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Abstract
This paper describes a modeling framework for estimating the acute effects of personal exposure
to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate
Census tract-level daily ambient concentrations and simulated exposures for a subset of the study
period. The complete exposure time series is then imputed for risk estimation. Modeling exposure
via a statistical model reduces the computational burden associated with simulating personal
exposures considerably. This allows us to consider personal exposures at a finer spatial resolution
to improve exposure assessment and for a longer study period. The proposed approach is applied
to an analysis of fine particulate matter of <2.5 μm in aerodynamic diameter (PM2.5) and daily
mortality in the New York City metropolitan area during the period 2001–2005. Personal PM2.5
exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting
for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94)
increase in mortality per a 10 μg/m3 increase in personal exposure to PM2.5 from outdoor sources
on the previous day. The corresponding estimates per a 10 μg/m3 increase in PM2.5 ambient
concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated
with PM2.5 were also higher during the summer months.
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INTRODUCTION
There exists substantial epidemiological and toxicological evidence on the adverse health
effects of ambient air pollution.1–3 Population-based studies have had an important role in
establishing regulatory standards, such as the National Ambient Air Quality Standards
(NAAQS), to protect public health.4 For exposure assessment, these studies routinely use
concentrations measured at outdoor monitors where ambient levels serve as a surrogate for
pollution from outdoor sources. However, individuals spend the majority of their time
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indoor and air pollution exposures include both ambient and non-ambient sources.
Consequently, there has been a continual effort to understand the relationship between
ambient concentrations and personal exposures,5,6 as well as the bias in risk estimates when
ambient concentrations are used to derive exposure metrics.7 Studies have also suggested
that factors affecting ambient contribution to personal exposure may modify air pollution
health risks.8,9

Exposures from both ambient and non-ambient sources depend on the locations
(microenvironments) and the amount of time spent at the locations. Exposure levels can vary
in different microenvironments, such as vehicle, restaurant or home, depending on how
much ambient pollutant penetrates indoor and the presence of indoor sources (e.g.,
environmental tobacco smoke, cooking, cleaning). Empirical findings from panel studies
have provided considerable knowledge on how different sources contribute to personal
exposures.10–13 These results, along with data on human daily activity patterns,14 have led
to the development of several personal exposure simulators. Examples include the
probabilistic NAAQS Exposure Model,15 the Air Pollutants Exposure Model16 and the
Stochastic Human Exposure and Dose Simulation (SHEDS).17

An exposure simulator predicts daily exposure for a hypothetical individual by first
randomly assigning a time sequence of activity pattern that describes the amount of time the
individual spends in different microenvironments. The activity pattern is selected to match
the characteristic of the individual such as age, sex and occupation. Simplified versions of
the exposure simulators based on statistical models have also been proposed.18–20 Exposure
simulators were originally developed to assess the impacts of regulatory policies. The ability
to obtain exposure distribution for the at-risk population has encouraged their application in
health studies. For example, Shaddick et al.21 and Reich et al.22 used simulated exposures to
characterize daily group-level exposures to particulate matter (PM) and examined their
effects on daily mortality. Also, Berrocal et al.23 utilized SHEDS in an analysis of birth
weight and fine PM exposure during pregnancy.

This paper describes a modeling framework for estimating the short-term health effects of
personal exposures to ambient air pollution in a time series design. The proposed approach
is applied to an analysis of fine PM of <2.5 μm in aerodynamic diameter (PM2.5) and daily
mortality in the five-county New York City metropolitan area during the period 2001–2005.
We choose to focus on the associations between mortality and personal exposures to PM2.5
of ambient origin, whereas previous studies have used total personal exposures as the
exposure metrics. Studies have shown that exposures to ambient and non-ambient fine PM
have low correlations. Also, ambient and non-ambient PM often differ in size range and
composition.24 Moreover, the NAAQS regulates ambient concentrations and estimating
specifically the health effects attributable to outdoor sources enables risk assessment that is
policy relevant.

