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Abstract
The corpus callosum (CC) is the largest fiber bundle connecting the left and right cerebral
hemispheres. It has been a region examined extensively for indications of various pathologies,
including Alzheimer’s disease (AD). Almost all previous studies of the CC in AD have been
concerned with its size, particularly its mid-sagittal cross-sectional area (CCA). In this study, we
show that the CC shape, characterized by its circularity (CIR), may be affected more profoundly
than its size in early AD. MRI scans (n = 196) were obtained from the publicly available Open
Access Series of Imaging Studies database. The CC cross-sectional region on the mid-sagittal
section of the brain was automatically segmented using a novel algorithm. The CCA and CIR
were compared in 98 normal controls (NC) subjects, 70 patients with very mild AD (AD-VM),
and 28 patients with mild AD (AD-M). Statistical analysis of covariance controlling for age and
intracranial capacity showed that both the CIR and the CCA were significantly reduced in the AD-
VM group relative to the NC group (CIR: p = 0.004; CCA: p = 0.005). However, only the CIR
was significantly different between the AD-M and AD-VM groups (p = 0.006) being smaller in
the former. The CCA was not significantly different between the AD-M and AD-VM groups. The
results suggest that CC shape may be a more sensitive marker than its size for monitoring the
progression of AD. In order to facilitate independent analyses, the CC segmentations and the CCA
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and CIR data used in this study have been made publicly available (http://www.nitrc.org/projects/
art).
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Introduction
The corpus callosum (CC) is the largest fiber bundle connecting the two cerebral
hemispheres. Atrophy of the CC may lead to functional disability because of reduced
interhemispheric integration. It is a region that has been examined intensively for indications
of various pathologies, ranging from dyslexia (Hynd et al. 1995), bipolar disorder (Yasar et
al. 2006), and Schizophrenia (Downhill et al. 2000) to Alzheimer’s disease (AD) (Di Paola
et al. 2010b; Frederiksen et al. 2011; Hallam et al. 2008; Hampel et al. 1998; Hensel et al.
2002; Janowsky et al. 1996; Ryberg et al. 2011; Teipel et al. 2002, 2003; Thomann et al.
2006; Wang et al. 2006; Zhu et al. 2012). This is due, in part, to its size, its widespread
cortical projections, and its unambiguous signal with contemporary neuroimaging
techniques. As the mid-sagittal section of the CC is fairly well defined, it has been the
primary focus of examination. Techniques have evolved from post-mortem sectioning to
magnetic resonance imaging (MRI) of the living human brain, and from manual tracing of
photographs to automatic computer techniques. Recent advances have included diffusion
tensor imaging (DTI), T1-weighted high-resolution imaging, and automatic segmentation
algorithms. A review of in vivo structural studies of CC in AD and mild cognitive
impairment (MCI) using different MRI techniques is given by Di Paola et al. (2010c).

As the field has progressed, it has become apparent that the size and shape of the CC
depends on age (Ardekani et al. 2012b), handedness (Witelson 1985; Luders et al. 2010),
brain size and sex (Holloway et al. 1993; Smith 2005; Ardekani et al. 2012b), as well as the
presence of pathology. Many of the earlier papers dealt with small sample sizes and lower
resolution images, and did not account for these confounding variables in their analyses. As
a result, some of the previous studies have reported conflicting findings, for example,
whether callosal atrophy occurs early in the dementing process (Wang et al. 2006) or is
present predominately in the later stages of AD (Di Paola et al. 2010b), whether the size of
the CC declines with age in patients with AD or remains unchanged (Janowsky et al. 1996),
and whether atrophy primarily occurs in the anterior regions of the CC (Thomann et al.
2006; Zhu et al. 2012), the posterior regions (Frederiksen et al. 2011; Wang et al. 2006), or
both (Di Paola et al. 2010a; Teipel et al. 2002; Hallam et al. 2008).

