
Global analysis of nutrient control of gene expression
in Saccharomyces cerevisiae during growth
and starvation
Jian Wu*†‡, Nianshu Zhang*‡, Andrew Hayes*, Kalliope Panoutsopoulou*, and Stephen G. Oliver*§

*School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom; and †Department of
Biomolecular Sciences, University of Manchester Institute of Science and Technology, P.O. Box 88, Sackville Street, Manchester M60 1QD, United Kingdom

Communicated by Lajos Ferenczy, University of Szeged, Szeged, Hungary, December 22, 2003 (received for review November 13, 2002)

Global gene expression in yeast was examined in five different
nutrient-limited steady states and in their corresponding starvation-
induced stationary phases. The use of chemostats, with their ability
to generate defined and reproducible physiological conditions, per-
mitted the exclusion of the confounding variables that frequently
complicate transcriptome analyses. This approach allowed us to
dissect out effects on gene expression that are specific to particular
physiological states. Thus, we discovered that a large number of ORFs
involved in protein synthesis were activated under ammonium limi-
tation, whereas the expression of ORFs concerned with energy and
metabolism was enhanced by carbon limitation. Elevated transcrip-
tion of genes in high-affinity glucose uptake, the trichloroacetic acid
cycle, and oxidative phosphorylation were observed in glucose-
limiting, but not glucose-abundant, conditions. In contrast, genes
involved in gluconeogenesis and, interestingly, genes subject to
nitrogen catabolite repression increased their transcription when
ethanol was the carbon source, even though ammonium was in
excess. This result suggests that up-regulation of genes sensitive to
nitrogen catabolite repression may contribute anapleurotic interme-
diates in ethanol-grown cells. The different starvation conditions
produced two general types of transcription profiles, with carbon-
starved cells transcribing far fewer genes than cells starved for any of
the other macronutrients. Nonetheless, each starvation condition
induced its own peculiar set of genes, and only 17 genes were induced
>5-fold by all five starvations. In all cases, analysis of the upstream
sequences of clusters of coregulated genes identified motifs that may
be recognized by transcription factors specific for controlling gene
expression in each of the physiological conditions examined.

chemostat culture � global gene expression � nutrient limitation �
nutrient starvation

The availability of complete genome sequences for an increasing
number of organisms has created a demand for techniques to

facilitate the analysis of gene function that are as comprehensive as
the genome sequences themselves. Thus, the concepts of transcrip-
tome, proteome, and metabolome have evolved to represent,
respectively, the complete set of mRNAs, proteins, and low-
molecular-weight intermediates present in a cell (or cell type) under
a given set of physiological, developmental, or pathological condi-
tions (1). Among these different levels of functional genomic
analysis, the transcriptome has attracted the most attention, be-
cause the technique of hybridization-array analysis is facile, high
throughput, and truly comprehensive in scope. However, the com-
prehensive nature of transcriptome analysis is also its greatest
weakness. The problem is to garner the relevant information from
the huge amount of data obtained. There are two main ways of
addressing this problem. The first is to carry out a large number of
experiments and use data-mining techniques to extract the desired
information from the mass of data. This solution is best exemplified
by the compendium approach (2). The alternative is to carry out a
much smaller number of experiments but to control experimental
conditions such that all, or most, confounding variables are elimi-
nated, and only relevant information is obtained.

This second approach is most readily pursued with microorgan-
isms because, with these, the experimenter has complete control
over the cells’ physical and chemical environment. Even so, the
usual design of experiments to investigate gene expression in
microorganisms, involving the growth of cells in batch culture,
presents considerable complexity to the investigator. This is be-
cause, during batch culture, the cells pass through five distinct
phases of growth: lag, acceleration, exponential, deceleration, and
stationary. Even during exponential growth, the growth rate may
change due to phenomena such as diauxie. In any case, throughout
the exponential phase, cell numbers increase, nutrient concentra-
tions decrease, and the levels of excreted metabolites increase. To
all of these confounding variables may be added the fact that the
experimenter has no control over the growth rate achieved by the
culture during the exponential phase, and the physiological or
genetic phenomena under study may well affect growth rate.
Recent studies have demonstrated that the impact on gene expres-
sion due to the reduced growth rate of the mcm1 mutants com-
pletely obscured the primary effects of the mutations on the
transcription of specific sets of genes (3, 4).