We follow previous approaches to link simulated personal daily exposure to PM2.5 from
SHEDS and the health outcome; but we also consider several extensions aimed at reducing
computational burden, and improving exposure assessment for the at-risk population. First,
in a time series analysis, the outcomes are daily counts of adverse events aggregated over a
geographical region that typically involves a large at-risk population and a long study
period. Simulating personal exposures for each day is computationally intensive, which
limits their use in health studies. We address this challenge by considering a statistical
emulator approach. Specifically, personal exposures are only simulated for a subset of the
study days. We then build a model between ambient concentrations and simulated average
personal exposures in order to impute exposures for the entire study period. The modeling
approach is carried out in a Bayesian framework such that uncertainty in exposure
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estimation can be easily propagated into risk estimation. Using longer study period also
allows us to examine seasonal differences in the health effects.

We also consider simulating exposures at a finer spatial resolution compared with previous
studies. For example, Holloman et al.18 generated individuals across a county, while
Shaddick et al.21 and Reich et al.22 generated individuals in small areas around air quality
monitors. Similar to most time series analyses, these studies assumed that the pollutant
concentration is relatively smooth across the study area. However, exposure to air pollution
can still vary spatially because of: (1) spatial variation in demographic characteristics that
can contribute to different activity and commuting patterns; and (2) spatial variation in
housing type that can contribute to different ambient contributions to indoor concentration.
Moreover, ambient concentration of air pollution can exhibit fine-scale spatial variation,
especially in an urban setting. We therefore choose to simulate exposures across all census
tracts in the five-county study region. Tract-level exposures are then combined to derive an
overall population-weighted exposure for risk estimation.25,26

In this paper, our goal is not to determine which metric (ambient concentration versus
personal exposure) is optimal. Instead, we wish to compare the risk estimates obtained from
the two exposure metrics. Empirical results from panel studies have demonstrated that
ambient concentration differs from personal exposure on the individual level. Our work
addresses an important scientific question because true personal exposures cannot be
obtained directly in a large population-based study such as a time series analysis.

METHODS
Mortality and Air Pollution Data

Detailed mortality data were obtained through the National Center for Health Statistics. For
the period 2001–2005, daily mortality counts for those aged 65 or above were assembled in
the New York City metropolitan area. Our study region consisted of the following five
counties: Bronx, Kings (Brooklyn), New York (Manhattan), Queens and Richmond (Staten
Island). Based on the International Statistical Classification of Diseases 10th revision, we
considered deaths because of cardiovascular (I00–I79) and respiratory diseases (J10–J18,
J21–J47 and J69–J70). Total population count by sex, and housing type (single-unit
detached, single-unit attached, multiple-unit attached and other) were obtained from Census
2000 for 2105 tracts.

Mean daily temperature and dew-point temperature were obtained from the National
Oceanic Atmospheric Administration's National Climatic Data Center. Daily ambient PM2.5
data were obtained from the Statistically Fused Air Quality database (http://www.epa.gov/
esd/land-sci/lcb/lcbsfads.html). The database contains predicted daily PM2.5 concentration
averaged over contiguous 12 km by 12 km grid cells. Predictions are based on a Bayesian
space-time hierarchical model27 that combines (1) PM2.5 data from the Air Quality System
network and (2) outputs from the Models-3/Community Multiscale Air Quality model.28

Personal exposures to PM2.5 because of outdoor sources were obtained from the SHEDS
version 3.7.17 First, we generated 23 hypothetical individuals for each census tract (a total of
48,415 across the study region). The simulation was conducted such that the 23 individuals
reflect the demographic proportions of sex, age and residential housing type in each census
tract. By simulating individuals within each tract, this approach captured the variation in
exposure associated with different at-risk population compositions across census tracts. A
smoking status was also randomly assigned using sex-specific smoking prevalence statistics
obtained from the New York City Department of Health and Mental Hygiene.29,30 Then for
each day in April, July, October and December of the year 2002, the activity pattern of each
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individual was randomly matched to a diary from EPA's Consolidated Human Activity
Database. The diary describes the amount of time an individual spends in various
microenvironments for a particular season, day of the week and individual characteristics.
In-vehicle exposures are estimated based on a revised approach recommended by Liu and
Frey.31