It has been posited that two different mechanisms might contribute to CC atrophy in AD: the
death of cells in the gray matter, particularly the large pyramidal cells in cortical layer III,
resulting in Wallerian degeneration of axons in the white matter; and direct myelin
breakdown of callosal fibers (Di Paola et al. 2010a). To this date, morphological studies of
CC in AD have been mainly concerned with size reflecting these degenerative processes.
However, in addition to these effects, the CC shape may change because of ventricular
dilation reflecting an overall brain atrophic process. The aim of the current study was to
examine CC shape in AD using circularity as a descriptive parameter. Since circularity
captures not only area changes due to CC atrophy but also changes in the CC perimeter due
to deformation, we hypothesized that circularity may be a more sensitive indicator of disease
progression than cross-sectional area. Using the publically available Open Access Series of
Imaging Studies (OASIS) MRI database (Marcus et al. 2007), we compared circularity with
cross-sectional area. We made our segmentation results and corresponding measurements
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publically available (http://www.nitrc.org/projects/art) to allow independent cross checking
of our results and to encourage data sharing which could be of benefit to the neuroimaging
community (Poline et al. 2012).

Methods
MRI volumes

We used 196 MRI scans (from the total of 416) available in the OASIS cross-sectional
dataset. The MRI scans are three-dimensional (3D) sagittal T1-weighted volumes of matrix
size: 256 × 256 × 128 and voxel size: 1 × 1 × 1.25 mm3. Each volume is the post-
registration average of 3 or 4 independently acquired magnetization prepared rapid gradient-
echo (MP-RAGE) scans with repetition time (TR): 9.7 ms; echo time (TE): 4.0 ms;
inversion time (TI): 20 ms; delay time (TD): 200 ms; and flip angle: 10°; obtained using a
1.5 T Siemens Vision scanner (Erlangen, Germany). More details can be found in Marcus et
al. (2007).

Subjects
The 196 subjects included 98 normal controls (NC) aged 60 YEARS or above in the OASIS
cross-sectional dataset with a Clinical Dementia Rating (CDR) scale (Morris 1993) of zero;
70 subjects clinically diagnosed with very mild AD (AD-VM) with CDR = 0.5; and 28
subjects with mild AD (AD-M) with CDR = 1. Details of the method for diagnosis and
classification of subjects into NC, AD-VM, and AD-M are given in Marcus et al. (2007).
Briefly, “the determination of AD or control status was based solely on clinical methods,
without reference to psychometric performance, and any potential alternative causes of
dementia (known neurological, medical, or psychiatric disorders) had to be absent. The
diagnosis of AD was based on clinical information (derived primarily from a collateral
source) that the subject had experienced gradual onset and progression of decline in memory
and other cognitive and functional domains. Dementia status was established and staged
using the CDR scale, a dementia-staging instrument that rates subjects for impairment in
each of the six domains: memory, orientation, judgment and problem solving, function in
community affairs, home and hobbies, and personal care. Based on the collateral source and
subject interview, a global CDR score was derived from individual ratings in each domain.
A global CDR of 0 indicates no dementia, and CDRs of 0.5, 1, 2, and 3 represent very mild,
mild, moderate, and severe dementia, respectively.”

All subjects were right-handed. Subject demographics are summarized in Table 1. Details of
subject recruitment and evaluation methods, inclusion and exclusion criteria, and other
characteristics are given by Marcus et al. (2007). Briefly, according to Marcus et al. “the
older subjects in the OASIS cross-sectional database with and without dementia were
obtained from the longitudinal pool of the Washington University Alzheimer Disease
Research Center (ADRC). Subjects with a primary cause of dementia other than AD (e.g.,
vascular dementia, primary progressive aphasia), active neurological or psychiatric illness
(e.g., major depression), serious head injury, history of clinically meaningful stroke, and use
of psychoactive drugs were excluded, as were subjects with gross anatomical abnormalities
evident in their MRI images (e.g., large lesions, tumors). However, subjects with age-typical
brain changes (e.g., mild atrophy, leukoaraiosis) were accepted.”