All of these confounding variables and the complexity associated
with them may be removed by the use of chemostat culture (5),
because, at steady state, all culture parameters are held constant,
including temperature, pH, dissolved oxygen, nutrients, excreted
metabolites, cell numbers, and growth rate. By judicious medium
design, any nutrient can be made to determine (or limit) the growth
rate of the cells. Moreover, growth rate can be set at any value below
the maximum achievable by the particular microbial strain used on
the nutrient medium chosen by controlling the dilution rate of the
culture. Despite these advantages, few previous studies have ex-
ploited chemostat culture in yeast transcriptome analysis. One work
compared gene expression in yeast cultures grown aerobically and
anaerobically (6) and another, the transition between growth on
glucose to that on oleate (7). Here we present data on the nutrient
control of gene expression in Saccharomyces cerevisiae using che-
mostat cultures. In all experiments, the same strain of yeast and
chemically defined medium were used, and the same growth rate
was maintained for each nutrient-limiting condition. Nutrient star-
vation was achieved by simply turning off the medium feed to the
steady-state cultures. By controlling the culture parameters in this
way, we have eliminated confounding variables and produced a
considerable amount of information concerning the nutritional
control of gene expression, as well as revealing some previously
undescribed relationships between the different domains of me-
tabolism within the yeast cell.

Materials and Methods
Chemostat Culture and RNA Extraction. Diploid strain FY1679��HO
was used in all experiments. Five chemostats, each run at a dilution
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rate of 0.1 h�1, were set up as described (8) and run in duplicate.
All five chemostats were maintained at 100% O2 saturation. To
establish the starvation-induced stationary phases, the medium
feed to each chemostat was switched off during steady state, and
stationary-phase samples were taken after the cell density (OD600)
had reached a constant value, and �90% of the cells had no buds
(after 48 h). Cells were broken with a dismembranator (Braun,
Melsungen, Germany) and total RNA extracted by using TRIzol
reagent (3).

Target Labeling and Hybridization. Arrays, comprising PCR products
for each of 6,200 yeast ORFs, spotted (in duplicate) on nylon
membranes, were supplied by J. Hoheisel (Deutsches Krebsfors-
chungszentrum, Heidelberg). Total yeast RNA (30–35 �g) was
used to make first-strand cDNA target (9). An assessment of
incorporation efficiency of the 33P-dCTP label was made before
each hybridization. Prehybridization, hybridization, and washing
were carried out according to published protocols (10).

Imaging and Data Analysis. Hybridization images were captured by
using the STORM 860 phosphorimager (Molecular Dynamics). Pri-
mary data were analyzed by using ARRAYVISION 4.0 software
(Imaging Research, St. Catherine’s, ON, Canada). The expression
level of an ORF was normalized as its fractional contribution to the
total hybridization signal on a membrane. Blank spots were treated
as controls. Twice the SD of the signal from the blank spots was
used as the threshold to ensure that a signal was truly a result of
hybridization (�95% probability) rather than due to background
radiation. To assess reproducibility, duplicate experiments were
carried out. Without filtering the data, the correlation coefficient
was 0.96 for duplicates using the same filter and 0.94 for different
filters. All of the raw data are presented at www.cs.man.ac.uk�
cogeme�data, and full details of data analysis, including the nor-
malization and statistical regimes, can be found in Supporting Text
and Figs. 4–16, which are published as supporting information on
the PNAS web site.

To determine the degree to which transcription of a particular
ORF was regulated under a given nutrient limitation, the normal-
ized value from that condition was divided by the corresponding
value from the other nutrient-limited conditions, where the studied
nutrient was in excess, and converted to log2. Positive values �1 and
negative values ��1 under all of the comparisons then define up-
and down-regulated ORFs under the studied nutrient limitation,
with reference to the nutrient excess conditions. Regulated ORFs
were placed into 16 functional categories as defined by the Munich
Information Center for Protein Sequences Yeast Genome Data-
base (http:��mips.gsf.de�proj�yeast) (11).