Let Xi (t,s) denote the simulated personal exposure to ambient PM2.5 from SHEDS for
individual i on day t in census tract s. Daily exposures were calculated by averaging time-
weighted exposure to ambient PM2.5 in nine microenvironments across a 24-h period.
Specifically, let Cik(t,s) and Tikh(t,s) denote the concentration of ambient PM2.5 and time
spent in microenvironment k during hour h. SHEDS considers nine microenvironments
including outdoor, home, office, school, store, restaurant, bar, in-vehicle and all other
indoor. Then,

For non-residential microenvironments, Cik(t,s) was determined by a linear function based
on empirical analysis of concurrent indoor and outdoor PM2.5 measurements for these
microenvironments:

where W(t,s) is the predicted ambient level obtained from the FSD database linked to the
tract centroid. The slope parameters were assumed known where boutdoor = 1.0, boffice =
0.18, bschool = 0.60, bstore = 0.75, brestaurant = 1.0, bbar = 1.0, bvehicle = 1.0 and bother =
0.85.17 The coefficient for home was determined by the mass balance equation

where P represents the penetration factor; k represents the deposition rate; and ach
represents the air exchange rate. Uncertainty in the contribution of ambient PM2.5 at home
was accomplished via a two-stage Monte Carlo approach by assigning probabilistic
distribution to the parameters. For each individual, SHEDS randomly selects values based
on the following distributions. We assumed P to be triangular (0.70, 0.78, 1.0) and k to be
normal with mean 0.40 and SD 0.01. We assumed ach to be log-normal with season-specific
geometric mean (spring: 0.40, summer: 0.64, fall: 0.22, winter: 0.45) and geometric SD
(spring: 1.82, summer: 2.09, fall: 1.72, winter: 2.03).32–34

Exposure Estimation
Denote X̃(t,s) the sample mean calculated across the 23 simulated personal exposures for
each tract. We considered the following random-effect model to relate the tract-level
population-average exposures to ambient PM2.5 concentrations. We refer to this model as
the emulator for SHEDS. We allowed all parameters in the model to be season specific
because in the SHEDS simulation, contribution of ambient PM2.5 at home and the associated
uncertainty are season specific. To simplify notation, in the following discussion we drop
the index for seasons on the model parameters.
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We assumed a linear relationship between the log average personal exposure and the log
ambient concentration with tract-specific intercept α0(s) and slope α1(s). Daily variation in
exposure because of different activity patterns is captured by the residual term ε(t, s), which
is Gaussian with mean zero and variance τ2. Exploratory analysis showed that the residual
error increases with ambient concentrations and the logarithmic scale was chosen to stabilize
heteroskedasticity. Tract-specific intercepts and slopes were modeled with tract-level
covariates Z̃(s) for population characteristics that can influence personal exposure to ambient
PM2.5. Based on the SHEDS algorithm, we included two variables: percent male in the 23
simulated individuals and percent single-unit detached housing unit from Census 2000. We
also considered average age as an additional covariate but found that it did not improve
prediction. This may be due to the study population being restricted to those aged 65 or
above.

We allowed α0(s) and α1(s) to vary smoothly in space by including spatial random effects
θ(s) and an unstructured random effects ν(s) with heterogeneity covariance V. The spatial
random effects aim to capture residual effects such as higher-order interactions between the
covariates that may exhibit spatial similarity. Specifically, we modeled θ(s) as a multivariate
conditionally autoregressive model (MCAR). The model is specified through spatial
adjacencies and a conditional covariance Σ. Let s ~ s0 denote that census tract s and s0 are
spatial neighbors, and ms be the number of spatial neighbors of tract s. The MCAR model
entails that the distribution of θ(s0) given all other locations is Gaussian with conditional

mean  and conditional variance 1/msΣ.