Corpus callosum segmentation
We used a fully automated method to find the mid-sagittal plane (MSP) of the MRI volumes
(Ardekani et al. 1997) to bring the head yaw and roll angles as close as possible to zero.
Uncorrected head tilt within the scanner during MRI acquisition has been shown to
introduce errors in CC measurements (Rauch and Jinkins 1996). In addition, the anterior
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commissure (AP) and posterior commissure (PC) were located on the MSP using a fully
automated model-based method (Ardekani and Bachman 2009). Using this information, the
original MRI volume was re-sliced to obtain a single image of matrix size: 512 × 512 and
pixel size: 0.5 × 0.5 mm2 representing the true AC-PC aligned MSP (Fig. 1). Using a priori
information obtained from manually traced corpora callosa on this type of image, a
rectangular CC search region was indentified on the MSP as shown in Fig. 1. Finally, a
multi-atlas model-based segmentation method (Aljabar et al. 2009; Cabezas et al. 2011;
Ardekani et al. 2012a, b) using the Automatic Registration Toolbox (ART) non-linear
registration algorithm (Ardekani et al. 2005; Klein et al. 2009) was used to locate the CC
within the search region as shown in Fig. 1. Our serial implementation of the entire
segmentation process with 38 atlases takes less than 1 min on a Linux workstation with 2.4
GHz clock speed. ART is a non-linear registration algorithm that searches for a
displacement vector at each voxel in the target image, with the speed of the algorithm being
approximately proportional to the number of voxels processed. In the current application,
the displacement field is only sought for the voxels comprising the search region shown in
Fig. 1 which are a small fraction of the total number of voxels in a 3D MRI volume.
Therefore, the time required for non-linear registration of an atlas to the target is only a
fraction of the time that would normally be required to register a full 3D MRI volume,
which explains the relatively fast speed of our CC segmentation method.

Further details of the multi-atlas segmentation method are given in Ardekani et al. (2012a,
b). Briefly, all 38 atlases were registered to the test image. However, at each voxel, a subset
of m atlases were selected using a local correlation coefficient (LCC) similarity metric and
used to classify the voxel as CC or non-CC using the vote rule (Rohlfing et al. 2004). The
algorithm is adaptive in that the subset of m atlases used varies from voxel to voxel. The
optimum number of atlases was found to be m = 12 and the LCC window size 7 × 7 mm2

using a leave-one-out cross-validation procedure within the training set of 38 atlases.

Every CC segmentation was visually inspected and if necessary, small corrections to the
detected CC were made manually using the ITK-SNAP software (Yushkevich et al. 2006)
by an operator (KF) who was blind to the subject status. This was necessary in
approximately 20 % of the cases. The final segmentation was represented as a binary image
where pixels were assigned a value of 1 if they belonged to the CC and a value of 0
otherwise. Morphological operations were performed to ensure that the CC in the binary
image is represented as a 4-connected component with an Euler number of one (Jain et al.
1995; cf. Appendix). We have made all 196 automatically detected and AC-PC aligned
MSP’s (gray level images) and their corresponding segmentations (binary images) publicly
available at http://www.nitrc.org/projects/art as supplementary material.

Corpus callosum measurements
We measured the total CC cross-sectional area (CCA) and circularity (CIR) for all 196
subjects in our study. The CCA was measured as the number of pixels comprising the CC in
the binary image multiplied by the pixel size of 0.25 mm2. The CC perimeter was calculated
as the length of the 8-path (Jain et al. 1995; cf. Appendix) that constitutes the border of the
CC. Border pixels were those that were a part of the CC and were 4-neighbors to a non-CC
pixel. A border-following algorithm (Jain et al. 1995; cf. Appendix) was used to extract a
sequence of pixels that represented the CC border. Two consecutive pixels on the border
sequence contributed 0.5 mm to the perimeter if they were 4-neighbors (i.e., shared a side)
and 0.5 × 21/2 mm otherwise (i.e., if they only shared a corner). Definition of technical terms
such as 4-neighborhood, 4-connectedness, Euler number, etc., and the border following
algorithm are given in the Appendix.
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For a given region in 2D with area A and perimeter P, circularity is defined as: 4πA/P2. The
value of circularity ranges from 0 for a line (a degenerate case) to 1 for a circle. This is a
measure of shape rather than size. For example, two similar triangles would have the exact
same circularity regardless of their area. The CCA and CIR measured from all subjects are
provided as supplementary material (http://www.nitrc.org/projects/art).