The regulation of transcription across five different nutrient-
limited conditions was compared by using self-organizing maps to
detect clusters of genes with similar expression patterns. Clustering
was performed by using GENECLUSTER software (http:��www-
genome.wi.mit.edu�cancer�software�software.html) (12). Identifi-
cation of possible upstream regulatory sites in groups of coregu-

lated genes was performed by using regulatory sequence analysis
tools (http:��rsat.ulb.ac.be�rsat). Possible regulatory sites were
searched for in both the literature and the Saccharomyces cerevisiae
Promoter Database (http:��cgsigma.cshl.org�jian).

Results
Global Transcription Changes in Response to Different Nutrient Lim-
itations and Starvations. Among the 6,280 ORFs arrayed on the
filter, 1,297 of them (20.6% of the genome) were expressed at a level
lower than a 2 � SD of the background in all of the steady states
and starvation conditions. These ORFs were defined as not, or very
lowly, expressed under these conditions. There were 1,038 ORFs
(16.5% of the genome) that could be detected at a level higher than
this threshold under all conditions. These ORFs may be regarded
as housekeeping genes; 15% of them are classified as essential genes
in the Munich Information Center for Protein Sequences database.
This fraction is similar to the percentage of essential genes for the
entire yeast genome (13), but this is the first indication that they may
be required for stationary phase survival as well as mitotic growth.
The number of ORFs expressed at a measurable level under each
condition is summarized in Table 1.

The number of genes expressed in each nutrient-starved station-
ary phase was compared with that expressed in its corresponding
steady state. As summarized in Table 1, transcripts for fewer ORFs
were detected in the stationary phase than in growing cells, in
agreement with previous studies (14, 15). Furthermore, the tran-
scription profiles of the five stationary phases may be divided into
two classes, according to the number of ORFs expressed. Class 1
comprises carbon-starved (glucose and ethanol) stationary phases
and is characterized by their being far fewer genes transcribed than
in steady state. Class 2 contains all noncarbon-starved (ammonium,
phosphate, and sulfate) stationary phases. In this class, the tran-
scription pattern in each stationary phase was qualitatively similar
to that in its corresponding steady state. These results imply that
deprivation of a carbon source results in a major reduction in gene
activity that may be crucial for maintaining cell viability over
prolonged periods without growth.

Comparing each dataset with all other limiting conditions, where
the studied nutrient was abundant, we were able to identify ORFs
that were up- or down-regulated under each nutrient limitation. We
initially tested this approach by comparing the dataset from the
phosphate-limited steady state with those from phosphate-
abundant conditions (C, N, and S limitations). As might have been
expected, PHO5 and PHO84 were the two most up-regulated genes
in phosphate-limited cells. Several additional genes, including
PHO11, PHO12, PHM6, and SPL2, were activated in response to
phosphate limitation (see Table 4, which is published as supporting
information on the PNAS web site, for complete list). These data
suggested that the cross comparison to the nutrient-excess cultures
was an effective way of assessing the regulatory impact of specific
nutrient limitations.

We then identified ORFs up-regulated under each of the nutrient
limitations. For instance, there were 250 and 104 ORFs up-

Table 1. Number of ORFs expressed under different nutrient conditions

Limiting nutrient SS ST
Shut-off from

SS to ST
Induced

�5-fold at ST

Glucose 3,903 (62.1) 2,204 (35.0) (27.1) 268
Ethanol 3,551 (56.5) 2,419 (38.5) (18.0) 68
Ammonium 4,361 (69.4) 4,138 (65.8) (3.6) 171
Phosphate 3,446 (54.8) 3,404 (54.1) (0.7) 231
Sulphate 2,488 (39.6) 2,019 (32.1) (7.5) 85
All conditions 1,883 (29.9) 1,346 (21.4) — 17
�2 � SD in any condition 1,646 (26.2) 1,767 (28.1) — —