Parameter estimation for the emulator was carried out under a Bayesian framework using
Markov Chain Monte Carlo (MCMC). Parameters β0 and β1 were assigned Gaussian prior
with mean zero and variance 1002. The residual variance τ2 followed an inverse-Gamma
(0.001, 0.001); Σ and V followed inverse-Wishart distributions with scale matrices of
diagonal element 0.12 and 4 degrees of freedom. We used Gibbs sampling to analyze the
posterior distributions of all unknown parameters. Analyses were carried out in R 2.8.0 with
sub-routines written in C. After 10,000 burn-in samples, we ran an additional 25,000
iterations. To reduce autocorrelation between samples, we saved every fifth sample,
resulting in a total of 5000 posterior samples. MCMC convergence was assessed by
examining the trace plots of several representative parameters.

We imputed daily tract-level exposures for the complete study period using the emulator as
follows. Specifically, let superscript j = 1, ..., 5000 indicate the jth posterior sample. Then
the tract-specific logarithmic average exposure X(j)(t, s) can be sampled from a Gaussian

distribution with mean  and variance τ2,(j). Similarly, at each

iteration, the spatially varying bias terms  and  are sampled from a bivariate

Gaussian distribution with covariance V(j), and means  and

, respectively. The Bayesian estimation approach allows straightforward
transformation between the logarithmic and original scale. For imputing tract-specific
intercept and slopes, we used the percent male from Census 2000 instead of those calculated
from the 23 simulated individuals by SHEDS. We did not use the simulated SHEDS results
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directly as exposure on days when SHEDS was run. Instead, we used the corresponding
predictive samples to incorporate uncertainty in the simulated exposures.

As our daily mortality counts were aggregated across five counties, we computed a
weighted-average of the tract-level exposures for the time series analysis. Although we can
use tract-level exposures directly to conduct time series analysis within each tract, the
number of events on each day is likely to be too small for Poisson regression. In a time
series analysis where the health outcome is aggregated over a large geographic unit, the
desired exposure should represent the average levels of personal exposure to ambient PM2.5
across the at-risk population. Therefore, for each day t, average exposure across the entire
study area was obtained by weighting the tract-specific average exposures by the population
at-risk:

where P(s) denote the population size above age 65 in tract s based on Census 2000. We
also calculated exposure using ambient concentrations by replace X(j)(t, s) with W(t, s).

To evaluate the predictive performance of our emulator, we conducted an additional analysis
by first leaving out five randomly selected days from each census tract. We then calculated
the prediction root mean-squared error between the true values and their posterior predicted
mean by averaging all imputed X(j)(t) across each missing day. We also examined the
empirical 95% coverage probability by calculating the proportions of true values that fell
between the 2.5th and 97.5th quantiles of the imputed X(j)(t).

Mortality Model and Risk Estimation
Relative change in the rate of mortality associated with variation in daily PM2.5 exposure
was estimated via Poisson regression. We examined the effects of same-day (lag 0), 1-day
prior (lag 1), 2-day prior (lag 2) and 3-day prior (lag 3) exposure. We also considered an
unconstrained distributed lag model, where exposures at lag 1–3 were included in the
mortality model simultaneously.35 A cumulative effect of lag 1–3 was then obtained by
summing the 3 coefficients. We also considered season-specific relative risks by including
interactions between the exposure and indicators of seasons (winter: December–February,
spring: March–May, summer: June–August, fall: September–November). Following Samet
et al.,36 we controlled for seasonal trends and weather effects via natural cubic splines with
degrees of freedom d, including (1) calendar time (d = 8 per year), (2) current-day
temperature (d = 6) and average temperature for the previous three days (d = 6); (3) current-
day dew-point temperature (d = 3) and average dew-point temperature for the previous three
days (d = 3); and (5) indicators for day of the week.

Given the 5000 imputed time series of X(j)(t), we considered two approaches to estimate
relative risks. In the “exposure simulation” approach, we fitted the health model repeatedly
with each exposure time series and combined the resultant risk estimates and their standard
error in a multiple imputation framework. We also considered a two-stage “Bayesian”
approach where we carried out a second MCMC by treating the imputed time series as a
prior distribution for the exposures. This second approach differs from exposure simulation
in that the health data are used to help learn about the exposures and computation details can
be found in Peng and Bell.37 Moreover, we did not conduct a full Bayesian analysis where
the emulator and the mortality model are fitted simultaneously. Therefore, here we assume
that the mortality data do not provide information to estimate the relationship between
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ambient concentrations and personal exposures. However, the mortality data may provide
information about the exposures through the mortality model, especially if the exposure
model is specified incorrectly.