Statistical analysis
Two-way factorial analysis of covariance (ANCOVA) was performed using the SPSS 15.0
for Windows software with sex (F or M) and diagnostic group (NC, AD-VM, or AD-M) as
fixed between-subject factors, age, and intracranial capacity as covariates, and CCA or CIR
as the dependent variable. Post hoc pair-wise tests were planned to ascertain any group
differences. Statistical significance was tested at the level of α = 0.05 (two-tailed). To
control for intracranial capacity, we used the variable eTIV2/3 where eTIV is the estimate of
the total intracranial volume obtained using the method of Buckner et al. (2004) and
provided in the OASIS database. The reason for using the allometric exponent 2/3 is
discussed in detail by Smith (2005). Briefly, it is due to the fact that in a perfectly
isometrically scaling organism all surface area-based properties would change
proportionally with volume to the power 2/3. Jäncke et al. (1997) also present evidence that
supports the use of 2/3 allometric exponent in relating CC size to a measure of brain size.

Results
The unadjusted means (±SE) for the CCA and CIR are given in Table 1. The ANCOVA
results are presented below for each dependent variable separately.

Corpus callosum cross-sectional area
Before conducting the ANCOVA, we tested the assumption of homogeneity of the
regression slopes. The test evaluates the interaction between the covariates (age and
eTIV2/3) and the between-subject factors (sex and diagnosis) in predicting the dependent
variable (CCA). There were no significant (sex × age), (sex × eTIV2/3), (diagnosis × age), or
(diagnosis × eTIV2/3) interactions. This means that the slopes of the linear relationships
between CCA and eTIV2/3, and CCA and age can be assumed the same for the three
diagnostic groups (NC, AD-VM, and AD-M) and the two gender groups (male and female).
In addition, Levene’s test of equality of error variances within each of the 6 (sex ×
diagnosis) groups showed that the underlying ANCOVA assumption of homogeneity of
variance has been met [F(5, 190) = 0.9, p = 0.469]. ANCOVA showed that: (1) there was a
significant age effect on CCA [F(1,188) = 50.9; p < 10−10; partial η2 = 0.213]. As shown in
Fig. 2, CCA decreases with age. (2) The intracranial capacity variable eTIV2/3 had a
significant effect on CCA [F(1,188) = 39.1; p < 10−8; partial η2 = 0.172]. As shown in Fig.
3, CCA increases with intracranial capacity. (3) There was no significant interaction
between sex and diagnosis factors [F(2, 188) = 1.1; p = 0.320]. (4) The main effect of sex
was not statistically significant but showed a trend toward females having larger CCA [F(1,
188) = 3.5; p = 0.063] (adjusted for age and intracranial capacity). (5) The main effect of
diagnosis was statistically significant [F(2,188) = 6.8; p = 0.001; partial η2 = 0.067].

The marginal CCA means (adjusted for age and intracranial capacity) of the three diagnostic
groups are shown in Fig. 4 and are given in Table 1. CCA decreases with dementia severity.
Post hoc pairwise comparisons showed a significance difference between the marginal
means of the NC and AD-VM groups (p = 0.005), and the NC and AD-M groups (p =
0.002). However, there was no statistically significant difference between the AD-VM and
AD-M groups (p = 0.266).
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Corpus callosum circularity
Before conducting the ANCOVA, we tested the assumption of homogeneity of the
regression slopes. There were no significant (sex × age), (sex × eTIV2/3), (diagnosis × age),
or (diagnosis × eTIV2/3) interactions. Therefore, the slopes of the linear relationships
between CIR and eTIV2/3 and between CIR and age were assumed the same for the three
diagnostic groups and the two gender groups. Levene’s test of equality of error variance
showed that the underlying ANCOVA assumption of homogeneity of variance has been met
[F(5, 190) = 1.1, p = 0.337]. ANCOVA showed that: (1) there was a significant age effect
on CIR [F(1,188) = 52.7; p < 10−10; partial η2 = 0.219]. As shown in Fig. 5, circularity
decreases with age. (2) The intracranial capacity variable eTIV2/3 had a significant effect on
CIR [F(1,188) = 38.9; p < 10−8; partial η2 = 0.171]. As shown in Fig. 6, circularity
decreases with intracranial capacity. (3) There was no significant interaction between sex
and diagnosis factors [F(2, 188) = 2.6; p = 0.074]. (4) The main effect of sex was
statistically significant [F(1, 188) = 6.0; p = 0.015; partial η2 = 0.031]. (5) The main effect
of diagnosis was also statistically significant [F(2,188) = 13.1; p < 10−5; partial η2 = 0.122].