SS, steady state; ST, starvation. Percentage of genome is included in brackets.
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regulated under glucose and ammonium limitations, respectively.
These ORFs were then categorized according to their functions as
defined by the Munich Information Center for Protein Sequences
database. As compared to the distribution of all ORFs and those
up-regulated under the glucose-limiting condition, a larger number
of ORFs activated under nitrogen limitation fall into the protein
synthesis class (Fig. 1). In contrast, the transcription of more ORFs
from the metabolism and energy categories was increased when
glucose was limiting. Similarly, as compared with either glucose-
limiting or -abundant (N-, P-, or S-limiting) conditions, 159 ORFs
were found up-regulated with ethanol as carbon source. These
ORFs have a similar distribution of functions to those up-regulated
under glucose limitation (Fig. 1), suggesting that carbon limitation
has a similar global impact on expression of genes from the different
functional categories, irrespective of the identity of the carbon source.

Genes Encoding Enzymes in the Trichloroacetic Acid (TCA) and Glyoxy-
late Cycles Were Activated by Glucose and Ethanol Limitation, Re-
spectively. Among the 250 ORFs that showed increased transcript
levels when glucose was limiting, 76 were up-regulated �3-fold.

Nearly half of these (33 ORFs) fall into the metabolism functional
category, which prompted us to study these ORFs in more detail by
fitting them into the pathways of central carbon metabolism, by
using the Kyoto Encyclopedia of Genes and Genomes database
(www.genome.ad.jp�kegg�metabolism.html). The expression of
two genes encoding high-affinity hexose transporters (HXT6 and
HXT7) and all three genes specifying glucose kinases (HXK1,
HXK2, and GLK1) was up-regulated under glucose limitation. In
addition, genes encoding enzymes in the pentose phosphate path-
way and the TCA cycle increased their transcript levels in response
to glucose limitation. Fig. 2 shows that almost every step in the TCA
cycle has one or more genes up-regulated in the glucose-limited
steady state. Furthermore, the two glutamate-dehydrogenase genes
(GDH1 and GDH3) were shown to be up-regulated. Gdh3p ac-
counts for �0.5% of the total GDH-NADP activity of cells grown
with ammonia as the sole nitrogen source (16) and may have a
sensing role in nitrogen regulation (17). Its up-regulation on glucose
limitation suggests that it may act in both carbon and nitrogen
regulation in response to the depletion of glutamate, an essential
intermediate for amino acid and nucleotide biosynthesis.

Fig. 1. Functional categories of all ORFs and of up-regulated ORFs. The percentage of these ORFs in each of the 16 functional categories is shown.

Fig. 2. Genes of central carbon metabolism activated under glucose-limited (red) and ethanol-limited (green) conditions. Boxes are drawn around the sections
of the metabolic chart that include the glyoxylate and TCA cycles, respectively, to highlight the gluconeogenic and glucose-catabolic regions of metabolism.
Question marks next to gene names indicate uncertainty over their involvement in that step of the pathway.
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Among the 159 ORFs induced under ethanol limitation, 52 were
activated �3-fold as compared to cells grown under all conditions
where glucose was the carbon source. In the list of the TCA-cycle-
related genes activated under glucose limitation, only two (CIT1
and GDH3, blue in Fig. 2) were further up-regulated, three (LPD1,
IDP1, and GDH1) down-regulated, and the rest remained un-
changed when ethanol was the carbon source. Instead, genes
encoding proteins involved in the pathways leading from ethanol to:
(i) the synthesis of acetyl-CoA and its transport into mitochondria;
(ii) the glyoxylate cycle, which is responsible for gluconeogenesis
and succinate replenishment for the TCA cycle; and (iii) the export
of �-ketoglutarate out of the mitochondria for glutamate and lysine
biosynthesis were all shown to be activated (genes in green in Fig.
2). Moreover, genes encoding subunits of respiratory complexes
were specifically up-regulated in ethanol-limited, as opposed to
glucose-limited, conditions, indicating that the oxidative phosphor-
ylation pathway is further activated in ethanol-limited cells.

