’s. c: Average runtimes for different fitting
and multichannel handling strategies.
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Table 2

p-values Generated for Brain Tissue ROIs by One-sided Wilcoxon Sign-Rank Test Under Null Hypothesis
that, for a Particular Multi-Channel Handling Strategy, Linearized Approximation Estimates Smaller T1

Values than NLLS.

Volunteer #1 JOINT COIL-BY-COIL RSS DEBIASED RSS

 Corpus Callosum (Genu) <0.0001 <0.0001 <0.0001 0.0280

 Corpus Callosum (Splenum) <0.0001 <0.0001 <0.0001 0.0478

 Internal Capsule <0.0001 <0.0001 <0.0001 0.0108

 Putamen <0.0001 <0.0001 0.0013 0.0303

 Thalamus <0.0001 <0.0001 <0.0001 0.0182

 Caudate <0.0001 <0.0001 0.1457 0.4246

Volunteer #2

 Corpus Callosum (Genu) <0.0001 <0.0001 <0.0001 <0.0001

 Corpus Callosum (Splenum) <0.0001 <0.0001 <0.0001 <0.0001

 Internal Capsule <0.0001 <0.0001 <0.0001 <0.0001

 Putamen <0.0001 <0.0001 <0.0001 <0.0001

 Thalamus <0.0001 <0.0001 <0.0001 <0.0001

 Caudate <0.0001 <0.0001 0.0011 <0.0001
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