The corrected CIR means (adjusted for age and intracranial capacity) of the male and female
groups are shown in Fig. 7. In this age group, the female CC is less circular than the male
counterpart of the same age and intracranial capacity.

The corrected CIR means of the three diagnostic groups are shown in Fig. 8 and are given in
Table 1. CIR decreases with dementia severity. Post hoc pairwise comparisons showed a
significance difference between the corrected means of the NC and AD-VM groups (p =
0.004); NC and AD-M groups (p < 10−5); and AD-VM and AD-M groups (p = 0.006).

Discussion
To best of our knowledge, this is the first study of the changes in CC circularity, which is a
measure of shape rather than size, in AD. We found that in normal subjects and in very mild
to mild AD patients aged 60 years or above, the CC shape becomes less circular with age. In
addition, we found that the CC shape in larger brains (as indicated by eTIV2/3) tends to be
less circular. Furthermore, our analysis suggests that the shape of the CC may be sexually
dimorphic, being slightly less circular in females. Sexual dimorphism of the CC size has
been studied extensively (Holloway et al. 1993; Smith 2005; Ardekani et al. 2012b),
however, this is one of the few studies to suggest gender-based shape differences. As far as
we are aware, the only other study that investigated sexual dimorphism in the circularity of
the whole CC was a postmortem study of 33 adult human brains by Going and Dixson
(1990) who did not find a significant gender effect (p = 0.17). However, they used an
independent samples t test without correcting for brain size and age, which we have shown
to affect circularity. In addition, post-mortem brains undergo deformations during fixation
and dissection which may have adversely affected the study. It must be emphasized that the
sex difference in circularity reported here is for older adults (age ≥ 60 years). We have not
found evidence that this result holds for younger adults.

Circularity of a shape in 2D is given by 4πA/P2. Thus, a decrease in circularity could be
explained by a decrease in area (A), an increase in perimeter (P), or from a combination of
both factors.

Thus, a reduction in CCA either due to the death of cells in the gray matter, particularly the
large pyramidal cells in cortical layer III, resulting in Wallerian degeneration of axons in the
white matter, or due to direct myelin breakdown of callosal fibers (Di Paola et al. 2010a)
would contribute to a reduction in CIR. Reduction in CIR could also result from a pure
deformation of the CC while the area is conserved. This could be a result of the mechanical
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deformation of the CC because of age and disease related enlargements of the lateral
ventricles reflecting an overall atrophic process in the brain. For example consider a
rectangle of width W and length L (L > W). The area and perimeter of this rectangle are: W ×
L, and (2W + 2L), respectively. Now suppose that we stretch the rectangle to half its width
and twice its length. The area of the new rectangle would be the same: (W/2) × (2L) = W ×
L. However, its perimeter would now be (W + 4L) which is greater than the perimeter of the
original rectangle (2W + 2L) since L > W. Therefore, the overall effect would be a decrease
in CIR. In addition, a non-uniform decrease in the CCA could increase the perimeter as it
becomes more irregular, thus decreasing the CIR.

Our results also indicated that the mean CCA, while smaller in the AD-M group relative to
the AD-VM group, was not statistically significantly different between the two groups (p =
0.266). On the other hand, the mean CIR was significantly smaller in the AD-M group than
in the AD-VM group (p < 0.006). However, failure to detect a statistically significant
difference in CCA between AD-M and AD-VM groups does not imply that no true
difference exists. It may merely mean that based on sample size and measurement errors the
statistical test used was insufficiently powered to detect a true difference. The fact that under
the same conditions a significant difference in CIR was detected between these groups,
therefore, suggests that CIR may be a more sensitive marker than CCA for monitoring AD
progression.