More interestingly, a few genes under nitrogen catabolite repres-
sion increased their transcription in the ethanol-limited, as com-
pared to the aerobic glucose-limited, steady state. These included
MEP2, PUT4, DAL2, DAL4, and DAL5. It was expected that these
genes would be repressed by the excess of ammonium in the
carbon-limited culture (18). Indeed, this is true for the glucose-
limited steady state. That these genes are induced under ethanol-
limitation suggests there is cross-talk between carbon and nitrogen
metabolism, probably through some key regulators controlling both
these domains of metabolism (see Discussion).

Genes Commonly Activated at Starvation Conditions. About 250
ORFs were found to be down-regulated in all five starvation-
induced stationary phases. Twelve percent have no known function,
and the majority of the remainder fall into three functional cate-
gories: cellular organization (75), transcription (35), and protein
synthesis (40). In the transcription category, most encode proteins
required for synthesizing and processing rRNAs (8) or encode
RNA polymerases II and III (2) or proteins involved in transcription
activation and DNA binding (6), including histones (8). Within the
protein synthesis category, the majority of these ORFs encode
ribosomal proteins (19), have products involved in translation
initiation and elongation (11), or specify aminoacyl-tRNA-
synthases (8). When cells enter stationary phase, their protein
synthetic rate decreases to �0.3% of that observed in exponentially
growing cells (15). Our data show that they concomitantly down-
regulate the expression of genes encoding components of the
transcriptional and translational apparatus, although there may still
be excess translational capacity in stationary-phase cells (19).

In contrast to the general shut-down of transcription on starva-
tion, a few genes are up-regulated in the nutrient-starved stationary
phases that we examined. The number of ORFs induced in response
to different nutrient starvations, compared with their preceding
nutrient-limited steady state, is summarized in Table 1. Little
difference in their distribution among the functional groups was
found, and �25% of these genes have no recognized functions.
Details of the top 50 ORFs activated under each of the starvation
conditions are listed in Tables 5–9, which are published as support-
ing information on the PNAS web site.

There are just 17 ORFs that are commonly up-regulated �5-fold
in all five starvation conditions (Table 2). Only one of them (TBF1)
is essential for vegetative growth. This group is of special interest,
because it may provide some clues as to the ways yeast cells adapt
to a nutrient-starved stationary phase from an actively growing
state. Until now, this adaptation has been very poorly characterized,
as demonstrated by the fact that 11 of these 17 genes have no known
functions.

Among the six genes with known functions, SML1 encodes an
inhibitor of ribonucleotide reductase (20), which catalyzes a rate-
limiting step in DNA precursor synthesis (21). AUT7 is predicted to
play a role in the Cvt pathway, during active growth, and in the

autophagic uptake of proteins during starvation (22). Their up-
regulation indicates that DNA synthesis is inhibited and bulk
protein degradation activated in nutrient-starved cells. Ssa3p is a
cytosolic member of the Hsp70 family that is induced by a variety
of stress conditions, including heat shock and nutrient starvation
(23). It is known that cytosolic members of the Hsp70 family are
involved in the transport of cytosolic contents into the yeast vacuole
(24). The specific up-regulation of SSA3 suggests it may play a
dominant role as a chaperone in nutrient-starved cells. Hxt5p is a
hexose transporter, but deletion of HXT5 has no clear phenotype
(13). That HXT5 is strongly induced under all five nutrient-starved
stationary phases in the absence or presence of extracellular glucose
suggests that its expression is controlled by the reduction or
cessation of growth, a fact confirmed by the chemostat studies of
Verwaal et al. (25).

Among the ORFs with no clear function, GRE1, SPG1, UGX2,
YDL218w, YIL055c, YHR097c, and YPL186c are genes whose
transcripts accumulate in response to any combination of stress
conditions (26). The universal induction of these genes under
different nutrient-starved stationary phases and different stresses
indicates that nutrient starvation is another kind of stress condition.
Previous studies have indicated that YBL049w encodes a putative
N-myristoylprotein (27), and that specific N-myristoylproteins con-
tribute to stationary-phase survival, suggesting that these genes may
play an important role in cell survival during stationary phase.