RESULTS
Based on Census 2000, the study population includes approximately 0.94 million persons
aged 65 or above with an average 79 cardio-respiratory deaths per day. Table 1 summarizes
daily population-weighted exposure metrics calculated using ambient PM2.5 concentrations
or predicted personal exposure to ambient PM2.5. Both concentrations and exposures were
higher during the summer months. Personal exposures also exhibited smaller temporal
variation compared with ambient concentrations. The SDs describe the between-day
variation in average personal exposures, not the between-individual variation in personal
exposure. The decrease in temporal variation is likely a result of personal exposures
representing only a fraction of ambient concentrations.

The daily exposure to concentration ratios also varied across seasons and were higher during
the summer months. Although intuitively people spent more time indoor during the winter,
this period does not correspond to the lowest concentration–exposure ratio. In our SHEDS
simulation, we assumed the air exchange rate parameter (ach) in winter to be relatively high.
This follows empirical studies, which have demonstrated that greater indoor–outdoor
temperature differences were associated with higher ach because convection may be the
dominant mechanism for air exchange.

To summarize the random tract-specific intercepts and slopes in the emulator, Table 2 gives
the season-specific posterior means and 95% posterior intervals (PI) of the average α0(s) and
α1(s) calculated across all tracts. We present the exponentiated intercepts because it roughly
describes the ratio between ambient concentrations and simulated exposure on its original
scale when α1(s) is close to 1. Coefficient α1(s) describes the multiplicative bias in ambient
concentration on the logarithmic scale. Estimates of the random-effect SDs are also given in
Table 2 to describe the between-tract variation (heterogeneity) on the relationship between
concentration and exposure. On average, we found the intercepts to be higher during the
summer and lower during the fall. The PIs of the intercept means also do not overlap,
indicating that on average across census tracts, seasonal effects on the relationship between
ambient concentration and personal exposure are significantly different.

Table 3 gives the predictive performance of the emulator that relates tract-level ambient
concentrations and personal exposures. Predictive statistics were calculated using the back-
transformed (original) PM2.5 levels. Higher prediction errors are associated for the summer
and winter months. Overall the root mean-squared errors were small compared with the
daily PM2.5 exposure levels. We also found the emulator to be well calibrated where the
95% prediction intervals are close to the desired coverage probabilities for all seasons.

Figure 1 shows the percent increase in mortality associated with ambient PM2.5 exposure.
The standard approach where ambient concentrations were used as a surrogate measure is
also presented. The two different approaches for utilizing imputed time series of PM2.5
exposure to estimate relative risks were indicated by different symbols. The risks associated
with personal exposures were higher than those where ambient concentrations were used
directly. The Bayesian approach produced very similar results compared with the exposure
simulation approach, the latter of which is more computationally efficient.

With the exposure simulation approach, we estimated that a 10 μg/m3 increase in PM2.5
exposure was associated with a 2.32% (95% PI: 0.68, 3.94), 2.08% (95% PI: 0.42, 3.73) and
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1.09% (95% PI: –0.41, 2.63) increase in daily mortality rate for lag 1, 2 and 3, respectively.
The corresponding risk estimates per 10 μg/m3 increase in PM2.5 concentration were 1.13%
(95% CI: 0.27, 2.00), 0.95% (95% CI: 0.07, 1.84) and 0.46% (95% CI: –0.35, 1.27). The
cumulative effects of lag 1–3 were 4.13% (95% PI: 1.81, 6.45) and 1.94% (95% CI: 0.70,
3.18) per 10 μg/m3 increase in PM2.5 exposure and concentrations, respectively. Table 4
shows the cumulative effects of lag 1–3 stratified by season. We found that the greatest risk
occurred during the summer months with a percent increase in mortality of 6.85% (95% PI:
3.10, 10.60) and 3.99% (95% CI: 1.87, 6.12) per 10 μg/m3 increase in PM2.5 exposure and
concentrations, respectively.