Hensel et al. (2002) also studied the CCA in a group of 33 normal controls, 27 patients with
CDR = 0.5 (their “questionable dementia” group), and 23 patients with CDR = 1 (AD-M).
As in our study, they found that the callosal size in CDR = 0.5 group was intermediate
between normal controls and CDR = 1. However, statistically significant differences were
only found between the normal controls and CDR = 1 groups. As the authors noted, absence
of a significant difference between patients with questionable dementia (CDR = 0.5) and any
other group may be due to a lack of statistical power in their relatively small sample.

The fact that we did not find a statistically significant difference in CCA between AD-M and
AD-VM groups is in direct contradiction of a recently published study (Zhu et al. 2012) that
used the exact same data (196 subjects from the OASIS cross-sectional dataset). Zhu et al.
reported a statistically significant (p < 0.05) difference in CCA between the AD-M and AD-
VM groups. There are some differences in the statistical analysis methods used in this paper
and the Zhu et al. study, in that the latter did not use age as a covariate or sex as a factor in
their ANCOVA—both variables are known to affect CCA. Not accounting for variables that
introduce systematic variance in the data is more likely to underpower the statistical test,
hence introducing Type II errors, than creating spurious findings. Therefore, differences in
statistical methodology are unlikely to explain the discrepancy between the results of the
two studies. Comparing the SE reported in this study (Table 1) with those reported in Table
2 of Zhu et al. (note that the caption in Table 2 of Zhu et al. states that standard deviations
are given where as in fact the reported values are standard errors—confirmed by Zhu et al.
through private communication) it can be seen that our standard errors are smaller than those
of Zhu et al. Therefore, the discrepancy cannot be attributed to increased uncertainty in our
measurements that could result in Type II errors. Comparing the mean values reported in
this study (Table 1) with those reported in Table 2 of Zhu et al., it could be seen that the
source of discrepancy is that Zhu et al. report a considerably smaller value for the mean
CCA in the AD-M group than that observed in this study. At this time, the reason for this
difference is not clear. Fortunately, the OASIS database explicitly authorizes redistribution
of data derived from their database. Therefore, we have made our CC segmentations and
area measurements available publicly as supplementary material to facilitate comparisons
and independent re-analyses of the data. It is hoped that the availability of this completely
transparent and easily accessible dataset would help in resolving this discrepancy as well as
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other inconsistencies between results reported in the literature concerning CC size and shape
in AD.

Di Paola et al. (2010b) using voxel-based morphometry (VBM) found significant CC
atrophy in severe AD patients as compared to normal controls, but did not detect significant
differences between healthy controls, mild AD, or amnestic MCI patients. Thus, they
concluded that callosal atrophy is present predominately in the latest stage of AD. In
contrast, the results of this paper show that both CC size and shape are significantly affected
in patients with very mild AD. An explanation for this discrepancy may be that VBM, which
is a generic method, is less sensitive in detecting discrete structural CC changes than the
methods used in our study that are specifically designed for accurate CC measurements.
Thomann et al. (2006) compared VBM and manual tracing methods for studying CC
atrophy in MCI and AD and concluded that VBM is less sensitive than manual tracing in
detecting subtle CC differences.