Clustering Coregulated Genes and Promoter Analysis. Only ORFs
whose expression was up- or down-regulated �2-fold across dif-
ferent nutrient limitation conditions were subjected to clustering
(see Materials and Methods). As shown in Fig. 3, the 18 ORFs in
cluster c2 have their peak expression levels in the phosphate-limited
steady state and comprise mostly PHO genes. The most significant
oligonucleotide motifs identified for this cluster are CACGT(G�C)
(Table 3), the core sequences bound by the transcription factor
Pho4p, which is required for expression of phosphate pathway genes
on phosphate limitation (28).

We also identified clusters of genes whose transcription re-
sponded to changes of carbon source. Motifs overrepresented in

Table 2. Genes commonly induced >5-fold in all starvation
conditions

ORF (gene) Function Interaction

YBL049w Unknown CAP2, YIP1
YBL075c (SSA3) Heat-shock protein CDC25
YBL078c (AUT7) Microtubule-binding

protein
APG7, AUT1, AUT2

YDL169c
(UGX2)

Unknown

YDL218w Unknown Rna15p
YGR201c Unknown
YGR236c (SPG1) Unknown
YHR096c

(HXT5)
Hexose transporter

YHR097c Unknown
YIL055c Unknown
YIL057c Unknown
YJL144w Unknown
YML058w

(SML1)
Ribonucleotide

reductase inhibitor
DDC2, RNR1

YMR107w Unknown
YPL128c (TBF1) TTAGGG repeat-binding

factor
YKL090W

YPL186c Unknown
YPL223c (GRE1) Induced by osmotic

stress
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their upstream regions and possible binding transcription factors
are summarized in Table 3. In cluster c30, in which ORFs were
highly expressed only under glucose limitation, the most overrep-
resented motif, CCCCT, is the so-called stress-response element.
This is the binding site for Msn2�4p transcriptional activator (29)
and is responsible for reprogramming gene expression on glucose
exhaustion for ethanol-sustained growth (30). Surprisingly, in clus-
ters c28 and c29, where the transcription of ORFs was elevated
when glucose was limiting or ethanol was used as the carbon source,
CCCCR(A�G), the consensus sequence to which the transcrip-
tional repressor Mig1p binds, was not found to be the most
over-represented. Instead, CGGGC was found to be significant for
both clusters. No putative transcription factor in SCPD was found
to bind this sequence. A search of their promoter sequences
revealed that 40 of 61 ORFs contain the CCCCR sequence in their
promoters, suggesting that Mig1p is responsible for repression of
most, but not all, of the glucose-repressed genes.

Among the clusters in which ORFs were expressed only during
ethanol limitation, overrepresented motifs targeted by known tran-
scription factors were extracted from promoters of cluster c24.
GGAGA (significance � 0.61, not shown in Table 3) and
CCGN5CCG are the consensus sequences to which Adr1p and
Cat8p bind, respectively. ADR1 encodes a transcription factor
involved in the regulation of ADH2 and peroxisomal genes (31).
Cat8p is required for derepression of genes involved in gluconeo-
genesis (32) and acts on the carbon-source response. Indeed, this
cluster consists primarily of genes involved in ethanol utilization, the
glyoxylate cycle, and gluconeogenesis.

Cluster c1 contained ORFs that were highly induced when
glucose was abundant in the medium. HXT1, encoding a low-
affinity glucose transporter expressed only at high glucose concen-
trations (33), was clustered with a number of genes with known
functions, including MIG2, ADH4, ROM1, and PPQ1. Promoter
analysis revealed a known dyad sequence, ACCN5GGT, to which
Zap1p binds. Zap1p is a zinc-responsive transcriptional activator
that regulates genes involved in zinc uptake (34). The transcription
of at least eight genes in this cluster, including YNL254c, YOL154w,
YGL258w, YOR387c, ZRT3, MNT2, ADH4, and YPL250c (ICY2),
has been shown to be significantly up-regulated by zinc deficiency
(35). This may indicate that cells grown under conditions of glucose
excess are zinc-deficient. In addition, a few genes involved in iron
uptake and its subsequent utilization were grouped in the c0 cluster
with genes highly induced when glucose (rather than ethanol) was
the carbon source. This result suggests that the group of iron-
associated genes, including FTH1, FET3, FRE3, FIT2, and FIT3, are
activated by glycolysis, irrespective of the cells’ respiratory status.