DISCUSSION
The proposed statistical emulator for population-level average exposure represents a hybrid
approach that combines ideas from both a fully statistical and a fully stochastic model.
Specifically, stochastic exposure simulators can effectively incorporate state-of-the-art
knowledge in various aspects of personal exposure assessment. Statistical emulators then
provide a computationally efficient way to estimate exposure for large population-based
study and propagate exposure uncertainty as dictated by the stochastic simulation algorithm.
To our knowledge, this is the first study that uses personal exposure estimates in a time
series design where the analytic approach is comparable to those studies using ambient
concentrations. Owing to its computational burden, previous studies that examined the
health effects of personal exposures to air pollution could only consider simplified health
models or with sample size much smaller than the epidemiologic studies today.

In this study, the computation time is approximately 5–6 h to simulate exposures for 50,000
individuals in a 30-day time period on a quad-core Window-based PC. The emulator can be
fitted within 3 h and imputation is completed within minutes. Our modeling strategy is based
on a random-effect specification with second-level covariates and can be fitted in standard
software such as SAS or WinBUGS. This will significantly decrease the computation time
further and facilitate the use of exposure simulators in future studies of air pollution and
health.

We chose to conduct exposure and risk estimation in two stages. This reduces computation
and is particularly important because in practice, the health model is often run many times
with the same exposures to examine: (1) different health outcomes (e.g., causes of death or
hospital admission); (2) different risk-windows in terms lag-effects; (3) and different
degrees of confounder control as sensitivity analysis. Stratified or subset analysis are also
frequently conducted to examine effect modifications.

Similar to previous studies, we found the risk estimates associated with exposures to be
greater than that associated with concentrations, indicating a negative bias in the
concentration-response function when ambient levels are used as a proxy for exposure.
Another potential explanation to this observation may be related to exposure
misclassification, which attenuates the true effects. The magnitude of the bias also
approximates the ratio between daily concentration and exposure level. It is possible that
additive bias is effectively controlled by the temporal smoothers in the time series model.
We believe our approach and results underscore the importance of exposure metric
definition and may help shed light on how this choice can impact the risk estimates.

When stratified by season, we found that ambient PM2.5 concentration and exposure were
positively associated with mortality in all seasons, but only statistically significant in the
summer months. This result agrees with a previous seasonal analysis of PM10 and mortality
in northeastern United States.38 As the composition of PM varies both geographically and
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seasonally, this finding should be explored in other regions and may have important policy
implication such as the need for seasonal PM2.5 control strategies. Our results do not
exclude the possibility of an adverse PM2.5 effect during non-summer months. For example,
during winter months in Northeastern United States, the PM2.5 mass includes a higher
proportion of elemental carbon, which has been linked to several health outcomes.39,40

However, elemental carbon often exhibits high spatial heterogeneity in their concentrations.
As our time series analysis is conducted over five counties and we used total PM mass as
exposure, the winter effect estimate may be attenuated because of larger exposure
measurement error. Another possible explanation is statistical power. The summer months
had the greatest temporal variation in both concentration and exposure levels. Moreover,
during the winter months, it may be difficult to identify the effect of particulate matter from
the strong effect of infectious diseases, which is aggressively controlled for using the
temporal smoother.

The emulator approach presented here has several limitations that offer potential model
extensions. First, we only considered modeling the mean population exposure and not its
variation. Time series analysis is ecological in nature where specification bias exists due the
aggregation.41 However, the acute health effects of ambient air pollution is typically very
small and specification bias is likely to be minor compared with that arises from the using
ambient concentrations as personal exposure. In this study, we chose to simulate small
number of individual exposures at a finer spatial resolution and did not have sufficient
sample to incorporate estimated exposure variances. Approaches to model population
exposure variance efficiently, especially when spatial dependence is considered, warrant
further investigation. Another limitation is the use of Census 2000 data both in fitting the
exposure model and for predicting daily exposures. We assumed that the tract-specific
relationships between ambient concentrations and exposures are season specific and do not
vary between years. With the availability of Census 2010 data, one potential extension is to
incorporate temporal changes in the demographic variables that influences α0(s) and α1(s).
Another source of demographic data is the American Community Survey where yearly, 3-
year and 5-year statistics are available at different spatial resolutions.