Our analysis showed that both CCA and CIR decrease with increasing age. As far as we are
aware, changes in the CC shape, as measured by CIR, with age have not been reported
previously. Our finding of CCA changes with age are consistent with the results of
Janowsky et al. (1996) who found that CCA showed a significant decline with age in healthy
elderly subjects and in a group of “incipient dementia” subjects who were cognitively
normal at the time of their MRI study but subsequently developed MCI as indicated by a
CDR of 0.5 or greater on two successive 6-month follow-up visits. However, Janowsky et
al. did not find an age-related decline in CCA in a group of AD patients (ρ = −0.15; p <
0.354), while we found a significant negative correlation between age and CCA in both NC
and AD patients. A separate analysis performed only on our group of 98 AD patients (70
AD-VM plus 28 AD-M) confirmed a significant age-related decline (ρ = −0.349; p < 0.001).
More than half of the 39 AD patients studied by Janowsky et al. had CDR ≤ 1 but their
cohort also included patients with more than mild AD (CDR > 1) who at the time of imaging
already had significant atrophy. This could be one reason to explain why as a whole their
AD group did not show significant correlation with age. Another possible reason is that
Janowsky et al. used multi-slice 2D sagittal MRI acquisitions with 5 mm slice thickness and
did not tilt correct the images, rather, a mid-sagittal slice was selected by inspection for
tracing, whereas we used an automated technique (Ardekani et al. 1997) for detecting the
MSP on 3D high-resolution MP-RAGE MRI scans, and measured the CCA on the MSP
after re-slicing the MRI volume by tri-linear interpolation to zero the yaw and roll angles.
The importance of applying a consistent and repeatable method for defining the MSP in all
subjects has been emphasized by Rauch and Jinkins (1996) and Mitchell et al. (2003).
Regardless, our data which we have made publicly available and is based on a large number
of publicly available MRI scans clearly shows that atrophic process of CC in very mild and
mild AD (CDR ≤ 1) is not complete, but ongoing with age and disease progression.

Our analysis also showed that intracranial capacity had a significant explanatory
contribution to both CCA and CIR models. To the best of our knowledge, our finding that
CIR decreases with intracranial capacity has not been previously reported. While there is
fairly broad consensus that CCA increases with brain size, this has not been found to be the
case in some studies (Teipel et al. 2002).

We did not attempt to localize atrophy within the CC. To this date, the majority of methods
for subdividing the CC have been purely geometrically based (e.g., splenium as the posterior
fifth of CC) (Witelson 1985; Weis et al. 1991; Hampel et al. 1998). However, it has been
shown that significant variability can be introduced into the measurements with different
methods of subdivision (Constant and Ruther 1996). We believe that using the standard
methods of subdivision would make analyses excessively prone to Type I and Type II errors.
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A more promising and rigorous method for determining exactly which fiber bundles within
the CC are affected by AD will be to use fiber tracking based on DTI to segment the CC into
anatomically more meaningful subsections (Abe et al. 2004; Hofer and Frahm 2006). DTI
data, however, is not available in OASIS and this remains a topic for future investigation. To
this end, our group is also considering the analysis of continuous thickness curves derived
along the CC length using the methods of functional data analysis (Ramsay and Silverman
2005).

Conclusions
This study examined 196 high-resolution T1-weighted images from the OASIS shared
neuroimaging data resource. The CC was segmented on all images and its area, perimeter,
and circularity were measured. These data were analyzed in this paper and made publicly
available to the research community for re-examination and analysis. It is hoped that this
approach would help resolve some of the discrepancies that exist in the literature concerning
the morphology of CC in AD.

This paper also for the first time examined the circularity of the CC in AD alongside its size.
Our analysis indicates that: (a) both CIR and CCA decrease with age; (b) CIR decreases and
CCA increases with intracranial capacity; (c) the CIR is reduced and CCA is larger in
females; and (d) CIR is more sensitive than CCA in distinguishing between the three groups
of NC, AD-VM, and AD-M, thus, it appears to be a better measure for tracking AD
progression.
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Appendix
This section provides brief definitions of some of the technical image processing terms used
in this paper and the border following algorithm. These are taken from Jain et al. (1995)
where more details can be found.

Definition 1 Consider pixels to be square areas with 4 sides and 4 corners. Two pixels
(squares) are 4-neighbors if they share a common side. Two pixels are 8-neighbors if they
share a common side or a common corner.

Definition 2 An 8-path from pixel 1 to pixel n is sequence of pixels with indices p1, p2,…,
pn such that pixels pk and pk+1 (1 ≤ k < n) are 8-neighbors. Similarly if the pixels are 4-
neighbors, the path is referred to as a 4-path.

Definition 3 A set of pixels in which each pixel is connected to all other pixels by a 4-path
is called a 4-connected component. Similarly, if each pixel is connected to all other pixels by
an 8-path, the set of pixels is referred to as an 8-connected component.