Discussion
Most studies on the yeast transcriptome have been performed by
using batch culture systems. In such cultures, the environment is
continuously changing, and it is difficult to study the effects of
individual physiological parameters on cell growth and metabolism
or to make reproducible comparisons among exponential phases.
Furthermore, secondary effects, such as growth-rate-dependent
factors, tend to obscure the identification of genes really pertinent
to a particular experimental treatment, mutation, or physiological
condition (3, 4). In contrast, the steady states obtained in chemostat
culture are well defined and highly reproducible. In this paper, we
have examined the effects of different nutrient limitations on the
yeast transcriptome by using chemostat cultures run at the same
dilution (growth) rate.

We initiated this analysis by comparing gene expression in the
phosphate-limited steady state with all four other steady states in
which phosphate was abundant. Fourteen genes, including PHO5
and PHO84, were activated �3-fold in response to phosphate

Fig. 3. Clustering of ORFs up-regulated �2-fold across five different nutri-
ent-limited conditions. The y axis stands for relative expression level across
glucose-, ammonium-, phosphate-, sulfate-, and ethanol-limited conditions (x
axis, left to right). The blue lines represent the average expression pattern of
each cluster; the red lines indicate variation around the average pattern. Each
cell is labeled with the cluster name and the number of ORFs that it contains.

Table 3. Overrepresented motifs in ORF upstream regions

Cluster Oligonucleotide and dyad motifs, significance

c0 ccaga 3.4, catca 3.3, gcaccc 3.0 (AFT1), cctn14ggc 1.2, ctcn15aga 1.1
c1 ccaca 2.5, aaccc 1.9, ccgaa 1.4, gtgn1gca 3.4, cgcn1tgc 2.2, accn5ggt 1.98 (ZAP1)
c28 ggcca 5.5, cgggc 4.7, gcgac 4.2, cgcn11cac 3.0, cggn17cgc 2.8, ctgn7gcc 2.1
c29 ccgcc 4.3, cgggc 3.2, ctccc 2.5, gcgn8cca 3.5, tggn20caa 2.4, gggn19cca 1.9
c30 cccct 5.0 (MSN2�4), ccccc 2.8, cccccc 2.8, agcn9agc 2.3, cccn7gcc 2.0
c18 catcc 3.2, gatga 1.1, tcan18tca 6.6, atcn12atc 2.9, gatn20tga 2.1
c23 tccca 1.4, ctcn15cag 1.3
c24 gccca 3.9, ccgcc 3.3, aatgg 2.0, ccgn5ccg 2.0 (CAT8), ccan5ccg 1.4 (CAT8)
c15, c16 ccaga 3.3, ggcca 2.3, agatg 1.6, tggn8gaa 2.5, atgn3ggg 1.4, atgn2tgg 1.2
c4 ctgga 3.4, ggcca 2.8, caagg 2.7, ccan8ttc 1.8, ccan15agg 1.2, caan11tgg 1.1
c2 acgtg 6.4 (PHO4), acgtgc 2.6, acgtgg 2.0

The significance index, listed beside the sequences, is the -log10 transform of the E value; higher values are
associated with the most significant patterns. A significance of 1 indicates that, if random sequences were
submitted to the program, such a level of overrepresentation would be expected every 10 trials (http:��
rsat.ulb.ac.be�rsat). Only the top three motifs are listed for each category if significance is �1.
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limitation. The transcription of about half of these ORFs has also
been shown to be activated in phosphate-limiting medium by
Ogawa et al. (36) and vice versa. There may be several reasons for
the discrepancy. First, our experiment was performed by using a
chemostat, whereas theirs used batch growth. For reasons discussed
above, transcriptome data may be obscured by constant changes of
environment in a batch culture. Second, during our analysis, spots
were included in the dataset only if their intensity was greater than
the threshold (2 � SD of background). As a result, some genes that
were activated, in terms of the change in their absolute expression
levels, were excluded from the phosphate-regulated dataset. Ex-
amples include PHO89 and PHM2, both of which were up-regulated
�5-fold. Finally, phosphate concentrations may differ in both
abundant and limiting conditions between the two studies.