There are additional challenges in estimating personal exposure to ambient air pollution that
our approach does not consider and warrant further investigation. First, SHEDS, like other
stochastic and statistical simulators, requires ambient concentration as an input. We chose
US EPA's fusion product because it provides daily concentrations with complete spatial
coverage. However, the 12 km by 12 km grid cell cannot capture heterogeneity at finer
spatial scale and better characterization of ambient concentration, especially in urban
community, may improve exposure estimation. We also did not consider uncertainty in the
concentration measurements. The EPA fused database provides SD for the predicted
concentration and motivates additional methodological work to incorporate this uncertainty
in the risk estimates. Our results also rely on the validity and applicability of the dairies in
CHADS, as well as the assumptions in the concentration–exposure relationships dictated by
SHEDS. For example, we simulated exposures using SHEDS only for 4 months to describe
the season-specific concentration–exposure relationships. Therefore, imputation carried out
in months where simulations were not run relied on the distributional assumptions of the
season-specific SHEDS parameters. To our knowledge, previous studies have not
considered how these parameters may influence population-based exposure and risk
estimation in a time series design. We believe the computational advantage of our emulator
approach can be applied to examine the robustness of the risk estimates through sensitivity
analysis.
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Figure 1.
Percent increase in mortality associated with ambient PM2.5 exposure and concentration.
Lag 1–3 represents the cumulative effect obtained from an unconstrained distributed lag
model. For PM2.5 exposure, two estimation methods (exposure simulation and Bayesian) are
considered.
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Table 2

Mean and SD of the tract-specific intercepts α0(s) and slopes α1(s) relating ambient concentrations and
personal exposures.

Exponentiated intercepts α0(s) Slopes α1(s)

Mean across tracts SD across tracts Mean across tracts SD across tracts

Spring 0.560 (0.557, 0.564) 0.014 (0.011, 0.017) 0.977 (0.975, 0.980) 0.010 (0.008, 0.013)

Summer 0.613 (0.610, 0.615) 0.016 (0.014, 0.019) 0.989 (0.988, 0.990) 0.006 (0.004, 0.008)

Fall 0.492 (0.491, 0.493) 0.031 (0.029, 0.032) 0.956 (0.955, 0.958) 0.018 (0.016, 0.020)

Winter 0.569 (0.566, 0.573) 0.021 (0.019, 0.024) 0.984 (0.982, 0.987) 0.008 (0.006, 0.011)

The summary statistics were calculated across 2105 census tracts. Posterior means and 95% posterior intervals are presented.
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Table 3

Predictive performance of the emulator for relating census tract-level ambient concentrations and personal
exposures.

RMSE
a
 (μg/m3) PI length

b
 (μg/m3) PI Prob

c
 (%)

Spring 0.37 1.38 94.6

Summer 0.74 2.43 94.8

Fall 0.35 1.30 94.6

Winter 0.45 1.61 94.5

a
Root mean-squared error.

b
Average 95% posterior predictive interval length.

c
Empirical coverage probability of the 95% posterior predictive interval length.
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Table 4

Percent increase (95% posterior intervals) in mortality associated with ambient PM2.5 exposure and
concentration due to lag 1–3 by season.

PM2.5 exposure PM2.5 concentration

Spring 1.21 (–3.50, 5.90) 0.65 (–1.78, 3.09)

Summer 6.84 (3.10, 10.60) 3.99 (1.87, 6.12)

Fall 3.45 (–1.91, 8.83) 1.42 (–0.87, 3.72)

Winter 1.90 (–2.52, 6.39) 1.13 (–1.29, 3.55)
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