Definition 4 The Euler number is defined as the number of components in an object minus
the number of holes. Therefore, the Euler number of a 4- or 8-connected component equals 1
if it does not have any holes.

Definition 5 The border of a connected component S is all pixels of S that have at least one
4-neighbor that is not in S.
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Border-following algorithm: (a) Find a starting border pixel s of connected component S by
scanning the image systematically from left to right and from top to bottom. (b) Let the
current pixel in the border be denoted by c. Set c = s and let the 4-neighbor to the west of s
be b. Note that b will not be in S. (c) Let the eight 8-neighbors of c starting with b in
clockwise order be n1, n2,…, n8. Find ni, for the first i that is in S. (d) Set c = ni and b = ni−1.
(e) Repeat steps (c) and (d) until c = s.
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Fig. 1.
The automatically detected mid-sagittal plane (MSP) using the algorithm of Ardekani et al.
(1997) is shown in the background. The automatically detected anterior commissure (AC)
and posterior commissure (PC) using the algorithm of Ardekani and Bachman (2009) are
shown by the plus signs. The MSP is aligned so that the AC-PC line is horizontal with
respect to the image coordinates. The rectangular box shows the search region for the
corpus callosum (CC) obtained a priori using 38 manually delineated corpora callosa on AC-
PC aligned MSP images as training data. The outline shows the detected CC using the
algorithm described in this paper and in more detail in Ardekani et al. (2012a, b)
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Fig. 2.
Correlation between CCA and age (ρ = −0.408; p < 10−8)
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Fig. 3.
Correlation between CCA and intracranial capacity variable eTIV2/3 (ρ = 0.321; p < 10−5)

Ardekani et al. Page 15

Brain Struct Funct. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Adjusted corpus callosum area (CCA) mean values for the three diagnostic groups. The
error bars indicate 1 SE. *The mean CCA in AD-VM was statistically smaller than NC (p =
0.005). **The mean in AD-M was statistically smaller than NC (p = 0.002). The AD-VM
and AD-M groups were not statistically different (p = 0.266)
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Fig. 5.
Correlation between CIR and age (ρ = −0.452; p < 10−10)
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Fig. 6.
Correlation between CIR and intracranial capacity variable eTIV2/3 (ρ = −0.348; p < 10−6)
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Fig. 7.
Corrected corpus callosum circularity (CIR) mean values for female and male groups. The
error bars indicate 1 SE. *The mean CIR of the female group was significantly smaller than
the male group (p = 0.015)
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Fig. 8.
Corrected corpus callosum circularity (CIR) mean values for the three diagnostic groups.
The error bars indicate 1 SE. *The mean CIR in AD-VM was statistically smaller than NC
(p = 0.004). **The mean in AD-M was statistically smaller than NC (p < 10−5). ***The
mean AD-M was statistically smaller that AD-VM (p = 0.006)
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Table 1

Summary statistics

Normal
controls

Very mild AD Mild AD

CDR 0 0.5 1

Number 98 70 28

Sex (female/male) 72/26 39/31 19/9

Age (years) 75.9 ± 9.0 76.2 ± 7.2 77.8 ± 7.0

MMSE 28.96 ± 1.21 25.64 ± 3.50 21.68 ± 3.75

eTIV2/3 (cm2) 127.3 ± 0.9 130.0 ± 1.3 129.9 ± 1.3

CCA (mm2) 585.3 ± 7.7 558.5 ± 9.3 543.4 ± 11.6

CIR (×1,000) 157.8 ± 2.3 147.0 ± 2.5 134.5 ± 3.6

*CCA (mm2) 582.9 ± 7.1 553.5 ± 7.5 537.1 ± 12.7

*CIR (×1,000) 157.8 ± 2.0 149.2 ± 2.1 137.5 ± 3.6

CCA, CIR, and eTIV2/3 are given as mean ± SE. Age and minimental state examination (MMSE) scores are given as mean ± SD

*
Corrected for age and intracranial capacity evaluated at: age = 76.2, eTIV2/3 = 128.6
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