Under glucose limitation, ORFs encoding TCA cycle enzymes
were switched on (Fig. 2), as compared to their state in glucose-
abundant conditions, indicating that both TCA cycle genes and
those involved in oxidative phosphorylation are derepressed to
provide intermediates and ATP needed for cellular growth. Com-
pared with glucose-limiting conditions, the expression of TCA cycle
genes remained at about the same level under ethanol limitation.
However, genes in the glyoxylate cycle were massively induced,
which may indicate that cytosolic acetyl-CoA synthesized from
ethanol may be sufficient for ATP generation in mitochondria but
may not provide enough TCA cycle intermediates for glutamate
synthesis and gluconeogenesis. As a result, the glyoxylate cycle was
induced to convert ethanol into acetate to replenish malate used for
gluconeogenesis. Moreover, in addition to GDH1 and GDH3, the
expression of GLT1 (responsible for converting ammonium and
glutamine into glutamate) was induced (Fig. 2), suggesting that cells
grown on ethanol may experience glutamate deficiency. This might
explain why some of the nitrogen catabolite repression genes, such
as MEP2, AGP2, PUT4, DAL4, and DAL5, were up-regulated when
cells were grown under ethanol-limiting conditions, even though
there was excess ammonium in the medium.

The nitrogen catabolite repression genes are activated by the
partially redundant GATA factors Gln3p and Gat1p, which are
retained in the cytoplasm by Ure2p in the presence of a good
nitrogen source (37). Ure2p is itself a phosphoprotein, and a recent
study (38) has shown that its phosphorylation state responds not to
nitrogen availability but rather to the carbon source. Ure2p is
dephosphorylated when cells grown on a fermentable energy
source (glucose) are transferred to a nonfermentable energy source

(ethanol or acetate). Dephosphorylation of Ure2p releases Gat1p,
which is translocated into the nucleus and induces a specific set of
genes involved in the anapleurotic pathways that replenish TCA
cycle intermediates (38).

Nutrient starvation elicited dramatic changes in yeast’s global
gene expression pattern. Among the five conditions, carbon star-
vations have a greater quantitative impact on gene transcription,
suggesting that genes involved in carbon metabolism make up more
of the genome than those responsible for the metabolism of any
other macronutrient. Alternatively, yeast cells might be unable to
support as many general functions in the absence of a carbon source
compared to when other macronutrients are absent, due to the fact
that recycled carbon must be used as a source of energy as well as
anabolites. Although different sets of ORFs were activated under
different nutrient-induced starvations (see Tables 5–9), it will be
interesting to extend the starvation experiment to assess the reg-
ulation of these genes during and after exhaustion of a particular
nutrient. Nevertheless, those 17 genes that were commonly induced
in all five conditions examined are of special interest, and the
functions of most of them are not yet precisely characterized.
Previous studies have revealed that 10 of these ORFs are induced
by a variety of stresses, highlighting the overlapping response of cells
to stress and nutrient deprivation and suggesting that starvation
itself is a kind of stress. However, subsequent promoter analysis
failed to identify the stress-response element in the upstream
regions of these 17 ORFs, suggesting other mechanisms are regu-
lating cells’ entry into stationary phase.

The data presented (obtained from experiments with carefully
controlled nutrient-limited steady states and defined nutrient-
starved stationary phases) have provided much useful information
about the nutrient control of gene expression in S. cerevisiae. These
data suggest a number of hypotheses about the regulation of yeast
metabolic pathways and the interrelationships among them. These
hypotheses now need to be tested by more specific experiments.
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